Solitons III
 (2021-22)

Exercises

October 1, 2021

0 Introduction

Ex 1 Numerical results seen in the lectures suggest that the KdV equation

$$
\begin{equation*}
u_{t}+6 u u_{x}+u_{x x x}=0 \tag{0.1}
\end{equation*}
$$

has an exact solution of the form

$$
\begin{equation*}
u(x, t)=\frac{2}{\cosh ^{2}(x-v t)} \tag{0.2}
\end{equation*}
$$

for some constant velocity v. Verify this by direct substitution into the KdV equation and determine the value of v.

Ex 2 1. Show that if $u(x, t)=g(x, t)$ solves the KdV equation 0.1), then so does $u(x, t)=$ $A g(B x, C t)$, provided that the constants B and C are related to A in a specific way (which you should determine).
2. Apply this transformation to the basic KdV solution found in exercise 1 to construct a one-parameter family of one-soliton solutions of the KdV equation.
3. Find a formula relating the velocities to the heights for solitons in this one-parameter family. How does the width of a soliton in this family change if its velocity is rescaled by a factor of 4 ?

Ex 3 Show that if $u(x, t)$ solves the $K d V$ equation and ϵ is a constant, then $v(x, t):=\frac{1}{\epsilon} u(x, t)$ solves the rescaled KdV equation

$$
\begin{equation*}
v_{t}+6 \epsilon v v_{x}+v_{x x x}=0 \tag{0.3}
\end{equation*}
$$

while $w(x, t):=\epsilon u(x, \epsilon t)$ solves the differently-rescaled KdV equation

$$
\begin{equation*}
w_{t}+6 w w_{x}+\epsilon w_{x x x}=0 \tag{0.4}
\end{equation*}
$$

Ex 4 Consider a pair of solitons with velocities m and n in the ball and box model, with $m>n$ and the faster soliton to the left of the slower one, with separation $l \geq n$ (i.e. there are $l \geq n$ empty boxes between the two solitons). Evolve various such initial conditions forward in time using the ball and box rule, for different values of m, n and l. Prove that the system always evolves into an oppositely-ordered pair of the same two solitons, and find a general formula for the phase shift: \rrbracket^{1} of the solitons in terms of m and n.
[Optional:] What can go wrong if $l<n$? [Hint: Evolve the system backwards...]

Ex 5 In the two-colour (blue and red) ball and box model, we'll call a row of n consecutive balls a soliton if it keeps its form over time, so that after each time-step its only change is a possible (fixed) translation. There's no need for both colours to be represented, so a row of n blue balls, or a row of n red balls, is also a potential soliton. How many solitons of length n are there? What are their speeds?

Ex 6^{*} The ball and box model can be further generalised to the M-colour ball and box model. The balls now come in M colours, $1,2, \ldots, M$, and the time-evolution rule is generalised to say that first all balls of colour 1 are moved, then all of colour 2 , and so on, with a single time-step being completed once all balls of all colours have been moved. How many solitons of length n are there in this model? Again, there is no need for every colour to be present in a given soliton. You might start by classifying the 'top-speed' solitons of length n, that is, those that move at speed n.

Ex 7* Investigate the scattering of solitons in the two-colour ball and box model. You should find that the lengths of top-speed solitons are preserved under collisions, but their forms can change. Try to formulate a general rule for this behaviour. Can you generalise it to the M-colour model?

[^0]
1 Waves, dispersion and dissipation

Ex 8 1. Express d'Alembert's general solution of the wave equation $u_{t t}-u_{x x}=0$ in terms of the initial conditions $u(x, 0)=p(x)$ and $u_{t}(x, 0)=q(x)$.
2. Find a relation between $p(x)$ and $q(x)$ which produces a single wave travelling to the right.

Ex 9 The wave profile

$$
\begin{equation*}
\phi(x, t)=\cos \left(k_{1} x-\omega\left(k_{1}\right) t\right)+\cos \left(k_{2} x-\omega\left(k_{2}\right) t\right) \tag{1.1}
\end{equation*}
$$

is a superposition of two plane waves. Rewrite ϕ as a product of cosines, and use this to sketch the wave profile when $\left|k_{1}-k_{2}\right| \ll\left|k_{1}\right|$. Find the velocity at which the envelope of the wave profile moves (the group velocity), again for $k_{1} \approx k_{2}$; in the limit $k_{1} \rightarrow k_{2}$ verify that this reduces to $d \omega / d k$, consistent with the result obtained in lectures.

Ex 10 1. Completing the square, derive the formula

$$
\begin{equation*}
\int_{-\infty}^{+\infty} d k e^{-A(k-\bar{k})^{2}} e^{i k B}=\sqrt{\frac{\pi}{A}} e^{i \bar{k} B} e^{-B^{2} /(4 A)} \tag{1.2}
\end{equation*}
$$

(You can quote the result $\int_{-\infty}^{+\infty} d k e^{-A k^{2}}=\sqrt{\pi / A}$ for $A>0$.)
2. For the Gaussian wavepacket (where Re denotes the real part)

$$
\begin{equation*}
u(x, t)=\operatorname{Re} \int_{-\infty}^{+\infty} d k e^{-a^{2}(k-\bar{k})^{2}} e^{i(k x-\omega(k) t)} \tag{1.3}
\end{equation*}
$$

expand $\omega(k)$ to second order in $k-\bar{k}$, and then use the result of part 1 to derive a better approximation for $u(x, t)$ than that obtained in lectures.
3. Given that a function of the form $e^{-\left(x-x_{0}\right)^{2} / C}$ describes a profile centred at x_{0} with width ${ }^{-2}$ equal to the real part of C^{-1}, show that the result of part 2 is a wave profile moving at velocity $\omega^{\prime}(\bar{k})$, with width ${ }^{2}$ increasing with time as $4 a^{2}+\omega^{\prime \prime}(\bar{k})^{2} t^{2} / a^{2}$. (Hence, for $\omega^{\prime \prime} \neq 0$, the wave disperses.)

Ex 11 Find the dispersion relation and the phase and group velocities for:
(a) $u_{t}+u_{x}+\alpha u_{x x x}=0$;
(b) $u_{t t}-\alpha^{2} u_{x x}=\beta^{2} u_{t t x x}$.

Ex 12 For which values of n does the equation

$$
\begin{equation*}
u_{t}+u_{x}+u_{x x x}+\frac{\partial^{n} u}{\partial x^{n}}=0 \tag{1.4}
\end{equation*}
$$

admit "physical" dissipation? (A wave is said to have physical dissipation if the amplitude of plane waves decreases with time.)

2 Travelling waves

Ex 13 Find (if possible) real non-singular travelling wave solutions of the following equations, satisfying the given boundary conditions:

1. Modified KdV (mKdV) equation:

$$
\begin{align*}
& u_{t}+6 u^{2} u_{x}+u_{x x x}=0 \\
& u \rightarrow 0, u_{x} \rightarrow 0, u_{x x} \rightarrow 0 \text { as } x \rightarrow \pm \infty \tag{2.1}
\end{align*}
$$

2. 'Wrong sign' mKdV equation:

$$
\begin{align*}
& u_{t}-6 u^{2} u_{x}+u_{x x x}=0 \\
& u \rightarrow 0, u_{x} \rightarrow 0, u_{x x} \rightarrow 0 \text { as } x \rightarrow \pm \infty \tag{2.2}
\end{align*}
$$

3. ϕ^{4} theory:

$$
\begin{align*}
& u_{t t}-u_{x x}+2 u\left(u^{2}-1\right)=0 \\
& u_{t} \rightarrow 0, u_{x} \rightarrow 0, u \rightarrow-1 \text { as } x \rightarrow-\infty \tag{2.3}\\
& u_{t} \rightarrow 0, u_{x} \rightarrow 0, u \rightarrow+1 \text { as } x \rightarrow+\infty
\end{align*}
$$

4. ϕ^{6} theory:

$$
\begin{align*}
& u_{t t}-u_{x x}+u\left(u^{2}-1\right)\left(3 u^{2}-1\right)=0 \\
& u_{t} \rightarrow 0, u_{x} \rightarrow 0, u \rightarrow 0 \text { as } x \rightarrow-\infty \tag{2.4}\\
& u_{t} \rightarrow 0, u_{x} \rightarrow 0, u \rightarrow 1 \text { as } x \rightarrow+\infty
\end{align*}
$$

5. Burgers equation:

$$
\begin{align*}
& u_{t}+u u_{x}-u_{x x}=0 \\
& u \rightarrow u_{0}, u_{x} \rightarrow 0 \text { as } x \rightarrow-\infty \tag{2.5}\\
& u \rightarrow u_{1}, u_{x} \rightarrow 0 \text { as } x \rightarrow+\infty
\end{align*}
$$

where u_{0} and u_{1} are real constants with $u_{0}>u_{1}>0$.
[Hint: Start by showing that the boundary conditions relate the velocity v of the travelling wave to the sum of the constants u_{0} and u_{1}.]
6. * Generalised KdV equation with $n=1,2,3, \ldots$:

$$
\begin{align*}
& u_{t}+(n+1)(n+2) u^{n} u_{x}+u_{x x x}=0 \tag{2.6}\\
& u \rightarrow 0, u_{x} \rightarrow 0, u_{x x} \rightarrow 0 \text { as } x \rightarrow \pm \infty
\end{align*}
$$

Ex 14* Using the analogy with the classical mechanics of a point particle moving in one spatial dimension, determine the qualitative behaviour of travelling wave solutions of the KdV equation on a circle, for which the integration constants A and B are non-zero.

3 Topological lumps and the Bogomol'nyi bound

Ex 15 This exercise involves the infinite chain of identical coupled pendula of section 2.3, whose equations of motion reduce to the sine-Gordon equation in the continuum limit $a \rightarrow 0$. We will simplify expression by setting $g=L=\frac{M}{a}=1$. Let $\theta_{n}(t)$ be the angle to the vertical of the n-th pendulum $(n \in \mathbb{Z})$, which is hung at the position $x=n a$ along the chain, at time t. The configuration of the system at time t is then specified by the collection of angles $\left\{\theta_{n}(t)\right\}_{n \in \mathbb{Z}}$.

1. Starting from the force (note: m is a dummy variable)

$$
\begin{equation*}
F_{n}\left(\left\{\theta_{m}\right\}\right)=-a \sin \theta_{n}+\frac{1}{a}\left(\theta_{n+1}-\theta_{n}\right)+\frac{1}{a}\left(\theta_{n-1}-\theta_{n}\right) \tag{3.1}
\end{equation*}
$$

acting on the n-th pendulum, deduce the potential energy

$$
\begin{equation*}
V\left(\left\{\theta_{m}\right\}\right)=\sum_{n=-\infty}^{+\infty}(\cdots) \tag{3.2}
\end{equation*}
$$

such that $F_{n}=-\frac{\partial V}{\partial \theta_{n}}$ for all $n \in \mathbb{Z}$, and fix the integration constant by requiring that the potential energy be zero when all pendula point down: $V(\{0\})=0$.
2. Show that in the continuum limit $a \rightarrow 0$, the potential energy computed above becomes

$$
\begin{equation*}
V=\int_{-\infty}^{+\infty} d x\left[(1-\cos \theta)+\frac{1}{2} \theta_{x}^{2}\right] \tag{3.3}
\end{equation*}
$$

and the kinetic energy

$$
\begin{equation*}
T\left(\left\{\theta_{m}\right\}\right)=\frac{a}{2} \sum_{n=-\infty}^{+\infty} \dot{\theta}_{n}^{2} \tag{3.4}
\end{equation*}
$$

becomes

$$
\begin{equation*}
T=\int_{-\infty}^{+\infty} d x \frac{1}{2} \theta_{t}^{2} \tag{3.5}
\end{equation*}
$$

where the function $\theta(x, t)$ is the continuum limit of $\left\{\theta_{n}(t)\right\}_{n \in \mathbb{Z}}$.
[Hint: in the continuum limit, $a \sum_{n=-\infty}^{+\infty} \rightarrow \int_{-\infty}^{+\infty} d x$.]

Ex 16 A field $u(x, t)$ has kinetic energy T and potential energy V, where

$$
\begin{align*}
T & =\int_{-\infty}^{+\infty} d x \frac{1}{2} u_{t}^{2} \tag{3.6}\\
V & =\int_{-\infty}^{+\infty} d x\left[\frac{1}{2} u_{x}^{2}+\frac{\lambda}{2}\left(u^{2}-a^{2}\right)^{2}\right]
\end{align*}
$$

and a and $\lambda>0$ are (real) constants. (This is a version of the ' ϕ^{4} ' theory. It's called like that because the scalar potential is quartic, and the field u is usually called ϕ.) The equation of motion for u is

$$
\begin{equation*}
u_{t t}-u_{x x}+2 \lambda u\left(u^{2}-a^{2}\right)=0 \tag{3.7}
\end{equation*}
$$

1. If u is to have finite energy, what boundary conditions must be imposed on u, u_{x} and u_{t} at $x= \pm \infty$?
2. Find the general travelling-wave solution(s) to the equation of motion, consistent with the boundary conditions found in part 1 . Compute the total energy $E=T+V$ for these solutions. For which velocity do the solutions have the lowest energy?
3. One of the possible boundary conditions for part 1 implies that u is a kink, with $[u(x)]_{x=-\infty}^{x=+\infty}=2 a$. Use the Bogomol'nyi argument to show that the total energy $E=T+V$ of that configuration is bounded from below by $C \sqrt{\lambda} a^{3}$, where C is a constant that you should determine, and find the solution u which saturates this bound. Verify that this solution agrees with the lowest-energy solution of part 2.

Ex 17 1. Explain why the Bogomol'nyi argument given in the lectures fails to provide a useful bound on the energy of a two-kink solution of the sine-Gordon equation (a two-kink solution is one with topological charge $n-m$ equal to 2). What is the most that can be said about the energy of a k-kink?
2. For a sine-Gordon field u, generalise the Bogomol'nyi argument to show that

$$
\begin{equation*}
\int_{A}^{B} d x\left[\frac{1}{2} u_{t}^{2}+\frac{1}{2} u_{x}^{2}+(1-\cos u)\right] \geq \pm 4\left[\cos \frac{u}{2}\right]_{A}^{B} \tag{3.8}
\end{equation*}
$$

3. * Use this result and the intermediate value theorem (look it up if necessary!) to show that if the field u has the boundary conditions of a k-kink, then its energy is at least k times that of a single kink. Can this bound be saturated?

Ex 18 A system on the finite interval $-\pi / 2 \leq x \leq \pi / 2$ is defined by the following expressions for the kinetic energy T and the potential energy V :

$$
\begin{align*}
T & =\int_{-\pi / 2}^{\pi / 2} d x \frac{1}{2} u_{t}^{2} \\
V & =\int_{-\pi / 2}^{\pi / 2} d x \frac{1}{2}\left(u_{x}^{2}+1-u^{2}\right) . \tag{3.9}
\end{align*}
$$

The function $u(x, t)$ satisfies the boundary condition $|u(\pm \pi / 2, t)|=1$ and is required to satisfy $|u(x, t)| \leq 1$ everywhere. Show that with "kink" boundary conditions, the total energy E is bounded below by a positive constant, and find a solution for which the bound is saturated.

4 Conservation laws

Ex 19 Check explicitly that the energy

$$
\begin{equation*}
E=\int_{-\infty}^{+\infty} d x\left[\frac{1}{2} u_{t}^{2}+\frac{1}{2} u_{x}^{2}+\mathbb{V}(u)\right] \tag{4.1}
\end{equation*}
$$

and the momentum

$$
\begin{equation*}
P=-\int_{-\infty}^{+\infty} d x u_{t} u_{x} \tag{4.2}
\end{equation*}
$$

of a relativistic field $u(x, t)$ in 1 space and 1 time dimensions are conserved when the equation of motion

$$
\begin{equation*}
u_{t t}-u_{x x}=-\mathbb{V}^{\prime}(u) \tag{4.3}
\end{equation*}
$$

and the boundary conditions

$$
\begin{equation*}
u_{t}, u_{x}, \mathbb{V}(u), \mathbb{V}^{\prime}(u) \underset{x \rightarrow \pm \infty}{\longrightarrow} 0 \quad \forall t \tag{4.4}
\end{equation*}
$$

are satisfied.

Ex 20 1. Compute the conserved topological charge, energy and momentum of a sine-Gordon kink moving with velocity v, and check that the results do not depend on time. [Hint: The integral A.9 might be useful. For the scalar potential term in the energy, write $1-\cos (u)=2 \sin ^{2}(u / 2)$, plug in the kink solution and manipulate the result using trigonometric formulae until A.9 becomes useful.]
Confirm that for $|v| \ll 1$ the energy and the momentum take the forms

$$
\begin{equation*}
E=M+\frac{1}{2} M v^{2}+\mathcal{O}\left(v^{4}\right), \quad P=M v+\mathcal{O}\left(v^{3}\right) \tag{4.5}
\end{equation*}
$$

where the 'mass' M is the energy of the static kink, which appears in the Bogomol'nyi bound.
2. * If you are fearless and have time on your hands, try also to compute the conserved spin 3 charge

$$
\begin{equation*}
Q_{3}=\int_{-\infty}^{+\infty} d x\left[u_{++}^{2}-\frac{1}{4} u_{+}^{4}+u_{+}^{2} \cos u\right] \tag{4.6}
\end{equation*}
$$

for the sine-Gordon kink. The integrals are not at all straightforward, but can be evaluated using appropriate changes of variables. (Did I write fearless?)

Ex 21 Find three conserved charges for the mKdV equation 2.1) of Ex 13.1, which involve u, u^{2} and u^{4} respectively. The boundary conditions on $u(x, t)$ are u, u_{x} and $u_{x x} \rightarrow 0$ as $|x| \rightarrow \infty$. Evaluate these quantities for the travelling-wave solution found in Ex 13.1. The list of definite integrals at the end of the problems sheet might help.

Ex 22 Show that u is a conserved density for Burgers' equation 2.5. Why is this result of no use in analysing the travelling wave solution of Ex 13.5?

Ex 23 Consider the KdV equation $u_{t}+6 u u_{x}+u_{x x x}=0$ for the field $u(x, t)$.

1. Show that $\rho_{1} \equiv u, \rho_{2} \equiv u^{2}$ and $\rho_{*} \equiv x u-3 t u^{2}$ are all conserved densities, so that

$$
\begin{equation*}
Q_{1}=\int_{-\infty}^{+\infty} d x u, \quad Q_{2}=\int_{-\infty}^{+\infty} d x u^{2}, \quad Q_{*}=\int_{-\infty}^{+\infty} d x\left(x u-3 t u^{2}\right) \tag{4.7}
\end{equation*}
$$

are all conserved charges.
2. Evaluate the conserved charges Q_{1}, Q_{2} and Q_{*} for the one-soliton solution centred at x_{0} and moving with velocity $v=4 \mu^{2}$:

$$
\begin{equation*}
u_{\mu, x_{0}}(x, t)=2 \mu^{2} \operatorname{sech}^{2}\left[\mu\left(x-x_{0}-4 \mu^{2} t\right)\right] \tag{4.8}
\end{equation*}
$$

3. According to the KdV equation, the initial condition $u(x, 0)=6 \operatorname{sech}^{2}(x)$ is known to evolve into the sum of two well-separated solitons with different velocities $v_{1}=$ $4 \mu_{1}^{2}$ and $v_{2}=4 \mu_{2}^{2}$ at late times. Use the conservation of Q_{1} and Q_{2} to determine v_{1} and v_{2}.
4. A two-soliton solution separates as $t \rightarrow-\infty$ into two one-solitons $u_{\mu_{1}, x_{1}}$ and $u_{\mu_{2}, x_{2}}$. As $t \rightarrow+\infty$, two one-solitons are again found, with μ_{1} and μ_{2} unchanged but with x_{1}, x_{2} replaced by y_{1}, y_{2}. Use the conservation of Q_{*} to find a formula relating the phase shifts $y_{1}-x_{1}$ and $y_{2}-x_{2}$ of the two solitons.

Ex 24 1. Show that if $u(x, t)$ satisfies the $K d V$ equation $u_{t}+6 u u_{x}+u_{x x x}=0$, and $u=$ $\lambda-v^{2}-v_{x}$ where λ is a constant and $v(x, t)$ some other function, then v satisfies

$$
\left(2 v+\frac{\partial}{\partial x}\right)\left(v_{t}+6 \lambda v_{x}-6 v^{2} v_{x}+v_{x x x}\right)=0
$$

2. Compute the Gardner transform expansion

$$
\begin{equation*}
w(x, t)=\sum_{n=0}^{\infty} w_{n}(x, t) \varepsilon^{n} \tag{4.9}
\end{equation*}
$$

up to order ε^{4}. Use the results to find the conserved charges \widetilde{Q}_{3} and \widetilde{Q}_{4}, where

$$
\begin{equation*}
\widetilde{Q}_{n}=\int_{-\infty}^{+\infty} d x w_{n} \tag{4.10}
\end{equation*}
$$

Show that \widetilde{Q}_{3} is the integral of a total x-derivative (and hence is zero), while $\widetilde{Q}_{4}=\alpha Q_{3}$, where

$$
\begin{equation*}
Q_{3}=\int_{-\infty}^{+\infty} d x\left(u^{3}-\frac{1}{2} u_{x}^{2}\right) \tag{4.11}
\end{equation*}
$$

is the third KdV conserved charge (the 'energy') and α a constant that you should determine. * If you're feeling energetic, try to compute \widetilde{Q}_{5} and \widetilde{Q}_{6} as well.

Ex 25 This question is also about the KdV equation $u_{t}+6 u u_{x}+u_{x x x}=0$.

1. Evaluate the first three KdV conserved charges

$$
\begin{equation*}
Q_{1}=\int_{-\infty}^{+\infty} d x u, \quad Q_{2}=\int_{-\infty}^{+\infty} d x u^{2}, \quad Q_{3}=\int_{-\infty}^{+\infty} d x\left(u^{3}-\frac{1}{2} u_{x}^{2}\right) \tag{4.12}
\end{equation*}
$$

for the initial state $u(x, 0)=A \operatorname{sech}^{2}(B x)$, where A and B are constants.
2. The initial state

$$
\begin{equation*}
u(x, 0)=N(N+1) \operatorname{sech}^{2}(x) \tag{4.13}
\end{equation*}
$$

where N is an integer, is known to evolve at late times into N well-separated solitons, with velocities $4 k^{2}, k=1 \ldots N$. So for $t \rightarrow+\infty$, this solution approaches the sum of N single well-separated solitons

$$
\begin{equation*}
u(x, t) \approx \sum_{k=1}^{N} 2 \mu_{k}^{2} \operatorname{sech}^{2}\left[\mu_{k}\left(x-x_{k}-4 \mu_{k}^{2} t\right)\right] \tag{4.14}
\end{equation*}
$$

where μ_{1}, \ldots, μ_{N} are N different constants. Since Q_{1}, Q_{2} and Q_{3} are conserved, their values at $t=0$ and $t \rightarrow+\infty$ must be equal. Use this fact to deduce formulae for the sums of the first N integers, the first N cubes, and the first N fifth powers.
3. * Use Q_{4} and Q_{5} and the method just described to find the sum of the first N seventh and ninth powers, $\sum_{k=1}^{N} k^{7}$ and $\sum_{k=1}^{N} k^{9}$.

5 The Bäcklund transform

Ex 26 1. Show that the pair of equations

$$
\begin{align*}
(u-v)_{+} & =\sqrt{2} e^{(u+v) / 2} \\
(u+v)_{-} & =\sqrt{2} e^{(u-v) / 2} \tag{5.1}
\end{align*}
$$

provides a Bäcklund transformation linking solutions of $v_{+-}=0$ (the wave equation in light-cone coordinates) to those of $u_{+-}=e^{u}$ (the Liouville equation).
2. Starting from d'Alembert's general solution $v=f\left(x^{+}\right)+g\left(x^{-}\right)$of the wave equation, use the Bäcklund transform (5.1) to obtain the corresponding solutions of the Liouville equation for u. [Hint: Set $u\left(x^{+}, x^{-}\right)=2 U\left(x^{+}, x^{-}\right)+f\left(x^{+}\right)-g\left(x^{-}\right)$. You might simplify the notation by setting $f\left(x^{+}\right)=\log \left(F^{\prime}\left(x^{+}\right)\right)$and $g\left(x^{-}\right)=-\log \left(G^{\prime}\left(x^{-}\right)\right)$, where prime means first derivative.]

Ex 27 Consider the Bäcklund transform

$$
\begin{align*}
& v_{x}+\frac{1}{2} u v=0 \tag{5.2}\\
& v_{t}+\frac{1}{2} u_{x} v-\frac{1}{4} u^{2} v=0 . \tag{5.3}
\end{align*}
$$

1. Show that (5.2) and (5.3) together imply that v satisfies the linear heat equation $v_{t}=v_{x x}$, while u satisfies Burgers' equation $u_{t}+u u_{x}-u_{x x}=0$.
[Hint: for the first, solve (5.2) for u and substitute in (5.3); for the second, start by cross-differentiating.]
2. Find the general travelling-wave solution for $v(x, t)$ and, via the Bäcklund transform, re-obtain the travelling-wave for Burgers' equation found in question (2.5).
3. * The linear equation satisfied by $v(x, t)$ allows for the linear superposition of solutions. Use this fact, and your answers to part 2 , to construct solutions for v and then u which describe the interaction of two travelling waves.
4. * Sketch your solutions functions of x at fixed times both before and after the interaction, and also draw their trajectories in the (x, t) plane, perhaps starting with the help of a computer. Are the travelling waves of Burgers' equation true solitons, in the sense given in lectures?
[Hints: Examine the asymptotics of the solution viewed from frames moving at various velocities V (that is, set $X_{V}=x-V t$ and consider $t \rightarrow \pm \infty$ keeping X_{V} finite). This should allow you to isolate various travelling waves in these limits, and to decide whether they preserve their form under interactions. For definiteness, consider the case $c_{1}>c_{2}>0$, where c_{1} and c_{2} are the velocities of the two separate travelling waves before they were superimposed. A further hint: as well as the 'expected' special values for V, namely c_{1} and c_{2}, be careful about what happens when $V=c_{1}+c_{2}$.]

Ex 28 1. Show that the two equations

$$
\begin{align*}
v_{x} & =-u-v^{2} \\
v_{t} & =2 u^{2}+2 u v^{2}+u_{x x}-2 u_{x} v \tag{5.4}
\end{align*}
$$

are a Bäcklund transform relating solutions of the KdV equation

$$
\begin{equation*}
u_{t}+6 u u_{x}+u_{x x x}=0 \tag{5.5}
\end{equation*}
$$

and the wrong sign modified KdV (mKdV) equation

$$
\begin{equation*}
v_{t}-6 v^{2} v_{x}+v_{x x x}=0 \tag{5.6}
\end{equation*}
$$

(Note the appearance of the Miura transform in (5.4).)
2. Taking $u=c^{2}$, where c is a constant, as a seed solution of the KdV equation, find the corresponding solution of the wrong sign mKdV equation.

Ex 29 The 2-soliton solution of the sine-Gordon equation with Bäcklund parameters a_{1} and a_{2} is

$$
\begin{equation*}
u(x, t)=4 \arctan \left(\mu \frac{e^{\theta_{1}}-e^{\theta_{2}}}{1+e^{\theta_{1}+\theta_{2}}}\right), \quad \theta_{i}=\varepsilon_{i} \gamma_{i}\left(x-v_{i} t-\bar{x}_{i}\right) \tag{5.7}
\end{equation*}
$$

where $\mu=\left(a_{2}+a_{1}\right) /\left(a_{2}-a_{1}\right), v_{i}=\left(a_{i}^{2}-1\right) /\left(a_{i}^{2}+1\right), \gamma_{i}=1 / \sqrt{1-v_{i}^{2}}, \varepsilon_{i}=\operatorname{sign}\left(a_{i}\right)$, and \bar{x}_{1} and \bar{x}_{2} are constants, as in the lectures. Rewriting u as a function of $X_{V} \equiv x-V t$ and t, show that, for $V \neq v_{1}, v_{2}$ (and $v_{1} \neq v_{2}$)

$$
\lim _{\substack{t \rightarrow \infty \\ x_{V} \text { finite }}} u=2 n \pi
$$

where n is an integer. If $v_{2}>v_{1}>0$ and $\varepsilon_{i}=1$, how does the parity of n (whether it is even or odd) depend on the value of v relative to v_{1} and v_{2} ?
[Hints: First show that $\left|\theta_{i}\right| \rightarrow+\infty$ as $t \rightarrow \pm \infty$; then consider each of the four possible options $\left(\theta_{1}, \theta_{2}\right) \rightarrow(+\infty,+\infty),(-\infty,-\infty),(+\infty,-\infty),(-\infty,+\infty)$. Remember that $\arctan (0)=m \pi$ and $\arctan (\pm \infty)= \pm \pi / 2+m \pi$, where the ambiguities of $m \pi, m \in \mathbb{Z}$, encode the multivalued nature of the arctan function.]

Ex 30 Find the asymptotics of the 2 -soliton sine-Gordon solution defined in equation (5.7), in the case $a_{2}>a_{1}>0$, as $t \rightarrow \pm \infty$ with $X_{v_{2}} \equiv x-v_{2} t$ held finite.

Ex 31 Show by direct analysis (as in the lectures) that taking a_{1} and a_{2} of opposite signs in (5.7) results in a two-kink, or two-antikink, solution to the sine-Gordon equation.

Ex 32 1. The argument of the arctangent in the sine-Gordon 2-soliton solution 5.7 is a continuous function of x for all $x \in \mathbb{R}$. Show that, in particular, it is never infinite. What does this imply about the range of u ? [Hint: consider the graph of $\tan u / 4$.]
2. By taking the limits of this function as $x \rightarrow \pm \infty$ (with $t=\bar{x}_{1}=\bar{x}_{2}=0$ for simplicity), show that the topological charge of the two-soliton solution (5.7) is 0 if $\operatorname{sign}\left(a_{1}\right)=\operatorname{sign}\left(a_{2}\right)$, and ± 2 if $\operatorname{sign}\left(a_{1}\right)=-\operatorname{sign}\left(a_{2}\right)$, in units where the topological charge of a kink is 1 .

Ex 33 Consider the two-soliton solution of the sine-Gordon equation (5.7) with complex Bäcklund parameters $a_{1}=\overline{a_{2}}:=a \in \mathbb{C}$ and with vanishing integration constants, as is appropriate to find the breather solution. Show that

$$
\begin{align*}
& \operatorname{Re}\left(\theta_{1}\right)=+\operatorname{Re}\left(\theta_{2}\right)=\gamma(x-v t) \cos \varphi \\
& \operatorname{Im}\left(\theta_{1}\right)=-\operatorname{Im}\left(\theta_{2}\right)=\gamma(v x-t) \sin \varphi \tag{5.8}
\end{align*}
$$

where $\varphi=\arg (a)$ and

$$
\begin{align*}
& v=\frac{|a|^{2}-1}{|a|^{2}+1} \\
& \gamma=\frac{1}{\sqrt{1-v^{2}}}=\frac{1+|a|^{2}}{2|a|} \tag{5.9}
\end{align*}
$$

Ex 34 The stationary breather solution of the sine-Gordon equation (that is the breather solution with $v=0$) has the form

$$
\begin{equation*}
\tan \frac{u}{4}=\frac{\cos \varphi}{\sin \varphi} \cdot \frac{\sin (t \sin \varphi)}{\cosh (x \cos \varphi)} \tag{5.10}
\end{equation*}
$$

Show that in the limit $\varphi \rightarrow 0$, in which the kink and antikink that form the breather are very loosely bound, the time period τ of a single oscillation of the breather scales like $\tau \sim|\varphi|^{-1}$, and the spatial size $x_{\max }$ of the breather scales like $x_{\max } \sim-\log \varphi$.
[Hint: You could define $x_{\text {max }}$ as the value of x at which $\tan (u / 4)=1$ when the oscillatory factor in the numerator is at its maximum. Focus only on the parametric dependence on φ, ignoring all numerical factors.]

6 The Hirota method

Ex 35 We have seen in lectures that the KdV equation $u_{t}+6 u u_{x}+u_{x x x}=0$ for the field $u(x, t)$ that describes the profile of a wave translates into the following equation for the new variable $w(x, t)=\int d x u$:

$$
\begin{equation*}
w_{t}+3 w_{x}^{2}+w_{x x x}=0 \tag{6.1}
\end{equation*}
$$

Let $w=2 \frac{\partial}{\partial x} \log f=2 \frac{f_{x}}{f}$ where $f(x, t)$ is a nowhere vanishing function of x and t, so that $u=2 \frac{\partial^{2}}{\partial x^{2}} \log f$. The aim of this exercise is to rewrite 6.1) as an equation for f.

1. Express $w_{t}, w_{x}, w_{x x}$ and $w_{x x x}$ in terms of f and its derivatives.
2. Show that the equation (6.1) can be rewritten as

$$
\begin{equation*}
f f_{x t}-f_{x} f_{t}+3 f_{x x}^{2}-4 f_{x} f_{x x x}+f f_{x x x x}=0 \tag{6.2}
\end{equation*}
$$

which is known as the quadratic form of the KdV equation.

Ex 36 The Hirota bilinear differential operator $D_{t}^{m} D_{x}^{n}$ is defined for any pair of natural numbers (m, n) by

$$
\begin{equation*}
D_{t}^{m} D_{x}^{n}(f, g)=\left.\left(\frac{\partial}{\partial t}-\frac{\partial}{\partial t^{\prime}}\right)^{m}\left(\frac{\partial}{\partial x}-\frac{\partial}{\partial x^{\prime}}\right)^{n} f(x, t) g\left(x^{\prime}, t^{\prime}\right)\right|_{\substack{x^{\prime}=x \\ t^{\prime}=t}} \tag{6.3}
\end{equation*}
$$

and maps a pair of functions $(f(x, t), g(x, t))$ into a single function.

1. Prove that the Hirota operators $B_{m, n}:=D_{t}^{m} D_{x}^{n}$ are bilinear, i.e. for all constants a_{1}, a_{2}

$$
\begin{align*}
& B_{m, n}\left(a_{1} f_{1}+a_{2} f_{2}, g\right)=a_{1} B_{m, n}\left(f_{1}, g\right)+a_{2} B_{m, n}\left(f_{2}, g\right), \tag{6.4}\\
& B_{m, n}\left(f, a_{1} g_{1}+a_{2} g_{2}\right)=a_{1} B_{m, n}\left(f, g_{1}\right)+a_{2} B_{m, n}\left(f, g_{2}\right) .
\end{align*}
$$

2. Prove the symmetry property

$$
\begin{equation*}
B_{m, n}(f, g)=(-1)^{m+n} B_{m, n}(g, f) . \tag{6.5}
\end{equation*}
$$

3. Compute the Hirota derivatives $D_{t}^{2}(f, g)$ and $D_{x}^{4}(f, g)$, and verify that your expression for the latter is consistent with the result for $D_{x}^{4}(f, f)$ given in lectures.

Ex 37 Define a "non-Hirota" bilinear differential operator $\tilde{D}_{t}^{m} \tilde{D}_{x}^{n}$ by

$$
\begin{equation*}
\tilde{D}_{t}^{m} \tilde{D}_{x}^{n}(f, g)=\left.\left(\frac{\partial}{\partial t}+\frac{\partial}{\partial t^{\prime}}\right)^{m}\left(\frac{\partial}{\partial x}+\frac{\partial}{\partial x^{\prime}}\right)^{n} f(x, t) g\left(x^{\prime}, t^{\prime}\right)\right|_{\substack{x^{\prime}=x \\ t^{\prime}=t}} \tag{6.6}
\end{equation*}
$$

(note the plus signs!).

1. Compute $\tilde{D}_{x}(f, g)$ and $\tilde{D}_{t}(f, g)$, verifying that in both cases the answer is given by the corresponding 'ordinary' derivative of the product $f(x, t) g(x, t)$.
2. How does this result generalise for arbitrary non-Hirota differential operators (6.6)? Prove your claim.
3. Compare your answer with the Hirota operators defined above.

Ex 38 1. If $\theta_{i}=a_{i} x+b_{i} t+c_{i}$, prove that

$$
D_{t} D_{x}\left(e^{\theta_{1}}, e^{\theta_{2}}\right)=\left(b_{1}-b_{2}\right)\left(a_{1}-a_{2}\right) e^{\theta_{1}+\theta_{2}}
$$

2. Prove the corresponding result for $D_{t}^{m} D_{x}^{n}\left(e^{\theta_{1}}, e^{\theta_{2}}\right)$, as quoted in lectures.

Ex 39 Prove that

$$
\begin{equation*}
D_{t}^{m} D_{x}^{n}(f, 1)=\frac{\partial^{m}}{\partial t^{m}} \frac{\partial^{n}}{\partial x^{n}} f \tag{6.7}
\end{equation*}
$$

Ex 40 Consider the function f, such that $u=2 \frac{\partial^{2}}{\partial x^{2}} \log f$ is the KdV field, which corresponds to a 2-soliton solution:

$$
\begin{equation*}
f=1+\epsilon f_{1}+\epsilon^{2} f_{2}=1+\epsilon\left(e^{\theta_{1}}+e^{\theta_{2}}\right)+\epsilon^{2}\left(\frac{a_{1}-a_{2}}{a_{1}+a_{2}}\right)^{2} e^{\theta_{1}+\theta_{2}} \tag{6.8}
\end{equation*}
$$

where $\theta_{i}=a_{i} x-a_{i}^{3} t+c_{i}$, with a_{i} and c_{i} constants. Check that $B\left(f_{1}, f_{2}\right)=0$ and $B\left(f_{2}, f_{2}\right)=0$, where $B=D_{x}\left(D_{t}+D_{x}^{3}\right)$, and show that this implies that the expansion (6.8), which is truncated at order ϵ^{2}, is a solution of the bilinear form of the KdV equation.

Ex 41* Derive the solution of the bilinear form of the KdV equation $D_{x}\left(D_{t}+D_{x}^{3}\right)(f, f)=0$ which represents the 3 -soliton solution, in the form

$$
\begin{equation*}
f=1+\epsilon f_{1}+\epsilon^{2} f_{2}+\epsilon^{3} f_{3} \tag{6.9}
\end{equation*}
$$

where $f_{1}=\sum_{i=1}^{3} e^{\theta_{i}}$. [This includes proving that the higher order terms in the ϵ expansion can be consistently set to zero, as in Ex 40.]

Ex 42 Show that the Boussinesq equation

$$
\begin{equation*}
u_{t t}-u_{x x}-3\left(u^{2}\right)_{x x}-u_{x x x x}=0 \tag{6.10}
\end{equation*}
$$

can be written in the bilinear form

$$
\begin{equation*}
\left(D_{t}^{2}-D_{x}^{2}-D_{x}^{4}\right)(f, f)=0 \tag{6.11}
\end{equation*}
$$

where $u=2 \frac{\partial^{2}}{\partial x^{2}} \log f$.

Ex 43 Show that the following higher-dimensional version of the KdV equation,

$$
\begin{equation*}
\left(u_{t}+6 u u_{x}+u_{x x x}\right)_{x}+3 \sigma^{2} u_{y y}=0 \tag{6.12}
\end{equation*}
$$

for the field $u(x, y, t)$, also known as the Kadomtsev-Petviashvili (KP) equation, can be written in the bilinear form

$$
\begin{equation*}
\left(D_{t} D_{x}+D_{x}^{4}+3 \sigma^{2} D_{y}^{2}\right)(f, f)=0 \tag{6.13}
\end{equation*}
$$

where $u(x, y, t)=2 \frac{\partial^{2}}{\partial x^{2}} \log f(x, y, t)$.

7 Exam-style problem

Ex 44 The complex field $u(x, t)$ obeys the equation

$$
\begin{equation*}
i u_{t}+\frac{1}{2} u_{x x}+|u|^{2} u=0 \tag{7.1}
\end{equation*}
$$

where $i=\sqrt{-1}$, and the boundary conditions

$$
\begin{equation*}
u, u_{x}, u_{x x} \rightarrow 0 \quad \text { as } \quad x \rightarrow \pm \infty . \tag{7.2}
\end{equation*}
$$

1. Show that the quantities

$$
\begin{align*}
Q_{1} & =\int_{-\infty}^{+\infty} d x|u|^{2} \\
Q_{2} & =\int_{-\infty}^{+\infty} d x \operatorname{Im}\left(\bar{u} u_{x}\right) \tag{7.3}\\
Q_{3} & =\int_{-\infty}^{+\infty} d x\left(\frac{1}{2}\left|u_{x}\right|^{2}+C|u|^{4}\right)
\end{align*}
$$

are conserved provided that the constant C takes a value that you should find. (Here Im denotes the imaginary part and a bar denotes complex conjugation.)
2. Show that given a 'seed' solution $u(x, t)$ of equation (7.1),

$$
\begin{equation*}
u^{(v)}(x, t):=u(x-v t, t) e^{i(A x+B t)} \tag{7.4}
\end{equation*}
$$

is also a solution for all $v \in \mathbb{R}$, provided that the constants A and B depend on v in a way that you should find.
3. Determine the functional dependence of the conserved charges Q_{1}, Q_{2}, Q_{3} in 7.3) on the parameter v that labels the one-parameter family of solution (7.4).
4. Find all solutions of the form

$$
\begin{equation*}
u(x, t)=\rho(x) e^{i \varphi(t)} \tag{7.5}
\end{equation*}
$$

of equation (7.1) with boundary conditions (7.2), where ρ are φ are real and $u(x, 0)$ is a real even function of x. [You can use the integrals at the end of the problem sheet.] Apply the method of part 2 to this seed solution to find the associated one-parameter family of solutions $u^{(v)}(x, t)$.

A Useful integrals

You can freely quote the following formulae, athough deriving them may be instructive:

- Indefinite integrals: [Note: the integration constant is in principle complex]

$$
\begin{align*}
\int \frac{d x}{x \sqrt{1-x}} & =-2 \operatorname{arcsech}(\sqrt{x}) \tag{A.1}\\
\int \frac{d x}{x \sqrt{1-x^{2}}} & =-\operatorname{arcsech}(x) \tag{A.2}\\
\int \frac{d x}{x \sqrt{1+x^{2}}} & =-\operatorname{arccosech}(x) \tag{A.3}\\
\int \frac{d x}{\sin (x / 2)} & =2 \log \tan (x / 4) \tag{A.4}\\
\int \frac{d x}{\cosh (x)} & =2 \arctan \left(e^{x}\right) \tag{A.5}\\
\int \frac{d x}{1-x^{2}} & =\operatorname{arctanh}(x) \tag{A.6}\\
\int d x \sqrt{1-x^{2}} & =\frac{1}{2}\left[x \sqrt{1-x^{2}}+\arcsin (x)\right] \tag{A.7}\\
\int \frac{d x}{\cos ^{2}(x)} & =\tan (x) \tag{A.8}\\
\int \frac{d x}{\cosh ^{2}(x)} & =\tanh (x) \tag{A.9}
\end{align*}
$$

- Definite integrals:

$$
\begin{align*}
\int_{-\infty}^{+\infty} d x e^{-A x^{2}} & =\sqrt{\frac{\pi}{A}} \quad(A>0) \tag{A.10}\\
\int_{-\infty}^{+\infty} d x \operatorname{sech}^{2 n}(x) & =\frac{2^{2 n-1}((n-1)!)^{2}}{(2 n-1)!} \tag{A.11}
\end{align*}
$$

Note: the result of the Gaussian integral A.10 does not change if the integration variable x is shifted by a finite imaginary amount c, namely if you replace $x \rightarrow x+i c$.

[^0]: ${ }^{1}$ The phase shift of a soliton is defined to be the shift of its position, at a time in the far future, relative to the position it would have had at the same time if the other soliton hadn't been there.

