PROBLEMS CLASS 1 - 29/10/2021
Ex 13.2
Find (if they exist) real non-singular travelling wave sol'ns of
"wrong sign" moat: $u_{t}-6 u^{2} u_{x}+u_{x x x}=0$

$$
B C \quad: \quad u, u_{x}, u_{x x} \rightarrow 0 \quad \text { as }|x| \rightarrow \infty \quad \forall t
$$

velocity
Sub in trave. wave $u(x, t)=f\left(x-v^{t} t\right) \equiv f(\xi)$:

$$
\begin{array}{ll}
& -v f^{\prime}-6 f^{2} f^{\prime}+f^{\prime \prime \prime}=0 \\
\Rightarrow & -v f-2 f^{3}+f^{\prime \prime}=A \\
\int d \xi & \leftarrow c o n s t \tag{2}\\
\int d d \xi f^{\prime} & -\frac{v}{2} f^{2}-\frac{1}{2} f^{4}+\frac{1}{2}\left(f^{\prime}\right)^{2}=A f+8
\end{array}
$$

$B C\left(f, f^{\prime}, f^{\prime \prime} \rightarrow 0\right): A=B=0$
Rearrange (2): $\quad \frac{1}{2}\left(f^{\prime}\right)^{2}+\left(-\frac{f^{4}}{2}-\frac{v}{2} f^{2}\right)=0$
 trivial solution

trivial solution (all other sol'ns are singular)

Ex 13.4 Same for
"中 ${ }^{6}$ theory": $u_{t t}-u_{x x}+u\left(u^{2}-1\right)\left(3 u^{2}-1\right)=0$
$B C:$

$$
\left\lvert\, \begin{array}{ll}
u_{t}, u_{x}, u & \longrightarrow 0 \\
u_{t}, u_{x}, u-1 & x \rightarrow-\infty \\
x \rightarrow+\infty
\end{array}\right.
$$

Sub in $u(x, t)=f(x-v t) \equiv f(\xi)$

$$
\begin{aligned}
& \left(v^{2}-1\right) f^{\prime \prime}+f\left(f^{2}-1\right)\left(3 f^{2}-1\right)=0 \\
\Leftrightarrow & f^{\prime \prime}-\gamma^{2} \underbrace{f\left(f^{2}-1\right)\left(3 f^{2}-1\right)}_{\equiv 3 f^{5}-4 f^{3}+f}=0 \quad \gamma=\frac{1}{\sqrt{1-v^{2}}}
\end{aligned}
$$

$$
\int \begin{array}{cc}
\Rightarrow d \xi f^{\prime}
\end{array} \underset{\left|\xi^{\prime}\right| \rightarrow \infty \downarrow}{ } \quad \frac{1}{2}\left(f^{\prime}\right)^{2}-\gamma^{2}\left(\frac{f^{6}}{2}-f^{4}+\frac{f^{2}}{2}\right)=A=0
$$

$$
\frac{1}{2}\left(f^{\prime}\right)^{2}-\frac{1}{2} \gamma^{2} f^{2}\left(f^{2}-1\right)^{2}=\underset{\hat{V}(f)}{0}
$$

$B C: f^{\prime} \rightarrow 0$ as $\left|\xi_{1}\right| \rightarrow \infty$

$$
\underset{\xi \rightarrow-\infty}{\rightarrow \rightarrow 0}, \quad \underset{\xi \rightarrow+\infty}{f \rightarrow 1}
$$

A real non-singubirsol'n exists. Let's find it!

$$
f^{\prime}= \pm \gamma f\left(f^{2}-1\right)
$$

Need $0<f<1$ and $f^{\prime}>0$, so

$$
\begin{gathered}
f^{\prime}=\gamma f\left(1-f^{2}\right) \\
\int \frac{d f}{f\left(1-f^{2}\right)}=\gamma \int d \xi
\end{gathered}
$$

$$
\underset{\text { partial }}{\text { fractions }} \| \quad \gamma\left(\xi-x_{0}\right)=\gamma\left(x-x_{0}-v t\right)
$$

$$
\begin{aligned}
\int d f\left(\frac{1}{f}+\frac{1}{2} \frac{1}{1-f}-\frac{1}{2} \frac{1}{1+f}\right) & =\ln f-\frac{1}{2} \ln (1-f)-\frac{1}{2} \ln (1-f) \\
& =\ln \frac{f}{\sqrt{1-f^{2}}}
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow \ln \frac{f}{\sqrt{1-f^{2}}}=\gamma\left(x-x_{0}-v t\right) \\
& \frac{f}{\sqrt{1-f^{2}}}=e^{\gamma\left(x-x_{0}-v t\right)} \\
& \frac{f^{2}}{1-f^{2}}=e^{2 \gamma\left(x-x_{0}-v t\right)} \\
& \Rightarrow f^{2}=\frac{e^{2 \gamma\left(x-x_{0}-v t\right)}}{1+e^{2 \gamma\left(x-x_{0}-v t\right)}}=\frac{1}{e^{-2 \gamma\left(x-x_{0}-v t\right)}+1} \\
& u(x, t)=f(x-v t)= \pm \frac{1}{\sqrt{e^{-2 \gamma\left(x-x_{0}-v t\right)}}+1}
\end{aligned}
$$

PROBLEMS CLASS 2 - $12 / 11 / 2021$
Ex 17
In this exercise you will learn how to generalise the Bogomol'njpi bow no to field configurations with |topological charge |>1.
(1) Explain why the Bogom. argument given in the lectures fails to provide a useful bound on the energy of a solution of the $s-G$ eqn w/ topological charge $n_{+}-n_{-}=2$. What's the most that can be said about the energy of a field with $n_{+}-n_{-}=k$?

- Bogomol'mi: $\quad E=\int_{-\infty}^{+\infty} d x\left[\begin{array}{c}\left.\frac{1}{2} u_{t}^{2}+\frac{1}{2} u_{x}^{2}+\begin{array}{c}\frac{-2 \sin ^{2} \frac{u}{2}}{v_{0}} \\ v_{0}^{\prime} \\ 1-\cos u \\ v_{1}\end{array}\right] \\ 0\end{array}\right.$

$$
\begin{aligned}
& =\int_{-\infty}^{+\infty} d x\left[\frac{1}{2} \frac{u_{t}^{2}}{v_{0}}+\frac{1}{2}\left(u_{x} \pm 2 \sin \frac{u}{2}\right)^{2}\right] \pm 4\left(\cos \frac{u}{2}\right]_{-\infty}^{+\infty} \\
& \geqslant 4\left|\left[\cos \frac{u}{2}\right]_{-\infty}^{+\infty}\right|
\end{aligned}
$$

- $u(\pm \infty, t)=2 \pi n_{ \pm}$with $k=n_{t}-n_{\ldots}$.

$$
\begin{aligned}
{\left[\cos \frac{u}{2}\right]_{-\infty}^{+\infty} } & =\cos \left(\pi n_{t}\right)-\cos \left(\pi n_{-}\right)=(-1)^{n_{t}}-(-1)^{n_{-}} \\
& =(-1)^{n_{1}}\left[(-1)^{n_{+}-n_{-}}-1\right]=(-1)^{n_{-}}\left[(-1)^{k}-1\right]
\end{aligned}
$$

For $k=2$,

$$
E \geq 4\left|\left[\cos \frac{u}{2}\right]_{-\infty}^{+\infty}\right|=0 \quad \text { which we already knew. }
$$

For general k,

$$
E \geqslant 4\left|(-i)^{k}-1\right|= \begin{cases}0, & k \text { is even } \\ 8, & \text { (same as } k=0,2 \text { is odd } \\ \text { (same as } k= \pm 1)\end{cases}
$$

(2) For a sine-Gordon field u, generalise the Bogomol'nyi argument to show that

$$
\int_{A}^{B} d x\left[\frac{1}{2} u_{t}^{2}+\frac{1}{2} u_{x}^{2}+(1-\cos u)\right] \geqslant \pm 4\left[\cos \frac{u^{2}}{B}\right]_{A}^{B}
$$

$$
\int_{A}^{B} d x\left[\frac{1}{2} u_{t}^{2}+\frac{1}{2} u_{x}^{2}+2 \sin ^{2} \frac{u}{2}\right]
$$

total x-derivative

$$
=\int_{\Delta}^{b} d x\left[\frac{1}{2} u_{t}^{2}+\frac{1}{2}\left(u_{x} \pm 2 \sin \frac{u}{2}\right)^{2} \mp 2 u_{x} \sin \frac{u}{2}\right]
$$

$$
\left.=\int_{A}^{B} d x\left[\frac{1}{2} u_{t}^{2}+\frac{1}{2}\left(u_{x} \pm 2 \sin \frac{u}{2}\right)^{2}\right] \pm+\cos \frac{u}{2}\right]_{A}^{B} \geq \pm 4\left[\cos \frac{u}{2}\right]_{A}^{B}
$$

(3) Use this result and the intermediate value theorem to show that if the field u has the boundary conditions of a k-kink (that is, $n_{+}-n_{-}=k$), then its energy is at least $\mid k$, times that of a single kink. Can this bound be saturated?

We would like to show that $t \geqslant 8|k|$. top. charge

Consider a col' $n \omega / k=n_{t}-n_{-}$, and let's set $u(-\infty, t)=2 \pi n_{-}=0$ whog by shifting $u(x, t)$ by an appropriate integer multiple of 2π :

$$
u(-\infty, t)=0, \quad u(+\infty, t)=2 \pi k
$$

We know (lassume) that u is continuous. By the $I V T$, all values in $(0,2 \pi k)$ are taken by the field u at least once as $x \in \mathbb{R}$. ($\forall t$, kep fixed)
(Assume $k>0$ from now on.)
Let's call $x_{1}<x_{2}<\ldots<x_{k-1}$ the smallest values of x st. $u\left(x_{n}, t\right)=2 \pi n$.
E.g. for $k=3$

$$
E=\int_{-\infty}^{+\infty} d x \xi=\int_{-\infty}^{x_{1}} d x \xi+\int_{x_{1}}^{x_{2}} d x \xi+\int_{x_{2}}^{x_{3}} d x+\cdots+\int_{x_{k-1}}^{+\infty} d x \xi
$$

where $\quad \xi=\frac{1}{2}\left[u_{t}^{2}+u_{x}^{2}+4 \sin ^{2} \frac{u}{2}\right]$.
Now apply the Boo bound of part 2 interval by interval:

$$
E \geqslant-4 \cdot s_{1}\left[\cos \frac{u}{2}\right]_{-\infty}^{x_{1}}-4 s_{2}\left[\cos \frac{u}{2}\right]_{x_{1}}^{x_{2}} \ldots-4 s_{k-1}\left[\cos \frac{u}{2}\right]_{x_{k-2}}^{x_{k-1}}-4 s_{k}\left[\cos \frac{u}{2} \int_{x_{k-1}}^{+\infty}\right.
$$

where $S_{n}= \pm 1$ is the sign appearing in the Bogo eqn

$$
\begin{aligned}
& u_{x}=2 s_{n}-\sin \frac{u}{2} \text { for } x \in\left(x_{n-1}, x_{n}\right) \text {. } \\
& =-4 s_{1}\left(\begin{array} { l }
{ - 2 } \\
{ + 1 }
\end{array} \left(\begin{array}{l}
-1-1)-4 S_{2}(1-(-1))-4 s_{3}(-1-1) \ldots \\
-1
\end{array}\right.\right. \\
& \text { (*) }\binom{x_{0} \equiv-\infty}{x_{K} \equiv+\infty} \\
& \text { (} k \text { terms) }
\end{aligned}
$$

Pick alternating signs $s_{n}=(-1)^{n-1}$, so that $E \geq 8 k$.

- The bound con be saturated iff $u_{t}=0$ and (*) holds for all $x \in\left(x_{n+1}\right)$ x_{n}) for all n. The solution is a static kink or antikink, which only tends to integer multiples of 2π as $x \rightarrow \pm \infty$. That contradicts that $u\left(x_{n}, t\right)=2 \pi n$ for finite x_{n}. So the
bogompl'nyi eqns (*) cannot all be satisfied Simultaneously: $\exists E>8 k$ if $k>1$.

PROBLEMS CLASS $3-26 / 11 / 2021$
Ex 23
Consider the KdV equation $u_{t}+6 u u_{x}+u_{x x x}=0$ for the field $u(x, t)$.

1. Show that $\rho_{1} \equiv u, \rho_{2} \equiv u^{2}$ and $\rho_{*} \equiv x u-3 t u^{2}$ are all conserved densities, so that

$$
\begin{equation*}
Q_{1}=\int_{-\infty}^{+\infty} d x u, \quad Q_{2}=\int_{-\infty}^{+\infty} d x u^{2}, \quad Q_{*}=\int_{-\infty}^{+\infty} d x\left(x u-3 t u^{2}\right) \tag{4.7}
\end{equation*}
$$

are all conserved charges. seen in lectures Do as an exercise!
2. Evaluate the conserved charges Q_{1}, Q_{2} and Q_{*} for the one-soliton solution centred at x_{0} and moving with velocity $v=4 \mu^{2}$:

$$
\begin{align*}
& u_{\mu, x_{0}}(x, t)=2 \mu^{2} \operatorname{sech}^{2}\left[\mu \left(x-x_{0}-4 \mu^{2} t\right.\right. \tag{4.8}\\
& \left.\quad \int_{-\infty}^{+\infty} d x \operatorname{sech}^{4} \mathrm{x}=\frac{4}{3}\right]
\end{align*}
$$

$$
\begin{aligned}
& {\left[\int_{-\infty}^{+\infty} d x \operatorname{sech}^{2} x=2, \quad \int_{-\infty}^{+\infty} d x \operatorname{sech}^{4} x=\frac{4}{3}\right] \quad \begin{aligned}
y & =\mu\left(x-x_{0}-v t\right) \\
d y & =r d x
\end{aligned}} \\
& d y=d x \\
& Q_{1}=2 \mu^{2} \int_{-\infty}^{+\infty} d x \operatorname{sech}^{2}\left[\mu\left(x-x_{0}-v t\right)\right]=2 \mu \int_{-\infty}^{+\infty} d y \operatorname{sech}^{2} y=4 \mu \text {. } \\
& Q_{2}=4 \mu^{4} \int_{-\infty}^{+\infty} d x \operatorname{sech}^{4}\left[\mu\left(x-x_{0}-v t\right)\right]=4 \mu^{3} \int_{-\infty}^{-\infty} \int_{-\infty}^{\infty} d y \operatorname{sech}^{4} y=\frac{16}{3} \mu^{3} \text {. } \\
& Q_{*}=2 \mu^{2} \int_{-\infty}^{+\infty} d^{\infty} x \operatorname{sech}^{2}\left[\mu\left(x-x_{0}-v t\right)\right]-3 t Q_{2} \\
& \begin{array}{l}
=2 \int_{-\infty}^{+\infty} d y \not \operatorname{sech}^{2} y+\left(x_{0}+v t\right) Q_{1}-3 t Q_{2} \\
=0
\end{array} \\
& =\left(x_{0}+4 \mu^{2} t\right) \cdot 4 \mu-3 t \frac{16}{3} \mu^{3}=4 \mu x_{0} \text {. }
\end{aligned}
$$

$t=0$
3. According to the KdV equation, the initial condition $u(x, 0)=6 \operatorname{sech}^{2}(x)$ is known to evolve into the sum of two well-separated solitons with different velocities $v_{1}=4 \mu_{1}^{2}$ and $v_{2}=4 \mu_{2}^{2}$ at late times. Use the conservation of Q_{1} and Q_{2} to determine v_{1} and v_{2}.

$$
Q_{\frac{1}{2}}(t=0)=Q_{\frac{1}{2}}(t \rightarrow \infty)
$$

- $t=0: u(x, 0)=6 \operatorname{sech}^{2} x$

$$
\begin{aligned}
& Q_{1}=\int_{-\infty}^{+\infty} d x 6 \operatorname{sech}^{2} x=6 \cdot 2=12 \\
& Q_{2}=\int_{-\infty}^{\infty} d x 36 \operatorname{sech}^{4} x=36 \cdot \frac{4}{3}=48
\end{aligned}
$$

- $t \rightarrow+\infty: u(x, t) \approx u_{\mu_{1}, x_{1}}(x, t)+u_{\mu_{2}, x_{2}}(x, t)$ where $\quad u_{\mu, x_{0}}(x, t)=2 \mu^{2} \operatorname{sech}^{2}\left[\mu\left(x-x_{0}-4 \mu^{2} t\right)\right]$.

Fixed $t \rightarrow \infty$

Sum of well separated solitons.

$$
\begin{aligned}
& Q_{1}=\int_{-\infty}^{+\infty} d x u(x, t) \approx \int_{-\infty}^{+\infty} d x u_{\mu_{1}, x_{1}}(x, t)+\int_{-\infty}^{+\infty} d x u_{\mu_{2}, x_{2}}(x, t)=4 \mu_{1}+4 \mu_{2} \\
& Q_{2}=\int_{-\infty}^{+\infty} d x u(x, t)^{2}=\int_{-\infty}^{+\infty} d x u_{\mu_{1}, x_{1}}^{2}(x, t)+\int_{-\infty}^{\infty} d x u_{\mu_{2}, x_{2}}^{2}(x, t)+2 \int_{-\infty}^{+\infty} d x x_{\mu_{1}, u_{1}, \mu_{2}, x_{2}} \\
& \\
& =\frac{16}{3}\left(\mu_{1}^{3}+\mu_{2}^{3}\right) .
\end{aligned}
$$

Equate results at $t=0 \& t \rightarrow+\infty$:

$$
\left.\begin{array}{l}
\left\{\begin{array} { l }
{ 1 \not 2 } \\
{ \frac { 3 } { 3 } = 4 (\mu _ { 1 } + \mu _ { 2 }) } \\
{ 4 8 = \frac { 1 8 } { 3 } (\mu _ { 1 } ^ { 3 } + \mu _ { 2 } ^ { 3 }) }
\end{array} \Rightarrow \left\{\begin{array}{l}
\mu_{1}+\mu_{2}=3 \\
\left(\mu_{1}+1 \mu_{2}\right)\left(\mu_{1}^{2}-\mu_{1} \mu_{2}+\mu_{2}^{2}\right)=98
\end{array}\right.\right. \\
\left(\mu_{1}+\mu_{2}\right)^{\prime 2}-3 \mu_{1} \mu_{2}=9-3 \mu_{1} \mu_{2}
\end{array}\right\} \begin{aligned}
& \left\{\begin{array}{l}
\mu_{1}+\mu_{2}=3 \\
\mu_{1} \mu_{2}=2
\end{array}\right. \\
& \Rightarrow\left(\mu_{1}, \mu_{2}\right)=(1,2) \text { or }(2,1) \Rightarrow
\end{aligned}
$$

4. A two-soliton solution separates as $t \rightarrow-\infty$ into two one-solitons $u_{\mu_{1}, x_{1}}$ and $u_{\mu_{2}, x_{2}}$. As $t \rightarrow+\infty$, two one-solitons are again found, with μ_{1} and μ_{2} unchanged but with x_{1}, x_{2} replaced by y_{1}, y_{2}. Use the conservation of Q_{*} to find a formula relating the phase shifts $y_{1}-x_{1}$ and $y_{2}-x_{2}$ of the two solitons.

Please complete the exercise.

Ex 28

1. Show that the two equations

$$
\left\{\begin{array}{l}
v_{x}=-u-v^{2} \tag{a}\\
v_{t}=2 u^{2}+2 u v^{2}+u_{x x}-2 u_{x} v
\end{array}\right.
$$

are a Bäcklund transform relating solutions of the KdV equation

$$
\begin{equation*}
u_{t}+6 u u_{x}+u_{x x x}=0 \tag{kdV}
\end{equation*}
$$

and the wrong sign modified $\mathrm{KdV}(\mathrm{mKdV})$ equation

$$
\begin{equation*}
v_{t}-6 v^{2} v_{x}+v_{x x x}=0 \tag{5.6}
\end{equation*}
$$

(wsmkdV)
(Note the appearance of the Mira transform in (5.4).)

- To find the eqn for v, solve (a) for u : $u=-\left(v_{x}+v^{2}\right)$.

$$
\begin{align*}
& \text { Sub in (b): } \\
& \begin{aligned}
v_{t} & =2\left(v_{x}+v^{2}\right)^{2}-2\left(v_{x}+v^{2}\right) v^{2}-\frac{v_{x x x}+2 v v_{x x}+2 v_{x}^{2}}{\left(v_{x}+v^{2}\right)_{x x}}\left\{\begin{array}{l}
v_{x x}+2 v v_{x} \\
\\
\\
= \\
\left(v_{x}+v^{2}\right)_{x} v \\
\\
\end{array}=6 y_{x}^{2}+v^{4}+2 v_{x} v^{2}-v^{2}-v_{x x x} v^{2}-v^{4}\right)-v_{x x x}-2 y v_{x x}-2 / \psi_{x}^{2}+2 y x_{x x} v+4 v^{2} v_{x}
\end{aligned}
\end{align*}
$$

- To find the egn for u, cross-differentiate:

$$
\begin{array}{ll}
(a)_{t}: & v_{x t}=-u_{t}-2 v v_{t} \stackrel{(b)}{=}-u_{t}-2 v\left(2 u^{2}+2 u v^{2}+u_{x x}-2 u_{x} v\right) \\
(b)_{x}: & \left.v_{t x}=4 u u_{x}+2 u_{x} v^{2}+4 u v v_{x}\right)+u_{x x x}-2 u_{x x} v-2 u_{x} v_{x} \tag{**}\\
& \stackrel{(a)}{=} 4 u u_{x}+2 u_{x} v^{2}+u_{x x x}-2 u_{x x} v+2\left(2 u v-u_{x}\right)\left(-u-v^{2}\right)
\end{array}
$$

Compare:

$$
\begin{aligned}
& -u_{t}-2 v\left(2 u^{2}+2 u x^{2}+u_{x x}-2 u_{x} v\right) \\
& =6 u u_{x}+u_{x x x}+2 v\left(u_{x} v-u_{x x}-2 u^{2}-2 u v^{2}+u_{x} v\right) \\
& \Rightarrow u_{t}+6 u u_{x}+u_{x x x}=0 . \quad(5.5)
\end{aligned}
$$

Ex 28

1. Show that the two equations

$$
\begin{align*}
v_{x} & =-u-v^{2} \\
v_{t} & =2 u^{2}+2 u v^{2}+u_{x x}-2 u_{x} v \tag{5.4}
\end{align*}
$$

are a Bäcklund transform relating solutions of the KdV equation

$$
\begin{equation*}
u_{t}+6 u u_{x}+u_{x x x}=0 \tag{5.5}
\end{equation*}
$$

and the wrong sign modified KdV (mKdV) equation

$$
\begin{equation*}
v_{t}-6 v^{2} v_{x}+v_{x x x}=0 \tag{5.6}
\end{equation*}
$$

(Note the appearance of the Mira transform in (5.4).)
2. Taking $u=c^{2}$, where c is a constant, as a seed solution of the KdV equation, find the corresponding solution of the wrong sign mKdV equation.

Please attempt the exercise. The solution is below.

$$
\left\{\begin{array}{l}
v_{x}=-\left(c^{2}+v^{2}\right) \\
v_{t}=2 c^{4}+2 c^{2} v^{2}=2 c^{2}\left(c^{2}+v^{2}\right)
\end{array}\right.
$$

Solve ($*$):

$$
\begin{aligned}
\int d x & =-\int \frac{d v}{c^{2}+v^{2}} \\
\Rightarrow x-f(t) & =-\frac{1}{c} \int \frac{d(v / c)}{1+\left(\frac{v}{c}\right)^{2}}=-\frac{1}{c} \arctan \frac{v}{c}
\end{aligned}
$$

The $2^{\text {nd }}$ equality implies

$$
\begin{aligned}
& -c x+2 c^{3} g(x)=2 c^{3} t-c f(t)=\text { cons } \equiv-c x_{0} \\
& \Rightarrow f(t)=2 c^{2} t+x_{0}
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow \quad \arctan \frac{v}{c}=-c\left(x-x_{0}-2 c^{2} t\right) \\
& \Rightarrow \quad v=-c \tan \left[c\left(x-x_{0}-2 c^{2} t\right)\right] \leftarrow \begin{array}{c}
\text { solution of } \\
\text { wsmkdV eqn }
\end{array}
\end{aligned}
$$

NOTE: this is a singular solution if $c \in \mathbb{R}$.
If however c is purely imaginary, $c=i d(d \in \mathbb{R})$, then using $\tan (i x)=i \tanh x$ the solution becomes

$$
v=d \cdot \tanh \left[d\left(x-x_{0}+2 d^{2} t\right)\right]
$$

which is a regular solution with velocity $-2 d^{2} \leq 0$.

PROBLEMS CLASS $4-10 / 12 / 2021$
Ex 36
The Hirota bilinear differential operator $D_{t}^{\prime n} D_{x}^{n}$ is defined for any pair of natural numbers (min) by

$$
\begin{equation*}
D_{i}^{m} D_{x}^{n}(f, g)=\left(\frac{\partial}{\partial t}-\frac{\partial}{\partial t^{\prime}}\right)^{m}\left(\frac{\partial}{\partial x}-\frac{\partial}{\partial x^{\prime}}\right)^{n} f(x, t) g\left(x^{\prime}, t^{\prime}\right) \tag{6.3}
\end{equation*}
$$

and maps a pair of functions $(f(x, t), g(x, t))$ into a single function.

1. Prove that the Hirota operators $B_{m, n}:=D_{t}^{m} D_{x}^{n}$ are bilinear, ie. for all constants a_{1},

$$
\begin{align*}
& \begin{array}{l}
B_{m, n}\left(a_{1} f_{1}+a_{2} f_{2}, g\right)=a_{1} B_{m, n}\left(f_{1}, g\right)+a_{2} B_{m, n}\left(f_{2}, g\right) \\
B_{\operatorname{man}}\left(f, a_{1} g_{1}+a_{2} g_{2}\right)=a_{1} B_{m, n}\left(f, g_{1}\right)+a_{2} B_{m, n}\left(f, g_{2}\right)
\end{array} \tag{6.4}\\
& \underline{\left(\partial_{t}-\partial_{t^{\prime}}\right)^{m}}\left(\partial_{x}-\partial_{x^{\prime}}\right)^{n}=\sum_{n=0}^{m}\binom{m}{h} \partial_{t}^{h}\left(-\partial_{t^{\prime}}\right)^{m-h} \sum_{k=0}^{m}\binom{n}{k} \partial_{x}^{k}\left(-\partial_{x^{\prime}}\right)^{n-k} \\
&= \sum_{h=0}^{m} \sum_{k=0}^{n}\binom{m}{h}\binom{n}{k}(-1)^{m-h+n-k}\left(\partial_{t}^{n} \partial_{x}^{k}\right)\left(\partial_{t^{\prime}}^{m-h} \partial_{x^{\prime}}^{n-k}\right)
\end{align*}
$$

is a linear combination of linear diff. ops. $\partial_{t}^{h} \partial_{x}^{k}$ in (t, x) and ".". $\partial_{t^{\prime}}^{m-k} \partial_{x^{\prime}}^{n-k}$ in $\left(t^{\prime}, x^{\prime}\right)$.

$$
\partial_{t}^{h} \partial_{x}^{k}\left(a_{1} f_{1}(t, x)+a_{2} f_{2}(t, x)\right)=a_{1} \partial_{t}^{h} \partial_{x}^{k} f_{1}(t, x)+a_{2} \partial_{t}^{h} \partial_{x}^{k} f_{2}(t, x)
$$

likewise for $\partial_{t^{\prime}}^{\#} \partial_{x^{\prime}}^{\# \prime}\left(a_{1} g_{1}\left(t^{\prime}, x^{\prime}\right)+a_{2} g_{2}\left(t^{\prime}, x^{\prime}\right)\right)$
Evaluate:

$$
\Rightarrow D_{t}^{m} D_{x}^{n}\left(a_{1} f_{1}+a_{2} f_{2}, g\right)=a_{1} D_{t}^{m} D_{x}^{n}\left(f_{1}, g\right)+a_{2} D_{t}^{m} D_{x}^{n}\left(f_{2}, g\right) \text {. }
$$

Similarly for $2^{\text {nd }}$ eqn in (6.4).
2. Prove the symmetry property

$$
\begin{align*}
& D_{t}^{m} D_{x}^{n} \dot{B_{m, n}}(f, g)=(-1)^{m+n} B_{m n}(g . f) . \tag{6.5}\\
& {\left[D_{t}^{m} D_{x}^{n}(f, g)\right](t, x):=\left.\left(\partial_{t}-\partial_{t^{\prime}}\right)^{m}\left(\partial_{x}-\partial_{x^{\prime}}\right)^{n} f(t, x) g_{i}^{\prime}\left(t^{\prime}, x^{\prime}\right)\right|_{x^{\prime}=x}} \\
& \left((-1)\left(\partial^{\prime \prime} t^{\prime} \partial_{t}\right)\right)^{m}((-1))\left(\partial_{x^{\prime}}-\partial_{x}\right)^{n} \\
& =(-1)^{m+n}\left(\partial_{t^{\prime}}-\partial_{t}\right)^{m}\left(\partial_{x^{\prime}}-\partial_{x}\right)^{n} g\left(t^{\prime}, x^{\prime}\right) f(t, x) \mid \\
& =(-1)^{m+n}\left(\partial_{t}-\partial_{t^{\prime}}\right)^{m}\left(\partial_{x}-\partial_{x^{\prime}}\right)^{n} \quad g(t, x) f\left(t^{\prime}, x^{\prime}\right) \mid \\
& =(-1)^{m+n} D_{t}^{m} D_{x}^{n}(g, f) \text {. }
\end{align*}
$$

3. Compute the Hirota derivatives $D_{t}^{2}(f . g)$ and $D_{x}^{4}(f . g)$, and verify that your expression for the latter is consistent with the result for $D_{r}^{4}(f, f)$ given in lectures.

$$
\begin{aligned}
& D_{t}^{2}(f, g)=\left(\partial_{t}-\partial_{t^{\prime}}\right)^{2} f(t, x) g\left(t^{\prime}, x^{\prime}\right)\left|=\left(\partial_{t}^{2}-2 \partial_{t} \partial_{t^{\prime}}+\partial_{t^{\prime}}^{2}\right) f(t, x) g\left(t^{\prime}, x^{\prime}\right)\right| \\
& =f_{t t}(t, x) g\left(t^{\prime}, x^{\prime}\right)+2 f_{t}(t, x) g_{t^{\prime}}\left(t^{\prime}, x^{\prime}\right)+f(t, x) g_{t t^{\prime}}\left(t^{\prime}, x^{\prime}\right) \mid \\
& =f_{t t} g-2 f_{t} g_{t}+f g_{t t} \text {. } \\
& D_{x}^{4}(f, g)=\left(\partial_{x}-\partial_{x^{\prime}}\right)^{4} f(t, x) g\left(t^{\prime}, x^{\prime}\right) \mid=\left(\partial_{x}^{4}-4 \partial_{x}^{3} \partial_{x^{\prime}}+6 \partial_{x}^{2} \partial_{x^{\prime}}^{2}-4 \partial_{x} \partial_{x^{\prime}}^{3}+\partial_{x^{\prime}}^{4}\right) \\
& f(t, x) g\left(t, x^{\prime}\right) \mid \\
& =f_{x x x x} g-4 f_{x x x} g_{x}+6 f_{x x} g_{x x}-4 f_{x} g_{x x x}+f g_{x x x x} \text {. } \\
& D_{x}^{4}(f, f)=2\left(f f_{x x x x}-4 f_{x} f_{x x x}+3 f_{x x}^{2}\right) \text {. }
\end{aligned}
$$

Ex 37
Define a "non-Hirota" bilinear differential operator $D_{1}^{m} D_{x}^{n}$ by

$$
\begin{align*}
& \dot{D}_{1}^{m} \dot{D}_{1}^{n}(f, g)=\left.\left(\frac{\partial}{\partial t}+\frac{\partial}{\partial t^{\prime}}\right)^{m}\left(\frac{\partial}{\partial x}+\frac{\partial}{\partial x^{\prime}}\right)^{n} f(x, t) g\left(x^{\prime}, t^{\prime}\right)\right|_{r^{\prime}=t} \tag{6.6}\\
& \text { s signs }=1) \text { for Hinota }
\end{align*}
$$

(note the plus signs!).

1. Compute $\dot{D}_{x}(f, g)$ and $\dot{D}_{1}(f, g)$, verifying that in both cases the answer is given by the corresponding partial derivative ∂_{x} or ∂_{1} of the product $f(x, t) g(x, t)$.
2. How does this result generalise for arbitrary non-Hirota differential operators (6.6)? Prove your claim.
3. Compare your answer with the Hirota operators defined above.
4. $\left[\widetilde{D}_{x}(f, g)\right](t, x)=\left(\partial_{x}+\partial_{x^{\prime}}\right) f(t, x) g\left(t, x^{\prime}\right) \mid=f_{x} g+f g_{x}=\partial_{x}(f g)$ and similarly for \widetilde{D}_{t}.

$$
\begin{aligned}
& \text { 2. }\left(\partial_{t}+\partial_{t^{\prime}}\right)^{m}\left(\partial_{x}+\partial_{x^{\prime}}\right)^{n} f(t, x) g\left(t t^{\prime}, x^{\prime}\right)=\sum_{h=0}^{m} \sum_{k=0}^{n}\binom{m}{h}\binom{n}{k} \partial_{t}^{n} \partial_{x}^{k} f(t, x) \partial_{t^{\prime}}^{m-n} x_{x^{\prime}}^{m-k}\left(t, x^{\prime}\right) \\
& \Rightarrow \widetilde{D}_{t}^{m} \widetilde{D}_{x}^{n}(f, g)=\sum_{n=0}^{m} \sum_{k=0}^{n}\binom{m}{h}\binom{n}{k}\left(\partial_{t}^{n} \partial_{x}^{k} f\right)\left(\partial_{t}^{m-k} \partial_{x}^{n-k} g\right) .
\end{aligned}
$$

$\partial_{t}^{m} \partial_{x}^{n}(f \cdot g)=<!$ Each derivative acts either on f or on g.
$=\sum_{h=0}^{m} \sum_{k=0}^{n}\binom{m}{\frac{h}{\uparrow}}\binom{n}{k}\left(\partial_{t}^{h} \partial_{x}^{k} f\right)\left(\partial_{t}^{m-h} \partial_{x}^{n-k} g\right) \quad$ same as above
\# of ways of splitting m ot derivatives into h derivatives acting on f and m-h acting on g.
3. The only difference is that the tirota operator $D_{t}^{m} D_{x}^{n}$ has a sign $(-1)^{m-h+n-k}$ inside the sum.

Ex 38

1. If $\theta_{i}=a_{i} x+b_{i} t+c_{i}$. prove that

$$
\begin{equation*}
D_{1} D_{x}\left(e^{\theta_{1}}, e^{\theta_{2}}\right)=\left(b_{1}-b_{2}\right)\left(a_{1}-a_{2}\right) e^{\theta_{1}+\theta_{2}} . \tag{6.7}
\end{equation*}
$$

2. Prove the corresponding result for $D_{t}^{m} D_{x}^{n}\left(e^{\theta_{1}}, e^{\theta_{2}}\right)$, as quoted in lectures.
3.

$$
\begin{aligned}
& D_{t} D_{x}\left(e^{\theta_{1}}, e^{\theta_{2}}\right)=\left(\partial_{t}-\partial_{t^{\prime}}\right)\left(\partial_{x}-\partial_{x^{\prime}}\right) e^{a_{1} x+b_{1} t+c_{1}+a_{2} x^{\prime}+b_{2} t^{\prime}+c_{2}} \\
& =\left(b_{1}-b_{2}\right)\left(a_{1}-a_{2}\right) e^{a_{1} x+b_{1} t+c_{1}+a_{2} x^{\prime}+b_{2} t^{\prime}+c_{2}} \\
& =\left(b_{1}-b_{2}\right)\left(a_{1}-a_{2}\right) e^{\theta_{1}+\theta_{2}} .
\end{aligned}
$$

2. Exercise

$$
D_{t}^{m} D_{x}^{n}\left(e^{\theta_{1}}, e^{\theta_{2}}\right)=\left(b_{1}-b_{2}\right)^{m}\left(a_{1}-a_{2}\right)^{n} e^{\theta_{1}+\theta_{2}} .
$$

Ex 40
Consider the function f, such that $u=2 \frac{\partial^{2}}{\partial r^{2}} \log f$ is the $\mathcal{V} d V$ field, which corresponds to a 2-soliton solution:

$$
\begin{align*}
& f=1+\epsilon f_{1}+\epsilon^{2} f_{2}=1+\epsilon\left(e^{\theta_{1}}+\epsilon^{\theta_{2}}\right)+\epsilon^{2}\left(\frac{a_{1}-a_{2}}{a_{1}+a_{2}}\right)^{2} e^{\theta_{1}+\theta_{2}} \tag{6.9}\\
& =6
\end{align*}
$$

where $\theta_{1}=a_{1} x-a^{3} t+c_{1}$, with a_{i} and c_{1} constants. Check that $B\left(f_{1}, f_{2}\right)=0$ and $B\left(f_{2}, f_{2}\right)=0$. where $B=D_{x}\left(D_{t}+D_{S}^{3}\right)_{\text {, }}$ and show that this implies that the expansion (6.9), which is truncated at order ϵ^{2}, is a solution of the bilinear form of the KdV equation.

$$
\begin{aligned}
& B\left(f_{1}, f_{2}\right)=B\left(e^{\theta_{1}}+e^{\theta_{2}}, \frac{\left.\left(\frac{a_{1}-a_{2}}{a_{1}+a_{2}}\right)^{2} e^{\theta_{1}+\theta_{2}}\right)}{}\right. \\
&=\left(\frac{a_{1}-a_{2}}{a_{1}+a_{2}}\right)^{2} B\left(e^{\theta_{1}}, e^{\theta_{1}+\theta_{2}}\right)+(1 \leftrightarrow 2) . \\
& B\left(e^{\theta_{1}}, e^{\theta_{1}+\theta_{2}}\right)=D_{x} D_{t}\left(e^{\theta_{1}}, e^{\theta}\right)+D_{x}^{4}\left(e^{\theta_{1}}, e^{\theta}\right) \\
& e^{\theta}, \theta=a x+b t+c \quad a=a_{1}+a_{2}, \cdots \\
&=\left(a_{1}-a\right)\left(b_{1}-b\right) e^{\theta_{1}+\theta}+\left(a_{1}-a\right)^{4} e^{\theta_{1}+\theta} \\
&=\left[\left(-a_{2}\right)\left(-b_{2}\right)+\left(-a_{2}\right)^{4}\right] e^{\theta_{1}+\theta_{2}} \\
& \begin{aligned}
a=a_{1}+a_{2} & \\
b=b_{1}+b_{2} & =\int\left(-a_{2}\right)\left(\left(_{2}^{3}\right)+a_{2}^{4}\right] e^{\theta_{1}+\theta_{2}}=0 . \\
b_{2} & =-a_{2}^{3} \\
& \Rightarrow B\left(f_{1}, f_{2}\right)=0 .
\end{aligned}
\end{aligned}
$$

