
Assignment 8

Due date: Friday, 17 March (8pm)

Ex 31

Consider a gauge group G, with Lie algebra g.

1. Show by explicit calculation that a non-abelian gauge field configuration of the form

Aµ = ih(∂µh
−1) ,

where h(x) is a space-time dependent element of G, has field strength Fµν = 0.
[20 marks]

SOLUTION:

We calculate
∂µAν = i(∂µh)(∂νh

−1) + ih(∂µ∂νh
−1) ,

therefore

∂µAν − ∂νAµ = i(∂µh)(∂νh
−1)− i(∂νh)(∂µh

−1) + ih(∂µ∂νh
−1)− ih(∂ν∂µh

−1)

= i(∂µh)(∂νh
−1)− i(∂νh)(∂µh

−1) ,

where the second derivative terms cancel (as usual, we assume that h−1 is sufficiently
differentiable so that Schwarz’s/Clairaut’s theorem applies). The contribution of the
commutator is

−i[Aµ, Aν ] = i[h∂µh
−1, h∂νh

−1]

= ih(∂µh
−1)h(∂νh

−1)− ih(∂νh
−1)h(∂µh

−1) .

Now we use the identity

0 = (∂µ1) = ∂µ(hh
−1) = (∂µh)h

−1 + h(∂µh
−1)

to get

−i[Aµ, Aν ] = −i(∂µh)h
−1h(∂νh

−1) + i(∂νh)h
−1h(∂µh

−1)

= −i(∂µh)(∂νh
−1) + i(∂νh)(∂µh

−1) .

Hence
Fµν = ∂µAν − ∂νAµ − i[Aµ, Aν ] = 0 .

1



2

2. Can you think of a simpler argument to reach the same conclusion? [15 marks]

SOLUTION:

Start from a configuration with vanishing gauge fieldAµ = 0. The field strength trivially
vanishes: Fµν = 0. Now perform a gauge transformation with gauge parameter g = h.
We find that the new (gauge transformed) gauge field A′

µ and field strength F ′
µν are

A′
µ = hAµh

−1 + ih(∂µh
−1) = ih(∂µh

−1)

F ′
µν = hFµνh

−1 = 0 .

Now, what is primed or unprimed is a matter of point of view: I could have called the
primed variables unprimed and vice versa, had I used the inverse gauge transformation.
The key point here is that this shows that the field strength of Aµ = ih(∂µh

−1) is Fµν =
0. Configurations like Aµ = ih(∂µh

−1), which are obtained by a gauge transformation
of the trivial (i.e. zero) configuration, are called pure gauge configurations.

Ex 34

Consider a gauge theory with Lagrangian density

L = Lgauge + Lmatter

= − 1

2g2YM

tr(FµνF
µν) +

θ

16π2
tr(FµνF̃

µν)− (Dµϕ)
†Dµϕ− V (ϕ, ϕ†) ,

where the scalar potential V (ϕ, ϕ†) is a gauge invariant function of ϕ, which transforms in

the fundamental representation of the gauge group G, and of ϕ† = ϕ
T
.

1. Show that the equations of motion are

DµD
µϕ =

∂V

∂ϕ†

DνF
µν = g2YMJµ

for a current Jµ = Ja
µta that you should find. [35 marks]

SOLUTION:

This is admittedly long, but hopefully instructive. Let’s start from the equation of
motion for the scalar field ϕ. Integrating by parts its kinetic term, we can write the
terms in the action involving ϕ as

S[ϕ,A] =

∫
d4x

[
ϕ†DµD

µϕ− V (ϕ, ϕ†) + . . .
]
,
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where the dots do not involve ϕ. Setting to zero the first variation of the action with
respect to ϕ† gives the desired equation of motion

DµD
µϕ =

∂V

∂ϕ† .

Varying with respect to ϕ gives the hermitian conjugate equation.

The equation of motion for the gauge field Aµ is more challenging. There are several
ways to proceed: one is to expand in a basis of generators of the Lie algebra, Aµ = Aa

µta,
use the Lie brackets and the quadratic invariant to write the Lagrangian in terms of
Aa

µ, its derivative and the structure constants of the Lie algebra, and then finding
the Euler-Lagrange equation for Aa

µ. It is straightforward but tedious, so we’ll follow
another route. We first note that the theta term is a total derivative term, as in Ex 33,
therefore its contribution to the action is a boundary (or surface) term. Its variation
is also a boundary term, therefore it does not contribute to the equations of motion.1

We can thus focus on the dependence of Aµ in the Yang-Mills term and in the kinetic
term for ϕ. The kinetic term for ϕ contributes to the action

Smatter[ϕ,A] = −
∫

d4x
(
iϕ†Aν∂

νϕ− i∂νϕ†Aνϕ+ ϕ†AνAνϕ+ . . .
)

= −
∫

d4x tr
(
iAν(∂

νϕ)ϕ† − iAνϕ(∂
νϕ†) + AβA

βϕϕ† + . . .
)

where the dots don’t contain the gauge field. The first line is gauge invariant, so
it’s equal to its trace, and using cyclicity we obtain the second line. We now take
the variation with respect to Aµ and use cyclicity again to find (to first order in the
variation δAµ)

Smatter[ϕ,A+ δA]− Smatter[ϕ,A]

= −
∫

d4x tr
(
(δAµ)(i(∂

µϕ)ϕ† − iϕ(∂µϕ†) + Aµϕϕ† + ϕϕ†Aµ)
)

= −
∫

d4x tr
(
(δAµ)(i(D

µϕ)ϕ† − iϕ(Dµϕ)†)
)

≡ −
∫

d4x tr ((δAµ)K
µ)

for a current
Kµ = i(Dµϕ)ϕ† − iϕ(Dµϕ)† .

1Alternatively, proceed as for the Yang-Mills term below and use the Bianchi identity DµF̃
µν = 0.
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For the Yang-Mills term, we write

− g2YMδSYM [A] =

∫
d4x tr

(
(δFαβ)F

αβ
)

=

∫
d4x tr

(
(∂α(δAβ)− ∂β(δAα)− i(δAα)Aβ − iAα(δAβ) + i(δAβ)Aα + iAβ(δAα))F

αβ
)

=

∫
d4x tr

(
− (δAβ)∂αF

αβ + (δAα)∂βF
αβ − i(δAα)AβF

αβ − i(δAβ)F
αβAα

+ i(δAβ)AαF
αβ + iAβ(δAα)F

αβAβ

)
=

∫
d4x tr

(
− (δAβ)DαF

αβ + (δAα)DβF
αβ
)
= 2

∫
d4x tr

(
(δAµ)DνF

µν
)

where I integrated by parts, dropped boundary terms and used cyclicity of the trace to
go from the second line to the third line, and then used DαF

αβ = ∂αF
αβ − i[Aα, F

αβ]
to go from the third to the fourth line. In the last equality I relabelled dummy indices
and used antisymmetry of F µν . So

S[ϕ,A+ δA]− S[ϕ,A] =

∫
d4x tr

(
(δAµ)

(
−Kµ − 2

g2YM

DνF
µν

))
,

from which we read off the equation of motion for the gauge field

DνF
µν = −1

2
g2YMKµ .

Therefore

Jµ = −1

2
Kµ = − i

2

(
(Dµϕ)ϕ† − ϕ(Dµϕ)†

)
=

i

2

(
ϕ(Dµϕ)† − (Dµϕ)ϕ†) .

2. Show that the current Jµ transforms as

Jµ 7→ gJµg−1

under a gauge transformation with group element g = g(x), and that it is covariantly
conserved, namely

DµJ
µ = 0 .

[30 marks]

SOLUTION:

Either from the explicit form of Jµ in terms of ϕ and Aµ (and using g−1 = g†), or using
Jµ ∝ DνF

µν , we see that Jµ transforms in the adjoint representation of the gauge
group:

Jµ 7→ gJµg−1 .

To show that it’s covariantly conserved, again we either calculate explicitly from the
above expression for Jµ, and use the equations of motion for ϕ, ϕ† as well as the facts
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that the scalar potential V (ϕ, ϕ†) = U(ϕ†ϕ) is real and gauge invariant (i.e. only de-
pendent on ϕ†ϕ):

DµJ
µ =

i

2
Dµ

(
ϕ(Dµϕ)† − (Dµϕ)ϕ†)

=
i

2

(
(Dµϕ)(D

µϕ)† + ϕ(DµD
µϕ)† − (Dµϕ)(Dµϕ)

† − (DµD
µϕ)ϕ†)

=
i

2

(
ϕ(DµD

µϕ)† − (DµD
µϕ)ϕ†)

=
i

2

(
ϕ
∂V

∂ϕ
− ∂V

∂ϕ†ϕ
†
)

=
i

2

(
ϕ

∂U

∂(ϕ†ϕ)
ϕ† − ∂U

∂(ϕ†ϕ)
ϕϕ†

)
= 0 .

In the last equality we used that ∂U
∂(ϕ†ϕ)

is gauge invariant (i.e. a singlet, or one-

dimensional representation of the guage group), so it commutes with ϕ.

Alternatively, we can use Jµ ∝ DνF
µν , which impliesDµJ

µ ∝ DµDνF
µν = 1

2
[Dµ, Dν ]F

µν .
The differential operator [Dµ, Dν ] acts on F µν in the adjoint representation, that is by
a commutator. But as a differential operator, [Dµ, Dν ] = iFµν , so we get

DµJ
µ ∝ [Fµν , F

µν ] = 0 .


