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0 Introduction 

Ex 1 Numerical results seen in the lectures suggest that the KdV equation

 

ut 

+ 6 uux 

+ uxxx 

= 0

 

(0.1) 

has an exact solution of the form

 

u ( x, t ) = 

2

 

cosh2( x − v t )

 

(0.2) 

for some constant velocity v . Verify this by direct substitution into the KdV equation 

and determine the value of v . 

Ex 2 1. Show that if u ( x, t ) = g ( x, t ) solves the KdV equation (0.1), then so does u ( x, t ) = 

Ag ( B x, C t ) , provided that the constants B and C are related to A in a specific way 

(which you should determine). 

2. Apply this transformation to the basic KdV solution found in exercise 1 to construct 

a one-parameter family of one-soliton solutions of the KdV equation. 

3. Find a formula relating the velocities to the heights for solitons in this one-parameter 

family. How does the width of a soliton in this family change if its velocity is rescaled 

by a factor of 4 ? 

Ex 3 Show that if u ( x, t ) solves the KdV equation and ϵ is a constant, then v ( x, t ) := 

1

 

ϵ 

u ( x, t ) 

solves the rescaled KdV equation

 

vt 

+ 6 ϵv vx 

+ vxxx 

= 0 ,

 

(0.3) 

while w ( x, t ) := ϵu ( x, ϵt ) solves the differently-rescaled KdV equation

 

wt 

+ 6 w wx 

+ ϵwxxx 

= 0 .

 

(0.4)
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Ex 4 Consider a pair of solitons with velocities m and n in the ball and box model, with m > n 

and the faster soliton to the left of the slower one, with separation l ≥ n ( i.e. there 

are l ≥ n empty boxes between the two solitons). Evolve various such initial conditions 

forward in time using the ball and box rule, for different values of m , n and l . Prove 

that the system always evolves into an oppositely-ordered pair of the same two solitons, 

and find a general formula for the phase shifts1 of the solitons in terms of m and n . 

[Optional:] What can go wrong if l < n ? [Hint: Evolve the system backwards. . . ] 

Ex 5 In the two-colour (blue and red) ball and box model, we’ll call a row of n consecutive 

balls a soliton if it keeps its form over time, so that after each time-step its only change 

is a possible (fixed) translation. There’s no need for both colours to be represented, so 

a row of n blue balls, or a row of n red balls, is also a potential soliton. How many 

solitons of length n are there? What are their speeds? 

Ex 6∗ The ball and box model can be further generalised to the M -colour ball and box model. 

The balls now come in M colours, 1 , 2 , . . . , M , and the time-evolution rule is generalised 

to say that first all balls of colour 1 are moved, then all of colour 2 , and so on, with 

a single time-step being completed once all balls of all colours have been moved. How 

many solitons of length n are there in this model? Again, there is no need for every 

colour to be present in a given soliton. You might start by classifying the ‘top-speed’ 

solitons of length n , that is, those that move at speed n . 

Ex 7∗ Investigate the scattering of solitons in the two-colour ball and box model. You should 

find that the lengths of top-speed solitons are preserved under collisions, but their forms 

can change. Try to formulate a general rule for this behaviour. Can you generalise it to 

the M -colour model?

 

1The phase shift of a soliton is defined to be the shift of its position, at a time in the far future, relative to 

the position it would have had at the same time if the other soliton hadn’t been there.
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1 Waves, dispersion and dissipation 

Ex 8 1. Express d’Alembert’s general solution of the wave equation utt 

− uxx 

= 0 in terms 

of the initial conditions u ( x, 0) = p ( x ) and ut( x, 0) = q ( x ) . 

2. Find a relation between p ( x ) and q ( x ) which produces a single wave travelling to 

the right. 

Ex 9 The wave profile

 

ϕ ( x, t ) = cos( k1 

x − ω ( k1) t ) + cos( k2 

x − ω ( k2) t )

 

(1.1) 

is a superposition of two plane waves. Rewrite ϕ as a product of cosines, and use this to 

sketch the wave profile when | k1 

− k2 

| ≪ | k1 

| . Find the velocity at which the envelope 

of the wave profile moves (the group velocity ), again for k1 

≈ k2; in the limit k1 

→ k2 

verify that this reduces to dω /dk , consistent with the result obtained in lectures. 

Ex 10 1. Completing the square, derive the formula

 

∫ + ∞ 

−∞ 

dk e− A ( k −k̄ )2 

eik B = 

√

 

π

 

A 

eik̄ B e− B2 / (4 A ) .

 

(1.2) 

(You can quote the result 

∫ + ∞ 

−∞dk e− Ak2 

= 

√

 

π /A for A > 0 .) 

2. For the Gaussian wavepacket (where Re denotes the real part)

 

u ( x, t ) = Re 

∫ + ∞ 

−∞ 

dk e− a2( k −k̄ )2 

ei ( k x − ω ( k ) t ) ,

 

(1.3) 

expand ω ( k ) to second order in k − k̄ , and then use the result of part 1 to derive a 

better approximation for u ( x, t ) than that obtained in lectures. 

3. Given that a function of the form e− ( x − x0)2 /C describes a profile centred at x0 

with 

width− 2 equal to the real part of C 

− 1, show that the result of part 2 is a wave profile 

moving at velocity ω 

′(k̄ ) , with width2 increasing with time as 4 a2 + ω 

′′(k̄ )2 t2 /a2. 

(Hence, for ω 

′′ ̸ = 0 , the wave disperses.) 

Ex 11 Find the dispersion relation and the phase and group velocities for: 

(a) ut 

+ ux 

+ α uxxx 

= 0 ;
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(b) utt 

− α2 uxx 

= β2 uttxx . 

Ex 12 For which values of n does the equation

 

ut 

+ ux 

+ uxxx 

+ 

∂ 

n u

 

∂ xn 

= 0

 

(1.4) 

admit “physical" dissipation? (A wave is said to have physical dissipation if the ampli- 

tude of plane waves decreases with time.)
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2 Travelling waves 

Ex 13 Find (if possible) real non-singular travelling wave solutions of the following equations, 

satisfying the given boundary conditions: 

1. Modified KdV (mKdV) equation:

 

ut 

+ 6 u2 ux 

+ uxxx 

= 0 

u → 0 , ux 

→ 0 , uxx 

→ 0 as x → ±∞ .

 

(2.1) 

2. ‘Wrong sign’ mKdV equation:

 

ut 

− 6 u2 ux 

+ uxxx 

= 0 

u → 0 , ux 

→ 0 , uxx 

→ 0 as x → ±∞ .

 

(2.2) 

3. ϕ4 theory:

 

utt 

− uxx 

+ 2 u ( u2 − 1) = 0 

ut 

→ 0 , ux 

→ 0 , u → − 1 as x → −∞ 

ut 

→ 0 , ux 

→ 0 , u → +1 as x → + ∞ .

 

(2.3) 

4. ϕ6 theory:

 

utt 

− uxx 

+ u ( u2 − 1)(3 u2 − 1) = 0 

ut 

→ 0 , ux 

→ 0 , u → 0 as x → −∞ 

ut 

→ 0 , ux 

→ 0 , u → 1 as x → + ∞ .

 

(2.4) 

5. Burgers equation:

 

ut 

+ uux 

− uxx 

= 0 

u → u0 

, ux 

→ 0 as x → −∞ 

u → u1 

, ux 

→ 0 as x → + ∞ ,

 

(2.5) 

where u0 

and u1 

are real constants with u0 

> u1 

> 0 . 

[Hint: Start by showing that the boundary conditions relate the velocity v of the 

travelling wave to the sum of the constants u0 

and u1.] 

6. * Generalised KdV equation with n = 1 , 2 , 3 , . . . :

 

ut 

+ ( n + 1)( n + 2) un ux 

+ uxxx 

= 0 

u → 0 , ux 

→ 0 , uxx 

→ 0 as x → ±∞ .

 

(2.6) 

Ex 14∗ Using the analogy with the classical mechanics of a point particle moving in one spatial 

dimension, determine the qualitative behaviour of travelling wave solutions of the KdV 

equation on a circle, for which the integration constants A and B are non-zero.
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3 Topological lumps and the Bogomol’nyi bound 

Ex 15 This exercise involves the infinite chain of identical coupled pendula of section 2.3, whose 

equations of motion reduce to the sine-Gordon equation in the continuum limit a → 0 . 

We will simplify expression by setting g = L = 

M

 

a 

= 1 . Let θn( t ) be the angle to the 

vertical of the n -th pendulum ( n ∈ Z ), which is hung at the position x = na along 

the chain, at time t . The configuration of the system at time t is then specified by the 

collection of angles { θn( t ) }n ∈ Z. 

1. Starting from the force (note: m is a dummy variable)

 

Fn( { θm 

} ) = − a sin θn 

+ 

1

 

a
( θn +1 

− θn) + 

1

 

a
( θn − 1 

− θn)

 

(3.1) 

acting on the n -th pendulum, deduce the potential energy

 

V ( { θm 

} ) = 

+ ∞∑ 

n = −∞ 

( · · · )

 

(3.2) 

such that Fn 

= − 

∂ V

 

∂ θn 

for all n ∈ Z , and fix the integration constant by requiring 

that the potential energy be zero when all pendula point down: V ( { 0 } ) = 0 . 

2. Show that in the continuum limit a → 0 , the potential energy computed above 

becomes

 

V = 

∫ + ∞ 

−∞ 

dx 

[ 

(1 − cos θ ) + 

1

 

2 

θ2 

x 

] 

,

 

(3.3) 

and the kinetic energy

 

T ( { θm 

} ) = 

a

 

2 

+ ∞∑ 

n = −∞ 

θ̇2 

n

 

(3.4) 

becomes

 

T = 

∫ + ∞ 

−∞ 

dx 

1

 

2 

θ2 

t 

,

 

(3.5) 

where the function θ ( x, t ) is the continuum limit of { θn( t ) }n ∈ Z. 

[ Hint : in the continuum limit, a 

+ ∞∑ 

n = −∞ 

→ 

∫ + ∞ 

−∞ 

dx .]
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Ex 16 A field u ( x, t ) has kinetic energy T and potential energy V , where

 

T = 

∫ + ∞ 

−∞ 

dx 

1

 

2 

u2 

t 

, 

V = 

∫ + ∞ 

−∞ 

dx 

[
1

 

2 

u2 

x 

+ 

λ

 

2
( u2 − a2)2 

] 

,

 

(3.6) 

and a and λ > 0 are (real) constants. (This is a version of the ‘ ϕ4’ theory. It’s called 

like that because the scalar potential is quartic, and the field u is usually called ϕ .) The 

equation of motion for u is

 

utt 

− uxx 

+ 2 λu ( u2 − a2) = 0 .

 

(3.7) 

1. If u is to have finite energy, what boundary conditions must be imposed on u , ux 

and ut 

at x = ±∞ ? 

2. Find the general travelling-wave solution(s) to the equation of motion, consistent 

with the boundary conditions found in part 1. Compute the total energy E = T + V 

for these solutions. For which velocity do the solutions have the lowest energy? 

3. One of the possible boundary conditions for part 1 implies that u is a kink, with 

[ u ( x )]x =+ ∞ 

x = −∞ 

= 2 a . Use the Bogomol’nyi argument to show that the total energy 

E = T + V of that configuration is bounded from below by C 

√

 

λa3, where C is a 

constant that you should determine, and find the solution u which saturates this 

bound. Verify that this solution agrees with the lowest-energy solution of part 2. 

Ex 17 1. Explain why the Bogomol’nyi argument given in the lectures fails to provide a 

useful bound on the energy of a two-kink solution of the sine-Gordon equation (a 

two-kink solution is one with topological charge n − m equal to 2 ). What is the 

most that can be said about the energy of a k -kink? 

2. For a sine-Gordon field u , generalise the Bogomol’nyi argument to show that

 

∫ B 

A 

dx 

[
1

 

2 

u2 

t 

+ 

1

 

2 

u2 

x 

+ (1 − cos u ) 

] 

≥ ± 4 

[ 

cos 

u

 

2 

]B 

A 

.

 

(3.8) 

3. 

∗ Use this result and the intermediate value theorem (look it up if necessary!) to 

show that if the field u has the boundary conditions of a k -kink, then its energy is 

at least k times that of a single kink. Can this bound be saturated?
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Ex 18 A system on the finite interval − π / 2 ≤ x ≤ π / 2 is defined by the following expressions 

for the kinetic energy T and the potential energy V :

 

T = 

∫ π / 2 

− π / 2 

dx 

1

 

2 

u2 

t 

V = 

∫ π / 2 

− π / 2 

dx 

1

 

2 

(
u2 

x 

+ 1 − u2 

) 

.

 

(3.9) 

The function u ( x, t ) satisfies the boundary condition | u ( ± π / 2 , t ) | = 1 and is required to 

satisfy | u ( x, t ) | ≤ 1 everywhere. Show that with “kink" boundary conditions, the total 

energy E is bounded below by a positive constant, and find a solution for which the 

bound is saturated.
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4 Conservation laws 

Ex 19 Check explicitly that the energy

 

E = 

∫ + ∞ 

−∞ 

dx 

[
1

 

2 

u2 

t 

+ 

1

 

2 

u2 

x 

+ V ( u ) 

]

 

(4.1) 

and the momentum

 

P = − 

∫ + ∞ 

−∞ 

dx ut 

ux

 

(4.2) 

of a relativistic field u ( x, t ) in 1 space and 1 time dimensions are conserved when the 

equation of motion

 

utt 

− uxx 

= − V′( u )

 

(4.3) 

and the boundary conditions

 

ut 

, ux 

, V ( u ) , V′( u ) −→ 

x →±∞ 

0 ∀ t

 

(4.4) 

are satisfied. 

Ex 20 1. Compute the conserved topological charge, energy and momentum of a sine-Gordon 

kink moving with velocity v , and check that the results do not depend on time. 

[ Hint : The integral (A.9) might be useful. For the scalar potential term in the 

energy, write 1 − cos( u ) = 2 sin2( u/ 2) , plug in the kink solution and manipulate 

the result using trigonometric formulae until (A.9) becomes useful.] 

Confirm that for | v | ≪ 1 the energy and the momentum take the forms

 

E = M + 

1

 

2 

M v2 + O ( v4) , P = M v + O ( v3)

 

(4.5) 

where the ‘mass’ M is the energy of the static kink, which appears in the Bogo- 

mol’nyi bound. 

2. 

∗ If you are fearless and have time on your hands, try also to compute the conserved 

spin 3 charge

 

Q3 

= 

∫ + ∞ 

−∞ 

dx 

[ 

u2 

++ 

− 

1

 

4 

u4 

+ 

+ u2 

+ cos u 

]

 

(4.6) 

for the sine-Gordon kink. The integrals are not at all straightforward, but can be 

evaluated using appropriate changes of variables. (Did I write fearless?)



 

4 CONSERVATION LAWS 11 

Ex 21 Find three conserved charges for the mKdV equation (2.1) of Ex 13.1, which involve u , 

u2 and u4 respectively. The boundary conditions on u ( x, t ) are u , ux 

and uxx 

→ 0 as 

| x | → ∞ . Evaluate these quantities for the travelling-wave solution found in Ex 13.1. 

The list of definite integrals at the end of the problems sheet might help. 

Ex 22 Show that u is a conserved density for Burgers’ equation (2.5). Why is this result of no 

use in analysing the travelling wave solution of Ex 13.5? 

Ex 23 Consider the KdV equation ut 

+ 6 uux 

+ uxxx 

= 0 for the field u ( x, t ) . 

1. Show that ρ1 

≡ u , ρ2 

≡ u2 and ρ∗ 

≡ xu − 3 tu2 are all conserved densities, so that

 

Q1 

= 

∫ + ∞ 

−∞ 

dx u , Q2 

= 

∫ + ∞ 

−∞ 

dx u2 , Q∗ 

= 

∫ + ∞ 

−∞ 

dx ( xu − 3 tu2)

 

(4.7) 

are all conserved charges. 

2. Evaluate the conserved charges Q1, Q2 

and Q∗ 

for the one-soliton solution centred 

at x0 

and moving with velocity v = 4 µ2:

 

uµ, x0( x, t ) = 2 µ2sech2 

[
µ ( x − x0 

− 4 µ2 t )
] 

.

 

(4.8) 

3. According to the KdV equation, the initial condition u ( x, 0) = 6 sech2( x ) is known 

to evolve into the sum of two well-separated solitons with different velocities v1 

= 

4 µ2 

1 

and v2 

= 4 µ2 

2 

at late times. Use the conservation of Q1 

and Q2 

to determine 

v1 

and v2. 

4. A two-soliton solution separates as t → −∞ into two one-solitons uµ1 

, x1 

and uµ2 

, x2 . 

As t → + ∞ , two one-solitons are again found, with µ1 

and µ2 

unchanged but with 

x1 

, x2 

replaced by y1, y2. Use the conservation of Q∗ 

to find a formula relating the 

phase shifts y1 

− x1 

and y2 

− x2 

of the two solitons. 

Ex 24 1. Show that if u ( x, t ) satisfies the KdV equation ut 

+ 6 uux 

+ uxxx 

= 0 , and u = 

λ − v2 − vx 

where λ is a constant and v ( x, t ) some other function, then v satisfies

 

(
2 v + 

∂

 

∂ x 

)(
vt 

+ 6 λvx 

− 6 v2 vx 

+ vxxx 

) 

= 0 .
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2. Compute the Gardner transform expansion

 

w ( x, t ) = 

∞∑ 

n =0 

wn( x, t ) εn

 

(4.9) 

up to order ε4. Use the results to find the conserved charges Q̃3 

and Q̃4, where

 

Q̃n 

= 

∫ + ∞ 

−∞ 

dx wn 

.

 

(4.10) 

Show that Q̃3 

is the integral of a total x -derivative (and hence is zero), while 

Q̃4 

= α Q3, where

 

Q3 

= 

∫ + ∞ 

−∞ 

dx 

( 

u3 − 

1

 

2 

u2 

x 

)

 

(4.11) 

is the third KdV conserved charge (the ‘energy’) and α a constant that you should 

determine. 

∗ If you’re feeling energetic, try to compute Q̃5 

and Q̃6 

as well. 

Ex 25 This question is also about the KdV equation ut 

+ 6 uux 

+ uxxx 

= 0 . 

1. Evaluate the first three KdV conserved charges

 

Q1 

= 

∫ + ∞ 

−∞ 

dx u , Q2 

= 

∫ + ∞ 

−∞ 

dx u2 , Q3 

= 

∫ + ∞ 

−∞ 

dx 

( 

u3 − 

1

 

2 

u2 

x 

)

 

(4.12) 

for the initial state u ( x, 0) = A sech2( B x ) , where A and B are constants. 

2. The initial state

 

u ( x, 0) = N ( N + 1) sech2( x ) ,

 

(4.13) 

where N is an integer, is known to evolve at late times into N well-separated 

solitons, with velocities 4 k2, k = 1 . . . N . So for t → + ∞ , this solution approaches 

the sum of N single well-separated solitons

 

u ( x, t ) ≈ 

N∑ 

k =1 

2 µ2 

k 

sech2 

[
µk( x − xk 

− 4 µ2 

k 

t )
] 

,

 

(4.14) 

where µ1 

, . . . , µN 

are N different constants. Since Q1, Q2 

and Q3 

are conserved, 

their values at t = 0 and t → + ∞ must be equal. Use this fact to deduce formulae 

for the sums of the first N integers, the first N cubes, and the first N fifth powers. 

3. 

∗ Use Q4 

and Q5 

and the method just described to find the sum of the first N 

seventh and ninth powers, 

∑N 

k =1 

k7 and 

∑N 

k =1 

k9.
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5 The Bäcklund transform 

Ex 26 1. Show that the pair of equations

 

( u − v )+ 

= 

√

 

2 e( u + v ) / 2 

( u + v )− 

= 

√

 

2 e( u − v ) / 2

 

(5.1) 

provides a Bäcklund transformation linking solutions of v+ − 

= 0 (the wave equation 

in light-cone coordinates) to those of u+ − 

= eu (the Liouville equation). 

2. Starting from d’Alembert’s general solution v = f ( x+)+ g ( x−) of the wave equation, 

use the Bäcklund transform (5.1) to obtain the corresponding solutions of the Liou- 

ville equation for u . [ Hint : Set u ( x+ , x−) = 2 U ( x+ , x−)+ f ( x+) − g ( x−) . You might 

simplify the notation by setting f ( x+) = log( F 

′( x+)) and g ( x−) = − log( G′( x−)) , 

where prime means first derivative.] 

Ex 27 Consider the Bäcklund transform 

vx 

+ 

1

 

2 

uv = 0 (5.2) 

vt 

+ 

1

 

2 

ux 

v − 

1

 

4 

u2 v = 0 . (5.3) 

1. Show that (5.2) and (5.3) together imply that v satisfies the linear heat equation 

vt 

= vxx 

, while u satisfies Burgers’ equation ut 

+ uux 

− uxx 

= 0 . 

[ Hint : for the first, solve (5.2) for u and substitute in (5.3); for the second, start 

by cross-differentiating.] 

2. Find the general travelling-wave solution for v ( x, t ) and, via the Bäcklund trans- 

form, re-obtain the travelling-wave for Burgers’ equation found in question (2.5). 

3. 

∗ The linear equation satisfied by v ( x, t ) allows for the linear superposition of so- 

lutions. Use this fact, and your answers to part 2, to construct solutions for v and 

then u which describe the interaction of two travelling waves. 

4. 

∗ Sketch your solutions functions of x at fixed times both before and after the 

interaction, and also draw their trajectories in the ( x, t ) plane, perhaps starting 

with the help of a computer. Are the travelling waves of Burgers’ equation true 

solitons, in the sense given in lectures? 

[ Hints : Examine the asymptotics of the solution viewed from frames moving at 

various velocities V (that is, set XV 

= x − V t and consider t → ±∞ keeping 

XV 

finite). This should allow you to isolate various travelling waves in these limits, 

and to decide whether they preserve their form under interactions. For definiteness, 

consider the case c1 

> c2 

> 0 , where c1 

and c2 

are the velocities of the two separate 

travelling waves before they were superimposed. A further hint: as well as the 

‘expected’ special values for V , namely c1 

and c2, be careful about what happens 

when V = c1 

+ c2.]



 

5 THE BÄCKLUND TRANSFORM 14 

Ex 28 1. Show that the two equations

 

vx 

= − u − v2 

vt 

= 2 u2 + 2 uv2 + uxx 

− 2 ux 

v

 

(5.4) 

are a Bäcklund transform relating solutions of the KdV equation

 

ut 

+ 6 uux 

+ uxxx 

= 0

 

(5.5) 

and the wrong sign modified KdV (mKdV) equation

 

vt 

− 6 v2 vx 

+ vxxx 

= 0 .

 

(5.6) 

(Note the appearance of the Miura transform in (5.4).) 

2. Taking u = c2, where c is a constant, as a seed solution of the KdV equation, find 

the corresponding solution of the wrong sign mKdV equation. 

Ex 29 The 2 -soliton solution of the sine-Gordon equation with Bäcklund parameters a1 

and a2 

is

 

u ( x, t ) = 4 arctan 

( 

µ 

eθ1 − eθ2

 

1 + eθ1+ θ2 

) 

, θi 

= εi 

γi( x − vi 

t − ¯ xi)

 

(5.7) 

where µ = ( a2+ a1) / ( a2 

− a1) , vi 

= ( a2 

i 

− 1) / ( a2 

i+1) , γi 

= 1 / 

√

 

1 − v2 

i , εi 

= sign( ai) , and ¯ x1 

and ¯ x2 

are constants, as in the lectures. Rewriting u as a function of XV 

≡ x − V t and 

t , show that, for V ̸ = v1 

, v2 

(and v1 

̸ = v2) 

lim 

t →∞ 

XV 

finite 

u = 2 nπ , 

where n is an integer. If v2 

> v1 

> 0 and εi 

= 1 , how does the parity of n (whether it is 

even or odd) depend on the value of v relative to v1 

and v2? 

[ Hints : First show that | θi 

| → + ∞ as t → ±∞ ; then consider each of the four possible 

options ( θ1 

, θ2) → (+ ∞ , + ∞ ) , ( −∞ , −∞ ) , (+ ∞ , −∞ ) , ( −∞ , + ∞ ) . Remember that 

arctan(0) = mπ and arctan( ±∞ ) = ± π / 2 + mπ , where the ambiguities of mπ , m ∈ Z , 

encode the multivalued nature of the arctan function.] 

Ex 30 Find the asymptotics of the 2 -soliton sine-Gordon solution defined in equation (5.7), in 

the case a2 

> a1 

> 0 , as t → ±∞ with Xv2 

≡ x − v2 

t held finite.
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Ex 31 Show by direct analysis (as in the lectures) that taking a1 

and a2 

of opposite signs in 

(5.7) results in a two-kink, or two-antikink, solution to the sine-Gordon equation. 

Ex 32 1. The argument of the arctangent in the sine-Gordon 2 -soliton solution (5.7) is a 

continuous function of x for all x ∈ R . Show that, in particular, it is never infinite. 

What does this imply about the range of u ? [ Hint : consider the graph of tan u/ 4 .] 

2. By taking the limits of this function as x → ±∞ (with t = ¯ x1 

= ¯ x2 

= 0 for 

simplicity), show that the topological charge of the two-soliton solution (5.7) is 0 if 

sign( a1) = sign( a2) , and ± 2 if sign( a1) = − sign( a2) , in units where the topological 

charge of a kink is 1 . 

Ex 33 Consider the two-soliton solution of the sine-Gordon equation (5.7) with complex Bäck- 

lund parameters a1 

=

 

a2 

:= a ∈ C and with vanishing integration constants, as is 

appropriate to find the breather solution. Show that

 

Re( θ1) = +Re( θ2) = γ ( x − v t ) cos φ , 

Im( θ1) = − Im( θ2) = γ ( v x − t ) sin φ ,

 

(5.8) 

where φ = arg( a ) and

 

v = 

| a |2 − 1

 

| a |2 + 1 

γ = 

1

 

√

 

1 − v2 

= 

1 + | a |2

 

2 | a | 

.

 

(5.9) 

Ex 34 The stationary breather solution of the sine-Gordon equation (that is the breather so- 

lution with v = 0 ) has the form

 

tan 

u

 

4 

= 

cos φ

 

sin φ 

· 

sin( t sin φ )

 

cosh( x cos φ ) 

.

 

(5.10) 

Show that in the limit φ → 0 , in which the kink and antikink that form the breather 

are very loosely bound, the time period τ of a single oscillation of the breather scales 

like τ ∼ | φ |− 1, and the spatial size xmax 

of the breather scales like xmax 

∼ − log φ . 

[ Hint : You could define xmax 

as the value of x at which tan( u/ 4) = 1 when the oscillatory 

factor in the numerator is at its maximum. Focus only on the parametric dependence 

on φ , ignoring all numerical factors.]
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6 The Hirota method 

Ex 35 We have seen in lectures that the KdV equation ut+6 uux+ uxxx 

= 0 for the field u ( x, t ) 

that describes the profile of a wave translates into the following equation for the new 

variable w ( x, t ) = 

∫ 

dx u :

 

wt 

+ 3 w2 

x 

+ wxxx 

= 0 .

 

(6.1) 

Let w = 2 

∂

 

∂ x 

log f = 2 

fx

 

f 

where f ( x, t ) is a nowhere vanishing function of x and t , so 

that u = 2 

∂2

 

∂ x2 

log f . The aim of this exercise is to rewrite (6.1) as an equation for f . 

1. Express wt, wx, wxx 

and wxxx 

in terms of f and its derivatives. 

2. Show that the equation (6.1) can be rewritten as

 

f fxt 

− fx 

ft 

+ 3 f 2 

xx 

− 4 fx 

fxxx 

+ f fxxxx 

= 0 ,

 

(6.2) 

which is known as the quadratic form of the KdV equation. 

Ex 36 The Hirota bilinear differential operator D 

m 

t 

D 

n 

x 

is defined for any pair of natural numbers 

( m, n ) by

 

D 

m 

t 

D 

n 

x( f , g ) = 

( 

∂

 

∂ t 

− 

∂

 

∂ t′ 

)m 

( 

∂

 

∂ x 

− 

∂

 

∂ x′ 

)n 

f ( x, t ) g ( x′ , t′) 

∣∣∣∣∣
x′= x 

t′= t

 

(6.3) 

and maps a pair of functions ( f ( x, t ) , g ( x, t )) into a single function. 

1. Prove that the Hirota operators Bm,n 

:= D 

m 

t 

D 

n 

x 

are bilinear, i.e. for all constants 

a1, a2

 

Bm,n( a1 

f1 

+ a2 

f2 

, g ) = a1 

Bm,n( f1 

, g ) + a2 

Bm,n( f2 

, g ) , 

Bm,n( f , a1 

g1 

+ a2 

g2) = a1 

Bm,n( f , g1) + a2 

Bm,n( f , g2) .

 

(6.4) 

2. Prove the symmetry property

 

Bm,n( f , g ) = ( − 1)m + n Bm,n( g , f ) .

 

(6.5) 

3. Compute the Hirota derivatives D2 

t ( f , g ) and D4 

x( f , g ) , and verify that your expres- 

sion for the latter is consistent with the result for D4 

x( f , f ) given in lectures.
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Ex 37 Define a “non-Hirota" bilinear differential operator D̃ 

m 

t 

D̃ 

n 

x 

by

 

D̃ 

m 

t 

D̃ 

n 

x( f , g ) = 

( 

∂

 

∂ t 

+ 

∂

 

∂ t′ 

)m 

( 

∂

 

∂ x 

+ 

∂

 

∂ x′ 

)n 

f ( x, t ) g ( x′ , t′) 

∣∣∣∣∣
x′= x 

t′= t

 

(6.6) 

(note the plus signs!). 

1. Compute D̃x( f , g ) and D̃t( f , g ) , verifying that in both cases the answer is given by 

the corresponding ‘ordinary’ derivative of the product f ( x, t ) g ( x, t ) . 

2. How does this result generalise for arbitrary non-Hirota differential operators (6.6)? 

Prove your claim. 

3. Compare your answer with the Hirota operators defined above. 

Ex 38 1. If θi 

= ai 

x + bi 

t + ci, prove that

 

Dt 

Dx( eθ1 , eθ2) = ( b1 

− b2)( a1 

− a2) eθ1+ θ2 .

 

2. Prove the corresponding result for D 

m 

t 

D 

n 

x( eθ1 , eθ2) , as quoted in lectures. 

Ex 39 Prove that

 

D 

m 

t 

D 

n 

x( f , 1) = 

∂ 

m

 

∂ tm 

∂ 

n

 

∂ xn 

f .

 

(6.7) 

Ex 40 Consider the function f , such that u = 2 

∂2

 

∂ x2 

log f is the KdV field, which corresponds 

to a 2-soliton solution:

 

f = 1 + ϵf1 

+ ϵ2 f2 

= 1 + ϵ 

(
eθ1 + eθ2 

) 

+ ϵ2 

( 

a1 

− a2

 

a1 

+ a2 

)2 

eθ1+ θ2 ,

 

(6.8) 

where θi 

= ai 

x − a3 

i 

t + ci, with ai 

and ci 

constants. Check that B ( f1 

, f2) = 0 and 

B ( f2 

, f2) = 0 , where B = Dx( Dt 

+ D3 

x) , and show that this implies that the expansion 

(6.8), which is truncated at order ϵ2, is a solution of the bilinear form of the KdV 

equation.
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Ex 41∗ Derive the solution of the bilinear form of the KdV equation Dx( Dt 

+ D3 

x)( f , f ) = 0 

which represents the 3-soliton solution, in the form

 

f = 1 + ϵf1 

+ ϵ2 f2 

+ ϵ3 f3

 

(6.9) 

where f1 

= 

∑3 

i =1 

eθi . [This includes proving that the higher order terms in the ϵ expan- 

sion can be consistently set to zero, as in Ex 40.] 

Ex 42 Show that the Boussinesq equation

 

utt 

− uxx 

− 3( u2)xx 

− uxxxx 

= 0

 

(6.10) 

can be written in the bilinear form

 

( D2 

t 

− D2 

x 

− D4 

x)( f , f ) = 0

 

(6.11) 

where u = 2 

∂2

 

∂ x2 

log f . 

Ex 43 Show that the following higher-dimensional version of the KdV equation,

 

( ut 

+ 6 uux 

+ uxxx)x 

+ 3 σ2 uy y 

= 0

 

(6.12) 

for the field u ( x, y , t ) , also known as the Kadomtsev-Petviashvili (KP) equation, can be 

written in the bilinear form

 

( Dt 

Dx 

+ D4 

x 

+ 3 σ2 D2 

y)( f , f ) = 0

 

(6.13) 

where u ( x, y , t ) = 2 

∂2

 

∂ x2 

log f ( x, y , t ) .
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7 Exam-style problem 

Ex 44 The complex field u ( x, t ) obeys the equation

 

iut 

+ 

1

 

2 

uxx 

+ | u |2 u = 0 ,

 

(7.1) 

where i = 

√

 

− 1 , and the boundary conditions

 

u, ux 

, uxx 

→ 0 as x → ±∞ .

 

(7.2) 

1. Show that the quantities

 

Q1 

= 

∫ + ∞ 

−∞ 

dx | u |2 

Q2 

= 

∫ + ∞ 

−∞ 

dx Im(¯ uux) 

Q3 

= 

∫ + ∞ 

−∞ 

dx 

(
1

 

2 

| ux 

|2 + C | u |4 

)

 

(7.3) 

are conserved provided that the constant C takes a value that you should find. 

(Here Im denotes the imaginary part and a bar denotes complex conjugation.) 

2. Show that given a ‘seed’ solution u ( x, t ) of equation (7.1),

 

u( v )( x, t ) := u ( x − v t, t ) ei ( Ax + B t )

 

(7.4) 

is also a solution for all v ∈ R , provided that the constants A and B depend on v 

in a way that you should find. 

3. Determine the functional dependence of the conserved charges Q1 

, Q2 

, Q3 

in (7.3) 

on the parameter v that labels the one-parameter family of solution (7.4). 

4. Find all solutions of the form

 

u ( x, t ) = ρ ( x ) eiφ ( t )

 

(7.5) 

of equation (7.1) with boundary conditions (7.2), where ρ are φ are real and u ( x, 0) 

is a real even function of x . [You can use the integrals at the end of the problem 

sheet.] Apply the method of part 2 to this seed solution to find the associated 

one-parameter family of solutions u( v )( x, t ) .
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A Useful integrals 

You can freely quote the following formulae, athough deriving them may be instructive: 

• Indefinite integrals: [ Note: the integration constant is in principle complex]

 

∫ 

dx

 

x
√

 

1 − x 

= − 2arcsech(
√

 

x ) (A.1) ∫ 

dx

 

x
√

 

1 − x2 

= − arcsech( x ) (A.2) ∫ 

dx

 

x
√

 

1 + x2 

= − arccosech( x ) (A.3) ∫ 

dx

 

sin( x/ 2) 

= 2 log tan( x/ 4) (A.4) ∫ 

dx

 

cosh( x ) 

= 2 arctan( ex) (A.5) ∫ 

dx

 

1 − x2 

= arctanh( x ) (A.6) ∫ 

dx 

√

 

1 − x2 = 

1

 

2 

[ 

x 

√

 

1 − x2 + arcsin( x ) 

] 

(A.7) ∫ 

dx

 

cos2( x ) 

= tan( x ) (A.8) ∫ 

dx

 

cosh2( x ) 

= tanh( x ) (A.9)

 

• Definite integrals:

 

∫ + ∞ 

−∞ 

dx e− Ax2 

= 

√

 

π

 

A 

( A > 0) (A.10) ∫ + ∞ 

−∞ 

dx sech2 n( x ) = 

22 n − 1(( n − 1)!)2

 

(2 n − 1)! 

(A.11)

 

Note: the result of the Gaussian integral (A.10) does not change if the integration 

variable x is shifted by a finite imaginary amount c , namely if you replace x → x + ic .
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