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Chapter 1 

Introduction 

1.1 What is a soliton? 

To a first approximation , solitons are very special solutions of a special class of non-linear 

partial differential equations (PDEs), or ‘wave equations’ . (We will provide a more technical 

definition shortly.) 

You might know that field theories, or the partial differential equations (PDEs) that describe 

their equations of motion, have solutions which look like waves . Solitons are special solutions 

which are localised in space and therefore look like particles . That’s the reason for suffix -on, 

as in electron, proton or photon. 

The historical discovery of solitons occurred in 1834, when a young Scottish civil engineer 

named John Scott Russell was conducting experiments to improve the design of canal barges 

at the Union Canal in Hermiston, near Edinburgh, see figure 1.1. Accidentally, a rope pulling a 

barge snapped, and here is what happened next in the words of John Scott Russell himself [John 

Scott Russell, 1845]:

 

“

 

I was observing the motion of a boat which was rapidly drawn along a narrow 

channel by a pair of horses, when the boat suddenly stopped - not so the mass 

of water in the channel which it had put in motion; it accumulated round the 

prow of the vessel in a state of violent agitation, then suddenly leaving it behind, 

rolled forward with great velocity, assuming the form of a large solitary elevation, 

a rounded, smooth and well-defined heap of water, which continued its course 

along the channel apparently without change of form or diminution of speed. 

I followed it on horseback, and overtook it still rolling on at a rate of some eight or 

nine miles an hour, preserving its original figure some thirty feet long and a foot 

2
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Figure 1.1: John Scott Russell, portrayed at a later time, and an artist’s impression of the initial 

condition of his observation in 1834 (with a liberal interpretation of a ‘pair of horses’).

 

Figure 1.2: A depiction of two experiments carried out by John Scott Russell to recreate the 

Wave of Translation and study its properties.

 

to a foot and a half in height. Its height gradually diminished, and after a chase 

of one or two miles I lost it in the windings of the channel. Such, in the month 

of August 1834, was my first chance interview with that singular and beautiful 

phenomenon which I have called the Wave of Translation. 

John Scott Russell

 

”

 

As we will appreciate in the coming chapters, this solitary Wave of Translation behaves very 

differently from the ordinary waves which solve linear differential equations, which are a good 

approximation when interactions are small. Different linear waves can be added up (“super- 

imposed”) to obtain any wave profile, but these different linear waves travel at different speeds 

which depend on their wavelengths. As a result, any localised wave profile which is the su- 

perposition of various linear waves will “disperse” and lose its shape over time, because it 

consists of several linear waves which travel at different speeds. Russell’s “Wave of Transla- 

tion” , which is now called a “soliton” using a term coined by [Zabusky and Kruskal, 1965], 

behaved very differently, maintaining its shape unaltered over a surprisingly long time. Con- 

vinced that his observation was very important, John Scott Russell followed it up by a number 

of experiments in which he recreated his waves of translation and studied their properties, see 

figure 1.2. His results were published ten years later in the report [John Scott Russell, 1845],
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Figure 1.3: From left to right: Joseph Valentin Boussinesq, Diederik Korteweg and Gustav de 

Vries. 

but much to his chagrin the scientific community paid little attention. 

It took a few decades before a mathematical equation that describes shallow water waves 

and captures the peculiar phenomenon observed by John Scott Russell was introduced. The 

equation was first written down by the French mathematician and physicist Joseph Valentin 

Boussinesq [Boussinesq, 1877], and was then independently rediscovered by the Dutch math- 

ematicians Diederik Korteweg and Gustav de Vries [Korteweg and Vries, 1895], see figure 1.3. 

According to the principle that things in science are named after the last people to discover 

them, this equation is now known as the 

• KORTEWEG-DE VRIES (KdV) EQUATION (1895):

  \boxed {u_t+6uu_x+u_{xxx}=0}~. \label {0.1} 

     





 

(1.1) 

This is a short-hand for the partial differential equation 

B u

 

B t 

` 6 u
B u

 

B x
`

B3 u

 

B x3 

“ 0 

for the real ‘field’ u p x, t q , which represents the height of a wave (measured from the 

surface of water at rest) in one space dimension x at time t . This equation: 

– describes long wavelength shallow water waves propagating in one space dimen- 

sion; 

– captures the properties observed by John Scott Russell; 

– is a subtle limit of the equation describing real water waves propagating in one 

space dimension, in coordinates moving with the wave (see [Drazin and Johnson, 

1989] for details if you are interested).
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Figure 1.4: Plot of the initial condition u p x, 0 q “ 2 sech2 x for the KdV equation. 

REMARKS on the KdV equation

 

: 

1. Non-linear ùñ Superposition principle fails. (Superposition principle: if u1 

and u2 

are solutions then so is a1 

u1 ` a2 

u2 

for all constants a1 

, a2) 

2. 1st order in t ùñ Solution determined by initial condition u p x, 0 q . 

3. Looks simple, but hides a rich mathematical structure. 

We’ll start by investigating the time evolution of the localised initial condition plotted in figure 

1.4,

 \label {0.2} \boxed {u(x,0)=\frac {2}{\cosh ^2(x)}}~, 

 












 

(1.2) 

with the help of a computer. To gain some intuition, let’s look at the KdV equation (1.1) piece 

by piece: 

1. Drop the non-linear term 6 uux, to obtain the LINEARISED KdV EQUATION :

 \label {0.3} u_t+u_{xxx}=0~. 

    

 

(1.3) 

See an animation of the time evolution here. The initial localised wave disperses , i.e. it 

spreads out to the left, and u Ñ 0 as t Ñ `8 for any fixed x . 

2. Drop the dispersive term uxxx, to obtain the DISPERSIONLESS KdV EQUATION :

 \label {0.4} u_t+6uu_x=0~. 

    

 

(1.4) 

In this case non-linearity causes the wave to pile up and break after a finite time: 

| ux| Ñ 8 as t Ñ 

?

 

3 { 16 » 0 . 108 , which can be computed using the method of char- 

acteristics. Read this if you are interested in the calculation of the breaking time and

https://maths.dur.ac.uk/users/P.E.Dorey/SOLITONS_2023_24/KdV_maple/dispersing.html
http://www.maths.dur.ac.uk/~tnmm74/pictures_animations_Solitons/Wave_breaking_dispersionless_KdV.pdf
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see an animation of the time evolution here (the high frequency oscillations near the 

breaking point are an artifact of the numerical approximation). 

3. Keep all terms to recover the KdV EQUATION :

  u_t+6uu_x+u_{xxx}=0~. 

      

 

The two previous effects cancel and we get a “travelling wave” , which keeps its form 

and just moves to the right, as you can see here. 

Admittedly, the initial condition that we chose in (1.2) was very special. Generic solutions of 

KdV have a much more complicated behaviour (indeed equations (1.3)-(1.4) and their solutions 

are recovered in certain limits). Let us then experiment with a slightly more general class of 

initial conditions:

 \label {0.5} \boxed {u(x,0)=\frac {N(N+1)}{\cosh ^2(x)}}~, \qquad N>0, 

 

  








  

 

(1.5) 

which reduces to the previous initial condition (1.2) if N “ 1 . Animations of the time evolution 

of the initial condition (1.5) under the KdV equation, for N ranging from 0 . 25 to 4 , are here. 

1 

These numerical experiments indicate that:2 

• N integer : 

the initial wave splits into N solitons moving to the right with no dispersion. 

• N not integer : 

the initial wave splits into r N s solitons moving to the right plus dispersing waves , 

where r N s denotes the least integer greater than or equal to N (this is called the ceiling 

function ) . 

• Either way, the different solitons move at different speeds. It can be checked that 

SPEED 9 HEIGHT 

WIDTH 9 (HEIGHT)´ 1 { 2 

in agreement with John Scott Russell’s empirical observations.3

 

1Note: in this animation space has been compactified to a circle using periodic boundary conditions u p 10 , t q “ 

u p´ 10 , t q . This allows us to investigate what happens when two solitons collide. This will be briefly discussed 

below, and we will return to this specific feature in greater detail later. 

2We will derive these results analytically later. 

3Roughly, KdV solitons only move to the right because the limit of the physical wave equation that leads

https://maths.dur.ac.uk/users/P.E.Dorey/SOLITONS_2023_24/KdV_maple/breaking.html
https://maths.dur.ac.uk/users/P.E.Dorey/SOLITONS_2023_24/KdV_maple/full.html
https://maths.dur.ac.uk/users/P.E.Dorey/SOLITONS_2023_24/KdV/KdV.html
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One more feature is visible if one works with periodic spatial boundary conditions (BC), in 

which space is a circle, as was assumed in the previous animations: faster solitons catch up 

with and overtake slower solitons, with seemingly no final effect on their shapes! This is very 

surprising for a non-linear equation, for which the superposition principle does not hold. Note 

also that something funny happens during the overtaking: the height of the wave decreases, 

unlike for linear equations where different waves add up. This unusual behaviour was first 

observed in experiments by John Scott Russell, who was convinced that this was very impor- 

tant. It took a long time for the mathematics necessary to understand this phenomenon to 

develop and for the scientific community to fully come on board with John Scott Russell.4 

We can summarize the previous observations in the following working definition of a soliton, 

that we will use in the rest of the course: 

A SOLITON

 

is a solution of a non-linear wave equation (or PDE) which: 

1. IS LOCALISED 

(It’s a “lump” of energy) 

2. KEEPS ITS LOCALISED SHAPE OVER TIME 

(It moves with constant shape and velocity in isolation) 

3. IS PRESERVED UNDER COLLISIONS WITH OTHER SOLITONS 

(If two or more solitons collide, they re-emerge from the collision with the same 

shapes and velocities.)

 

Watch this video (tip: turn down the volume) of water solitons created in a lab, which obey 

the previous defining properties to a very good approximation.

 

to the KdV equation involves switching to a reference frame which moves together with the fastest possible 

left-moving waves. Relative to that reference frame, all other waves move to the right. 

4The modern revival of solitons was kickstarted by the numerical and analytical results of [Zabusky and 

Kruskal, 1965], who built on the earlier important numerical work of Fermi, Pasta, Ulam and Tsingou [Fermi 

et al., 1955]. (The paper of Fermi et al. was based on the first ever computer-aided numerical experiment, done 

on the MANIAC computer at Los Alamos [Porter et al., 2009]. Mary Tsingou’s role in coding the problem was 

neglected for a long time and has only received the attention it deserves in recent years [Dauxois, 2008].) 

It was universally expected at the time that in any non-linear physical system and for any initial conditions, 

interactions would spread the energy of the system evenly among all its degrees of freedom over time (‘thermali- 

sation’ and ‘equipartition of energy’) and cause the system to explore all its available configurations (‘ergodicity’). 

This process is what makes thermodynamics and statistical mechanics work. 

Fermi et al. set out to study a system of non-linearly coupled oscillators numerically, with the aim of observing 

how thermalisation occurs. The system initially appeared to thermalise as expected, but to their great surprise 

they observed that it developed close-to-periodic (rather than ergodic) behaviour over longer time scales. A 

decade later, Zabusky and Kruskal showed that the system studied by Fermi et al. is approximated in a certain 

limit by the KdV equation, whose very special properties can explain the surprising behaviour of the system.

https://youtu.be/wEbYELtGZwI
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Figure 1.5: Contour plot of the energy density of two colliding KdV solitons, as a function of 

space and time. Lighter regions have higher energy density and correspond to the cores of the 

two solitons. We can see the trajectories of the two solitons and the phase shift induced by the 

collision: the faster soliton is advanced, while the slower soliton is retarded by the collision. 

Solitons are not just objects of purely academic interest. They can appear in nature under a 

variety of circumstances. For instance, here is a video of the Severn bore taken on the 2019 

spring equinox: as the high tide coming from the Atlantic Ocean enters the funnel-shaped 

estuary of the Severn, water surges forming highly localised waves which travel (and can be 

surfed!) for several miles into the Bristol Channel. 

REMARKS

 

: 

• Property 3 does not mean that nothing happens to solitons which collide: as we will 

study towards the end of the term, the effect of the collision is to advance or retard the 

solitons by a so-called “phase shift”. As an example, in figure 1.5 we can see the trajecto- 

ries of two colliding KdV solitons and the phase shifts resulting from their interaction. 

• Only very special field theories (or equivalently, wave equations) admit solitons as de- 

fined above. They are called integrable and are usually defined in 1 space + 1 time 

dimensions. Property 3 is the key. (Some people use the term “integrable soliton” for 

the above definition, but we will stick with “soliton” in this course.) 

Solitons have been studied in depth since the 1960s in relation to many contexts:

https://youtu.be/7MME_cW7zmo
https://en.wikipedia.org/wiki/Severn_bore
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• Applied Maths : water waves, optical fibres, electronics, biological systems... 

• High Energy Physics : particle physics, gauge theory, string theory... 

• Pure Maths : special functions, algebraic geometry, spectral theory, group theory... 

We will consider two main examples of integrable soliton equations in this course:

\mathrm {{\bf \bf KdV}}&: \qquad \qquad \boxed {u_t+6uu_x+u_{xxx}=0} \label {0.6}\\ \mathrm {{\bf \bf sine-Gordon}}&: \qquad \qquad \boxed {u_{tt}-u_{xx}=-\sin u}\label {0.7}

       





         





 

• THIS TERM

 

: we will (mostly) study simple pure solitons with no dispersion . 

• NEXT TERM

 

: you will study “inverse scattering” , a powerful formalism that allows 

an analytical understanding of the time evolution of generic initial conditions .5 

To get a better feel for solitons before we start, let’s consider a discrete model which displays 

solitons but no dispersion. This is an example of a “cellular automaton”, a zero-player game 

where the rules for time evolution are fixed and the only freedom is in the choice of initial 

condition, but in which surprisingly rich patterns can develop.6 

1.2 The ball-and-box model 

This term we will learn several analytic methods to generate single and multiple soliton solu- 

tions of non-linear differential equations like KdV, and study the properties of these solutions. 

As we have seen, experimenting with these equations on a computer can be very useful to 

develop intuition about the properties of solitons. The trouble is that you need a big-ish com- 

puter for most of these numerical experiments.

 

5The inverse scattering formalism was designed for equations in which space is the real line, but it is also 

useful if space is a finite interval or a circle (periodic bc). E.g. a sinusoidal initial condition on a circle evolves into 

a train of solitons [Zabusky and Kruskal, 1965], see this animation. Here is a contour plot of the energy density, 

showing the trajectories of the various solitons, which after a while recombine into a sinusoidal wave, leading 

to the periodic behaviour discussed in footnote4. 

6The most famous cellular automaton is perhaps John Conway’s Game of Life. Read about it here if you have 

never heard of it. If you search Conway’s game of life or cellular automata on YouTube you will enter a rabbit 

hole of cool videos, often accompanied by an electronic music soundtrack. Too bad that we won’t study those 

cellular automata further in this course, apart from the simple model which is the subject of next section.

http://www.maths.dur.ac.uk/~tnmm74/pictures_animations_Solitons/ZK_FUPT.gif
http://www.maths.dur.ac.uk/~tnmm74/pictures_animations_Solitons/ZK_FUPTcontour.jpg
https://en.wikipedia.org/wiki/Conway's_Game_of_Life
https://www.youtube.com/results?search_query=conway's+game+of+life
https://www.youtube.com/results?search_query=cellular+automata
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Figure 1.6: A localised configuration of the ball and box model and its continuous analogue. 

Fortunately, it was realised around 1990 that many properties of continuous solitons can be 

mimicked by much simpler discrete models , which can be studied by drawing pictures with 

pen and paper . A nice and simple example is the BALL AND BOX MODEL of [Takahashi 

and Satsuma, 1990]. In this model, space and time are discrete . In particular: 

- Continuous space is replaced by an infinite line of boxes, labelled by a position i P Z 

- At any instant t P Z , the configuration of the system is specified by filling a number of 

boxes with one ball each, as in figure 1.6. 

- Time evolution t Ñ t ` 1 is governed by the 

BALL AND BOX RULE

 

: 

Move the leftmost ball to the next empty box to its right. Repeat the process until 

all balls have been moved exactly once. When you are done, the system has been 

evolved forward one unit in time.

 

The ball and box rule plays the role of the PDE for continuous solitons, e.g. ut “ ´ 6 uux´ uxxx 

in the case of the KdV equation. 

EXAMPLES

 

: 

• 1 ball :
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• 2 consecutive balls :

 

• 3 consecutive balls :

 

We see that a sequence of n consecutive balls behaves like a soliton: it keeps its shape and 

translates by n boxes in one unit of time. So for this class of solitons 

SPEED “ LENGTH , 

where we define the speed as the length travelled per unit time. 

So far we have only checked that the defining properties 1 and 2 of a soliton are obeyed by 

a sequence of consecutive balls. To check the remaining property 3, let us consider what 

happens when a longer ( “ faster) soliton is behind( “ to the left of) a shorter ( “ slower) soliton. 

After a while the faster soliton will catch up and collide with the slower soliton. What happens 

next? Let’s look at an example with a length- 3 soliton following a length- 2 soliton:

 

The two solitons keep the same shape after the collision, but their order is reversed: the faster 

soliton has overtaken the slower one. If we look carefully, we can also notice that the positions 

of the two solitons are delayed/advanced by a finite amount compared to the positions that 

each soliton would have had in the absence of the other soliton. This spatial advance or delay 

is an example of a “phase shift” ; it is for a soliton which is advanced and negative for a soliton 

which is retarded. In the previous example the length- 3 soliton has a phase shift of ` 4 and the 

length- 2 soliton has a phase shift of ´ 4 . [Make sure that you understand how this phase shift
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is computed from the previous figure!] This is analogous to the phase shift visible in figure 

1.5 in the scattering of continuous KdV solitons. 

˚ EXERCISE

 

: Generalize the previous example to a length m soliton overtaking a length 

n soliton (with m ą n ) and find a general rule for what happens. (Start with 

separation l ě n between the two solitons, that is, there are l empty boxes 

between the two solitons in the initial configuration.) [Ex 4] 

The ball and box model can be generalized by introducing balls of different colours. For in- 

stance, in the 2-COLOUR BALL AND BOX MODEL , balls come in two colours (say BLUE 

and RED ), and again each box can be filled by at most one ball, of either colour.7 The time 

evolution t Ñ t ` 1 is governed by the 

2-COLOUR BALL AND BOX RULE

 

: 

Move the leftmost BLUE ball to the next empty box to its right. Repeat the process until 

all BLUE balls have been moved exactly once. Then do the same for the RED balls. When 

all the BLUE and RED balls have been moved, the system has been evolved forward by 

one unit of time.

 

EXAMPLE

 

:

 

˚ EXERCISE

 

: Can you classify solitons in the 2-colour ball and box model? [Ex 5] 

What happens when solitons collide? [Ex 7*] 

(Starred exercises are for the bravest.) 

Next, we will return to continuous wave equations and aim to make the phenomenon of dis- 

persion more precise.

 

7If you happen to be colour blind and this part of the notes is not accessible, please let me know and I’ll replace 

the two colours by different symbols.



 

Chapter 2 

Waves, dispersion and dissipation 

The main reference for this chapter is §1.1 of the book [Drazin and Johnson, 1989]. 

2.1 Dispersion 

Usually, localised waves spread out ( “disperse” ) as they travel. This prevents them from 

being solitons. Let’s understand this phenomenon first. 

EXAMPLES

 

: 

1. ADVECTION EQUATION (linear, 1st order):

 \label {1.1} \boxed {\frac {1}{v} u_t+u_x = 0} 







   

 

(2.1) 

ÝÑ Solution 

u p x, t q “ f p x ´ v t q for any function f , 

i.e. a wave moving with velocity v (right-moving if v ą 0 , left-moving if v ă 0 ). The 

wave keeps a fixed profile f p ξ q and moves rigidly at velocity v (indeed ξ “ x ´ v t ):

 

13
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So in this case there is no dispersion, but nothing else happens either. 

2. “THE” WAVE EQUATION or D’ALEMBERT EQUATION (linear, 2nd order):

 \label {1.2} \boxed {\frac {1}{v^2} u_{tt}-u_{xx} = 0}\qquad (v>0~\mathrm {wlog}) 







   



  

 

(2.2) 

ÝÑ Solution 

u p x, t q “ f p x ´ v t q ` g p x ` v t q for any functions f , g , 

i.e. the superposition of a right-moving and a left-moving wave with velocities ˘ v :

 

All waves move at the same speed, so there is no dispersion, but there is no interaction 

either, so this is also not very interesting for our purposes. 

3. KLEIN-GORDON EQUATION1 (linear, 2nd order):

 \label {1.3} \boxed {\frac {1}{v^2} u_{tt}-u_{xx}+m^2 u = 0}~, 







     





 

(2.3) 

where we take v ą 0 wlog. 

This is a more interesting equation. Let us try a complex “plane wave” solution2

 \label {1.4} \boxed {u(x,t)=\pw }~. 

  





 

(2.4) 

Substituting the plane wave (2.4) in the Klein-Gordon equation (2.3), we find:

 &-\frac {\w ^2}{v^2} \pw +k^2 \pw +m^2 \pw =0\\ &\qquad \quad ~ \Longrightarrow ~~-\frac {\w ^2}{v^2}+k^2+m^2=0~.























  
 



                

              

                

               

  

                    

                

                   





     

 

So the plane wave (2.4) is a solution of the Klein-Gordon equation (2.3) provided that ω 

satisfies

 \label {1.5} \boxed {\omega =\w (k)= {\color {teal} \pm } ~v~\sqrt {k^2+m^2}} ~. 

    





 





 

(2.5) 

We will usually ignore the sign ambiguity and only consider the ` sign in (2.5) and 

similar equations.3 

VOCABULARY

 

: 

k wavenumber 

ω angular frequency 

λ “ 

2 π

 

k 

wavelength (periodicity in x ) 

τ “ 

2 π

 

ω 

period (periodicity in t ) 

A formula like (2.5) relating ω to k : dispersion relation . 

The maxima of a real plane wave, like for instance Re ei p k x ́  ω p k q t q or Im ei p k x ́  ω p k q t q, are 

called “wave crests” . By a slight abuse of terminology, we will refer to the wave crests 

of the real or imaginary part of a complex plane wave like (2.4) simply as the wave crests 

of the complex plane wave. 

By rewriting the complex plane wave solution (2.4) of the Klein-Gordon equation as 

eik p x ́  c p k q t q, we see that its wave crests move at the velocity

  c(k)=\frac {\w (k)}{k} = v ~\sqrt {1+\frac {m^2}{k^2}} ~\sgn (k)~. 

























 

Plane waves with different wavenumbers move at different velocities , so if we try 

to make a lump of real Klein-Gordon field by superimposing different plane waves

 \label {1.6} \boxed {u(x,t)=\re \intinf dk~f(k)~\pwk }~, 

  





  





 

(2.6) 

it will disperse . 

In fact, there are two different notions of velocity for a wave: 

- PHASE VELOCITY

 \label {1.7} \boxed {c(k)=\frac {\w (k)}{k}}~, 













 

(2.7) 

which is the velocity of wave crests.

 

3We do not lose generality here, since we can obtain the plane wave solution with opposite ω by taking the 

complex conjugate plane wave solution and sending k Ñ ´ k .
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- GROUP VELOCITY

 \label {1.8} \boxed {c_g(k)=\frac {d\w (k)}{dk}}~, 













 

(2.8) 

which is the velocity of the lump of field while it disperses. 

We will understand better the relevance of the group velocity in the next section. 

REMARK

 

: 

The energy (and information) carried by a wave travels at the group velocity , not at the 

phase velocity. For a relativistic wave equation with speed of light v , no signals can be 

transmitted faster than the speed of light. So it should be the case that | cgp k q| ď v

 

for all 

wavenumbers k , but there is no analogous bound on the phase velocity. For example, for the 

Klein-Gordon equation (2.3), we can calculate 

- |Group velocity|: 

| cgp k q| “ 

ˇ

ˇ

ˇ

ˇ 

dω p k q

 

dk 

ˇ

ˇ

ˇ

ˇ

“ 

v

 

b

 

1 ` 

m2

 

k2 

ď v 

consistently with the principles of relativity. 

- |Phase velocity|: 

| c p k q| “ 

ˇ

ˇ

ˇ

ˇ 

ω p k q

 

k 

ˇ

ˇ

ˇ

ˇ

“ v 

c

 

1 ` 

m2

 

k2 

ě v , 

which is faster than the speed of light v for all k , but this is not a problem. 

2.2 Example: the Gaussian wave packet 

The simplest example of a localised field configuration obtained by superposition of plane 

waves is the “GAUSSIAN WAVE PACKET”, which is obtained by choosing a Gaussian 

f p k q “ e´ a2p k ´k̄ q2 

p a ą 0 , k̄ P R q 

in the general superposition (2.6). This represents a lump of field with 

average wavenumber k̄ 

spread of wavenumber „ 1 { a , 

see fig. 2.1.
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Figure 2.1: Gaussian wavepacket in Fourier space. 

Then u p x, t q “ Re z p x, t q is a real solution of the Klein-Gordon equation, where

 \label {1.9} \boxed {z(x,t)=\intinf dk~ e^{-a^2(k-\bar {k})^2} \pwk }~, 

 













 

(2.9) 

provided that ω p k q “ v
?

 

k2 ` m2.4 

Since most of the integral (2.9) comes from the region k « k̄ , we can obtain a good approxi- 

mation to (2.9) by Taylor expanding ω p k q about k “ k̄ . Expanding to first order in p k ´ k̄ q we 

obtain

  \begin {split} \w (k)&=\w (\bar k) + \w '(\bar k)\cdot (k-\bar k) + \cO ((k-\bar k)^2)\\ &=\w (\bar k) + c_g(\bar k)\cdot (k-\bar k) + \cO ((k-\bar k)^2)\\ &\approx \w (\bar k) + c_g(\bar k)\cdot (k-\bar k) ~,\\ \end {split} 

   
  

  





     

  





     



 

where in the second line we used (2.8) and in the third line we introduced a short-hand « to

 

4 z p x, t q is a complex solution of the Klein-Gordon equation. Since the Klein-Gordon equation is a linear 

equation with real coefficients, the complex conjugate z p x, t q˚ is also a solution of the Klein-Gordon equation, 

as are Re z p x, t q and Im z p x, t q .
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avoid writing O pp k ´ k̄ q2q every time. Substituting in (2.9), we find

  \begin {split} z(x,t) &\approx \intinf dk~ e^{-a^2(k-\bar {k})^2} e^{i\{kx-[\w (\bar k)+c_g(\bar k)\cdot (k-\bar k)]t\}}\\ &=e^{i[\bar k x-\w (\bar k)t]} \intinf dk~ e^{-a^2(k-\bar {k})^2} e^{i(k-\bar k)[x-c_g(\bar k)t]}\\ &\hspace {-10pt}\underset {k\to k+\bar k}{=}e^{i[\bar k x-\w (\bar k)t]} \intinf dk~ e^{-a^2k^2+ik[x-c_g(\bar k)t]}\\ &\hspace {-15pt}\underset {\substack {\mathrm {complete}\\ \mathrm {the~square}}}{=} e^{i[\bar k x-\w (\bar k)t]} e^{-\frac {1}{4a^2}[x-c_g(\bar k)t]^2} \intinf dk~ e^{-a^2\left \{k-\frac {i}{2a^2}[x-c_g(\bar k)t]\right \}^2} \\ &\hspace {-12pt}\underset {\substack {\mathrm {Gaussian}\\ \mathrm {integral}}}{=} \quad \underbrace {e^{i[\bar k x-\w (\bar k)t]}}_{\text {CARRIER WAVE}} \quad \cdot \quad \underbrace {\frac {\sqrt {\pi }}{a} e^{-\frac {1}{4a^2}[x-c_g(\bar k)t]^2}}_{\text {ENVELOPE}}~, \end {split} 

 


































































































 

where in the second line we factored out a plane wave with k “ k̄ , in the third line we 

changed integration variable replacing k by k ` k̄ , in the fourth line we completed the square 

Ak2 ` B k “ A p k ` 

B

 

2 A
q2 ´ 

B2

 

4 A
, and in the last line we used the Gaussian integral formula 

ż `8` ic 

´8` ic 

e´ Ak2 

“ 

c

 

π

 

A 

, 

which holds for all A ą 0 and c P R . The final result is the product of a: 

1. “CARRIER WAVE” : 

a plane wave moving at the phase velocity 

c pk̄ q “ 

ω pk̄ q

 

k̄

 

2. “ENVELOPE” : 

a localised profile (or “wave packet”) mov- 

ing at the group velocity 

cgpk̄ q “ ω1
pk̄ q .

 

Click here to see an animation of a Gaussian wavepacket with a (Gaussian) envelope and a 

carrier wave moving at different velocities. In the animation the phase velocity is much larger 

than the group velocity. 

To this order of approximation, the spatial width of the lump has the parametric dependence

http://www.maths.dur.ac.uk/~tnmm74/pictures_animations_Solitons/GroupPhaseVelocity2.gif
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WIDTH „ a , 

meaning that the width doubles if a is doubled, and is constant in time. (Indeed, a simultaneous 

rescaling of x ´ cgpk̄ q t and a by the same constant λ leaves the envelope invariant.) 

˚ EXERCISE

 

: Improve on the previous approximation by including the 2nd order in k ´ k̄ . 

Show that [Ex 10] 

WIDTH2 „ a2 ` 

ω2pk̄ q

 

4 a2 

t2 

and that the amplitude of the wave packet also decreases as time increases. 

This leads to the phenomenon of DISPERSION , whereby the profile of the wave packet 

changes as it propagates. In particular, starting from a localised wave packet, dispersion makes 

the wave packet spread out: the width of the initial wave packet grows and the amplitude de- 

creases as time increases. See this animation of the time evolution of the Gaussian wave-packet 

up to second order in p k ´ k̄ q . 

2.3 Dissipation 

So far we have considered wave equations which lead to a real dispersion relation, so ω p k q P R . 

If instead ω p k q P C , then a new phenomenon occurs: DISSIPATION , where the amplitude 

of the wave decays (or grows) exponentially in time . For a plane wave

 \label {1.10} u(x,t)=\pwk = e^{i\left (kx-\re \w (k)\cdot t)\right )} e^{\im \w (k) \cdot t} 

  
    

 

(2.10) 

and we have two cases: 

• Im ω p k q ă 0 : “PHYSICAL DISSIPATION” 

The amplitude decays exponentially with time. 

• Im ω p k q ą 0 : “UNPHYSICAL DISSIPATION” 

The amplitude grows exponentially with time (physically unacceptable). 

EXAMPLES

 

: 

1.

 \label {1.11} \boxed {\frac {1}{v}u_t+u_x+\alpha u=0} \qquad (\alpha >0,~v>0) 







     



    

 

(2.11) 

Sub in a plane wave u “ ei p k x ́  ω t q:

  \begin {split} -i\frac {\w }{v}+ik+\alpha = 0 \quad \Longrightarrow \quad \w (k)=v(k-i\alpha ) ~, \end {split} 









           

http://www.maths.dur.ac.uk/~tnmm74/pictures_animations_Solitons/GaussianWPDispersion.gif
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leading to a complex dispersion relation. The plane wave solution is therefore 

u p x, t q “ eik p x ́  v t q e´ αv t 

and the wave decays exponentially, or “dissipates” , to zero as t Ñ `8 . This is an 

example of physical dissipation. ( α v ă 0 would have led to unphysical dissipation.) 

2. HEAT EQUATION:

 \label {1.12} \boxed {u_t-\alpha u_{xx}=0} \qquad (\alpha >0) 

   



 

 

(2.12) 

˚ EXERCISE

 

: Sub in a plane wave and derive the dispersion relation ω p k q “ ´ iα k2. 

So the plane wave solution of the heat equation is 

u p x, t q “ eik x e´ αk2 t 

and the waves dissipates as time passes. 

2.4 Summary 

• Linear wave equation ÝÑ (Complex) plane wave solutions u “ ei p k x ́  ω t q . 

Sub in to get ω “ ω p k q dispersion relation . 

• Wave crests move at c p k q “ ω p k q{ k phase velocity . 

(If ω p k q P C , then we define the phase velocity as c p k q “ Re ω p k q{ k .) 

• Lumps of field 

/wave packets 

move at cgp k q “ ω1p k q group velocity . 

(If ω p k q P C , then we define the group velocity as cgp k q “ Re ω1p k q .) 

• Dispersion (real ω , width increases and amplitude decreases) and dissipation (complex 

ω , amplitude decreases exponentially) smooth out and destroy localised lumps of energy 

in linear wave (or field) equations. 

• Non-linearity can have an opposite effect (steepening and breaking, see chapter 0). 

• For solitons the competing effects counterbalance one another precisely, leading to 

stable lumps of energy, unlike for ordinary waves.



 

Chapter 3 

Travelling waves 

The main references for this chapter are §2.1-2.2 of [Drazin and Johnson, 1989] and §2.1 of 

[Dauxois and Peyrard, 2006]. 

A “TRAVELLING WAVE” is a solution of a wave equation of the form 

u p x, t q “ f p x ´ v t q

 

, 

where f is a function of a single variable, which we will typically denote by ξ : “ x ´ v t . The 

velocity v of the travelling wave could either be: 

1. Fixed in terms of a parameter appearing in the wave equation , as in d’Alembert’s 

general solution 

u p x, t q “ f p x ´ v t q ` g p x ` v t q 

of the wave equation 

1

 

v2 

utt ´ uxx “ 0 , 

which is the linear superposition of two travelling waves with velocities ˘ v . 

2. A free parameter of the solution , as in the KdV soliton that we will derive shortly. 

REMARK

 

: 

In some cases ( e.g. “the” wave equation or the sine-Gordon equation) there will be both a 

velocity parameter appearing in the equation ( e.g. the speed of light) and a different velocity 

parameter appearing in the travelling wave solution (namely, the speed of the wave). To avoid 

confusion, from now on the velocity parameter appearing in the wave equation will be set to 

21
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1 by an appropriate choice of units, and v will be reserved for the velocity of the travelling 

wave. For example, we will write “the” wave equation as utt 

´ uxx 

“ 0 and d’Alembert’s 

general solution as u p x, t q “ f p x ´ t q ` g p x ` t q , which is the superposition of two travelling 

waves with velocities v “ ˘ 1 . 

3.1 The KdV soliton 

We would like to find a travelling wave solution of the KdV equation 

ut ` 6 uux ` uxxx “ 0 

with boundary conditions (BC’s) 

BC’s : u, ux 

, uxx ÝÝÝÝÑ 

x Ñ˘8 

0 

for all finite values of t . Let us accept these BC’s for the time being; we will derive them later. 

Substituting in the KdV equation the travelling wave ansatz u p x, t q “ f p x ´ v t q ” f p ξ q where 

ξ “ x ´ v t , using the chain rule to express partial derivatives wrt x and t in terms of ordinary 

derivatives wrt ξ as follows, 

B

 

B x 

“ 

B ξ

 

B x 

d

 

dξ 

“ 

d

 

dξ 

, 

B

 

B t 

“ 

B ξ

 

B t 

d

 

dξ 

“ ´ v 

d

 

dξ 

, 

and using primes to denote derivatives wrt ξ , we obtain an ODE which we can integrate twice:

& & -v f'+6ff'+f'''&=0\\ &\underset {\int d\xi }{\Longrightarrow } \quad ~ & -vf+3f^2+f''&=A \\ &\underset {\int d\xi ~f'}{\Longrightarrow } ~~~~ & -\frac {v}{2}f^2+f^3+\frac {1}{2}(f')^2 &=Af+B~,


 









  







 










 













   

 

where A and B are integration constants. The second integration used an integrating factor 

f 1, as denoted by the short-hand 

ş 

dξ f 1. 

We can determine the integration constants A and B by imposing the BC’s, which imply that 

f , f 1 , f2 Ñ 0 as ξ Ñ ˘8 . Sending ξ Ñ ˘8 in the second and third line above we find1

&~\text {BC's:}\qquad & A&=B=0 \nonumber \\ &\Longrightarrow \qquad ~ & (f')^2&=f^2(v-2f) \nonumber \\ &\Longrightarrow \qquad ~& f'&=\pm f\sqrt {v-2f}~ \nonumber \\ &\Longrightarrow \qquad ~& \int \frac {df}{f\sqrt {v-2f}}&=\pm \xi \equiv \pm (x-vt) \tag {$\ast $} ~. \label {sepvar1}

    

 



 
  

 






 














 

      















             

              





   

 

where we note that we need f ď v { 2 to ensure that f , f 1 P R . 

To calculate the integral obtained by separation of variables, we change integration variable

&\qquad & f&=\frac {v}{2}\sech ^2\vartheta \tag {$\ast \ast $} \label {chgvar1}\\ &\Longrightarrow \qquad ~ & df&=-v \frac {\sinh \vartheta }{\cosh ^3\vartheta }d\vartheta ~, \nonumber \\ && \sqrt {v-2f}&=\sqrt {v}\sqrt {1-\frac {1}{\cosh ^2\vartheta }} =\pm \sqrt {v }\frac {\sinh \vartheta }{\cosh \vartheta }~ \nonumber \\ &\Longrightarrow \qquad ~& \frac {df}{f\sqrt {v-2f}}&=\mp \frac {v \frac {\sinh \vartheta }{\cosh ^3\vartheta }~d\vartheta }{\frac {v}{2}\frac {1}{\cosh ^2\vartheta }\sqrt {v}\frac {\sinh \vartheta }{\cosh \vartheta }} = \mp \frac {2}{\sqrt {v}}d\vartheta ~. \tag {$\ast \ast \ast $} \label {chgvar12}










  













  









































 



















































   

 

Substituting ( ̊ ˚ ˚ ) in ( ̊  ) and keeping in mind that the sign ambiguities arising from taking 

square roots in the two equations are unrelated (and therefore only the relative sign ambiguity 

matters), we find

 -\frac {2}{\sqrt {v}}\int d\vartheta &=\pm (x-vt)\\ \Longrightarrow \qquad ~ \vartheta &=\pm \frac {\sqrt {v}}{2}(x-x_0-vt)~,















   

  











    

 

where x0 

is an integration constant. Substituting in ( ̊ ˚ ) we find the travelling wave solution

 \label {2.1} \boxed {u(x,t)=f(x-vt)=\frac {v}{2}\sech ^2\left [\frac {\sqrt {v}}{2}(x-x_0-vt)\right ]}~ 

      


















   



 

(3.1) 

where the sign ambiguity has disappeared because sech2 is an even function. 

The travelling wave solution (3.1) of the KdV equation is the KdV SOLITON . See 3.1 for a 

snapshot of the KdV soliton. 

REMARKS

 

: 

• For a real non-singular solution we need v ě 0 , which means that KdV solitons only 

travel to the right.2

 

2For v ă 0 the travelling wave solution just found is 

´
| v |

 

2 

sec2 

« 

a

 

| v |

 

2 

p x ´ x0 ` | v | t q 

ff 

, 

which moves to the left with speed | v | . However it diverges wherever r . . . s “ 

`

n ` 

1

 

2 

˘ 

π with n P Z . We are 

always after real bounded solutions, so we discard this singular (or divergent) solution; it also fails to satisfy the 

given boundary conditions.
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Figure 3.1: Snapshot of the KdV soliton. 

• PROPERTIES of the KdV soliton: 

VELOCITY v 

HEIGHT v { 2 

WIDTH „ 

1

 

?

 

v 

CENTRE x0 ` v t 

Clarification: 

What do I mean by WIDTH „ 1 {
?

 

v ? A possible definition of the width of the soliton is as 

the distance between the two points where the value of u is reduced by a factor of e from its 

maximum, that is WIDTH “ | x` ´ x´| ” 2∆ x where u p x˘q “ v {p 2 e q . For
?

 

v ∆ x " 1 , we 

can approximate sech2 

´?

 

v

 

2 

∆ x 

¯ 

« 4 e´
?

 

v ∆ x, therefore this definition of width would give 

WIDTH “ 2∆ x « 

2

 

?

 

v
p 1 ` log 4 q « 

4 . 77

 

?

 

v 

. 

(Without the approximation one finds 4 . 34 ... {
?

 

v .) However the above definition of width 

was somewhat arbitrary: for instance we could have looked at points where the value u is 

reduced by a factor of 2 , or 3 , or else, from its maximum. Given a precise definition of width, 

one can determine the precise coefficient of 1 {
?

 

v above, but fixating on a precise definition 

would be somewhat absurd given the arbitrariness in the definition. It is better to say that 

“the width is of the order of” (or equivalently “goes like” ) 1 {
?

 

v . This is independent of 

the precise definition of width and captures the essential point that the spatial coordinate x 

appears multiplied by
?

 

v in the KdV soliton solution (3.1). We use „ to denote this paramet- 

ric dependence . This is not to be confused with « , which means “is approximately equal 

to”.
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A final comment: if the BC’s are changed to allow A, B ‰ 0 ( e.g. if we impose periodic 

boundary conditions, which is equivalent to solving the KdV equation on a circle), then the 

ODE for the travelling wave solution can still be integrated exactly using elliptic functions. 

See §2.4, 2.5 of [Drazin and Johnson, 1989] if you are interested. 

3.2 The sine-Gordon kink 

Let us seek a travelling wave solution the sine-Gordon equation 

uxx ´ utt “ sin u , 

where u is an angular variable u defined modulo 2 π , subject to the boundary conditions 

BC’s : u mod 2 π , ux ÝÝÝÝÑ 

x Ñ˘8 

0 

for every finite t . (More about these BC’s later.) 

Substituting the travelling wave ansatz u p x, t q “ f p x ´ v t q ” f p ξ q in the sine-Gordon equa- 

tion, we find

& & (1-v^2)f'' &= \sin f\\ &\,\Longleftrightarrow \quad ~ & f''&=\gamma ^2 \sin f~, \qquad \text {where}~~ \gamma :=\frac {1}{\sqrt {1-v^2}} \\ &\underset {\int d\xi ~f'}{\Longrightarrow } ~~~\, & \frac {1}{2}(f')^2 &=A-\gamma ^2 \cos f~\\ &~\text {BC's:} ~ & A &=\gamma ^2 ~\\ &\,\Longrightarrow \quad ~ & f' &=\pm \sqrt {2}\gamma \sqrt {1-\cos f}=\pm 2\gamma \sin \frac {f}{2} \\ &\,\Longrightarrow \quad ~ & \int \frac {df}{2\sin \frac {f}{2}} &=\pm \gamma (x-x_0-vt)~\\ &\,\Longrightarrow \quad ~ & \log \tan \frac {f}{4} &=\pm \gamma (x-x_0-vt)

 
 


      









 




 











    

  

 












     























    

 







    

 

where x0 

is an undetermined integration constant. 

We find therefore the following travelling wave solution of the sine-Gordon equation

 \label {2.2} \boxed {u(x,t)=f(x-vt) = 4\arctan \left (e^{\pm \gamma (x-x_0-vt)}\right )}~, 

        











 

(3.2) 

which goes by the name of “KINK” ( ̀  sign) or “ANTI-KINK” ( ́  sign). 

Note that the BC required that as ξ Ñ ˘8 

f p ξ q Ñ 2 π n˘ 

, f 1
p ξ q Ñ 0 pñ f2

p ξ q Ñ 0 q ,
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where the two integers n˘ P Z can be different. Indeed they are different for a kink (/antikink) 

solution. Choosing the branch of the arctan such that 

arctan p 0˘
q “ 0˘ , arctan p˘8q “ ˘ 

´ π

 

2 

¯¯ 

, 

we find that the kink and the anti-kink solution look as in fig. 3.2 at a fixed time t :

 

a) Kink

 

b) Anti-kink 

Figure 3.2: Snapshots of the sine-Gordon kink and anti-kink. 

REMARKS

 

: 

1. Choosing a different branch of the arctan3 shifts the whole solution u p x, t q by a multiple 

of 2 π . This is inconsequential. What matters is:

  \begin {split} u(+\infty ,t)-u(-\infty ,t) &=+2\pi \qquad ~~~~\text {KINK}\\ u(+\infty ,t)-u(-\infty ,t) &=-2\pi \qquad \text {ANTI-KINK} \end {split} 

      

      

 

2. The velocity of the kink/anti-kink could be 

v ą 0 : RIGHT-MOVING 

v “ 0 : STATIC 

v ă 0 : LEFT-MOVING 

3. For a real solution we need 

γ2 ě 0 ùñ | v | ď 1 “ speed of light 

4. The kink/antikink is a localised lump centred at x0 ` v t and with 

WIDTH „ 

1

 

γ 

“ 

?

 

1 ´ v2 .

 

3along with reversing the sign and adjusting the integration constant if the multiple is odd. Check for yourself.
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So faster kinks/antikinks are narrower. This phenomenon is known as “Lorentz con- 

traction” and is a feature of special relativity. γ is called the “Lorentz factor” . 

NOTE: It might be confusing to state that the kink/antikink is localised, when u interpo- 

lates between different values as x Ñ ˘8 . The key point is that u is an angular variable 

which is only defined modulo addition of 2 π . To define the width it is better to look at 

single-valued objects like eiu or Bx 

u , which do not suffer from the above ambiguity. This 

point will become more concrete later when we calculate the energy density of the kink, 

which is a single-valued and everywhere positive function, which achieves a maximum 

at the centre of the kink and approaches zero far away from the centre, see figure 4.2. 

3.3 A mechanical model for the sine-Gordon equation 

Consider a chain of infinitely many identical pendulums hanging from a straight wire which 

cannot be stretched but can be twisted. Each identical pendulum consists of a massless4 rod 

of length L , with a weight of mass M at the end of the rod. The pivot of the n -th pendulum 

at position na along the line, where n P Z and a is the separation, and the configuration of 

the n -th pendulum at time t is encoded by θnp t q , the angle between the pendulum and the 

downward pointing vertical at time t . See figure 3.3.

 

Figure 3.3: Section of an infinite chain of pendulums separated by distance a . 

The pendulums are subject to two kinds of forces: a gravitational force due to the attraction 

between the Earth and the weights, which favours downward pointing pendulums; and a 

twisting force between neighbouring pendulums due to the wire, which favours a straight 

untwisted wire and therefore the alignment of neighbouring pendulums.5 The equations of

 

4This assumption can be easily relaxed, leading to no qualitative difference in what follows. 

5This is a slight lie. If you have studied rigid bodies you will recognise that these are “torques” rather than 

forces. The equation of motion (3.3) is not the standard Newton’s law F “ ma , but rather its rotational analogue, 

which states that the total torque equals the product of the moment of inertia and the angular acceleration.
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motion (the analogue of Newton’s equation F “ ma ) for this physical system are a coupled 

system of infinitely many ODE’s labelled by the integer n , one for each pendulum, which take 

the form

 \label {2.3} \hspace {-8pt} ML^2 \ddot \theta _n(t) = \underbrace {-M gL \cdot \sin \theta _n(t)}_{\text {net gravitational force}} + \underbrace {\frac {k}{a} \Big (\theta _{n+1}(t)-\theta _n(t)\Big ) + \frac {k}{a} \Big (\theta _{n-1}(t)-\theta _n(t)\Big )}_{\text {twisting forces exerted by neighbouring pendulums}}, \quad n\in \bZ 

    


 











 













 





    

  

 

(3.3) 

where a dot denotes a time derivative, g is the gravitational acceleration and k is an elastic 

constant that parametrizes the strength of the twisting force. 

Now we are going to take the so called “continuum limit” of this infinite-dimensional dis- 

crete system, in which the separation between consecutive pendulums becomes infinitesimally 

small and the average mass density ( i.e. the mass per unit length) along the line is kept fixed: 

a Ñ 0 , m “ M { a fixed . 

In the continuum limit, the position x “ na of the n -th pendulum along the line effectively 

becomes a continuous real variable, which replaces the discrete index n P Z . Identifying 

θnp t q ” θ p x “ na, t q , the collection t θnp t qun P Z 

of angular coordinates of the infinitely many 

pendulums at time t is replaced in the limit by a single function θ p x, t q of two continuous 

variables, space and time. By the definition of the derivative as a limit, we also have that

 \frac {\theta _{n+1}(t)-\theta _n(t)}{a} &\to \theta '(x,t) ~, \\ \frac {1}{a}\left (\frac {\theta _{n+1}(t)-\theta _n(t)}{a}-\frac {\theta _{n}(t)-\theta _{n-1}(t)}{a}\right ) &\to \theta ''(x,t)~.

 






 









 







 








 

 

where a prime denotes an x -derivative. 

Dividing the equations of motion (3.3) by M L2 “ amL2 and taking the continuum limit we 

find the single equation of motion 

:θ “ ´ 

g

 

L 

sin θ ` 

k

 

mL2 

θ2 

for the “field” θ p x, t q . We can get rid of the constants by rescaling x and t6, and rearrange to 

get the equation 

:θ ´ θ2
“ ´ sin θ , 

which is nothing but the sine-Gordon equation θtt 

´ θxx 

“ ´ sin θ for the field θ ! We say 

therefore that the sine-Gordon equation is the continuum limit of (3.3). 

We can use this mechanical model to gain some intuition about the possible configurations of 

the sine-Gordon field:

 

6Send x ÞÑ 

b

 

k

 

mg L 

x and t ÞÑ 

b

 

L

 

g 

t .
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• The lowest energy state (or “ground state” , or “vacuum” ) of the system is the con- 

figuration with all pendulums pointing downwards, 

θ p x, t q “ 0 p mod 2 π q @ x , 

which is a configuration of stable equilibrium.7 See figure 3.4.

 

Figure 3.4: Configuration of stable equilibrium for the chain of pendulums. 

• By a continuous perturbation of the vacuum, we can obtain configuration which rep- 

resents a “small wave”, which satisfies the same boundary conditions of the vacuum, 

θ Ñ 0 as x Ñ ˘8 :8

 

Figure 3.5: A small wave going through the chain of pendulums. 

• There are also configurations in which the chain of pendulums twists around the line. 

If they twist once in the direction of increasing angles, so that θ increases by 2 π from 

x Ñ ´8 to x Ñ `8 , this describes a kink or a continuous deformation thereof: 

If instead they twist once in the direction of decreasing angles, so that θ decreases by 

2 π from x Ñ ´8 to x Ñ `8 , this describes an anti-kink or a continuous deformation 

thereof. 

• The limiting values of the sine-Gordon field θ as x Ñ ˘8 are fixed : changing them 

would require twisting infinitely many pendulums by 360 degrees, which would cost 

energy.

 

7We will confirm this intuition later when we study the energy of the sine-Gordon field. 

8We will see later that this “small wave” does not need to be small, in fact. For instance it could look like a 

kink followed by an antikink.
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Figure 3.6: A kink going through the chain of pendulums. 

If 

θ p`8 , t q ´ θ p´8 , t q “ 2 mπ , with m ‰ 0 integer , 

then the configuration of the system cannot be deformed continuously to the vac- 

uum where all pendulums point downwards, unlike the “small wave” mentioned above. 

This tells us that the kink (or the antikink) cannot disperse/dissipate into the vac- 

uum . This is related to the notion of topological stability , which we will discuss in 

the next chapter. 

I invite you to play with this Wolfram demonstration of the chain of coupled pendulums, using 

Mathematica (which should be available on university computers – let me know if it isn’t) or 

the free Wolfram Player. Play with the parameters and visualise a kink, the scattering of two 

kinks or of a kink and an anti-kink, and the breather, a bound state of a kink and an anti-kink. 

We will study all of these configurations in the continuum limit later in the term, using the 

sine-Gordon equation. 

3.4 Travelling wave solutions and 1d point particles (bonus 

material) 

Looking for a travelling wave solutions u p x, t q “ f p x ´ v t q ” f p ξ q of the KdV and sine-Gordon 

equation, we encountered equations of the form 

f2
“ F̂ p f q

 

where a prime denotes a derivative with respect to ξ . We integrated this equation to

 \label {energy_cons_1d} \boxed {\frac {1}{2}(f')^2 +\hat V(f) = \hat E = \text {const}} \tag {$\ast $} 













  

 

 

( ̊  ) 

where

  \begin {split} \hat V(f)&=-\int df~\hat F(f)~. \end {split} 

   





  

https://demonstrations.wolfram.com/SystemOfPendulumsARealizationOfTheSineGordonModel/
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Figure 3.7: Example of a potential energy V p x q and force F p x q “ ´ V 1p x q . 

By tuning the integration constant in this indefinite integral and absorbing it in Ê , we can set 

Ê to zero or to any value we wish. 

The previous equations are analogous to the classical mechanics of a point particle mov- 

ing in one space dimension . Let x p t q be the position of the point particle at time t and 

dots denote time derivatives. The equation of motion (EoM) of the point particle is Newton’s 

equation 

m:x “ F p x q

 

(mass ˆ acceleration “ force) can be integrated to the energy conservation law 

1

 

2 

m 9x2 ` V p x q “ E “ const

 

(kinetic energy ` potential energy “ total energy, which is constant in time), where the force 

and the potential energy are related by 

F p x q “ ´ 

d

 

dx 

V p x q

 

. 

The potential energy and the total energy can be shifted by a common constant with no phys- 

ical change. See figure 3.7 for an example of a potential energy V p x q and the associated force 

F p x q “ ´ V 1p x q . 

It may be useful to think of x as the horizontal coordinate of a point particle (think of an 

infinitesimal ball) moving on a hill of vertical height V p x q at coordinate x , subject only to 

the gravitational force and the reaction of the ground (which is equal and opposite when the 

ground is flat). Even if you are not very familiar with classical mechanics, you will hopefully 

have some intuition of what will happen to the ball.9

 

9You can also model this by riding a brakeless bike in hilly Durham. It’s a good idea to develop some intuition 

about this physical system without running the experiment yourself, which I don’t recommend. (This is one of 

a number of reasons why theoretical physics is superior to experimental physics.)
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The mathematical correspondence between the equations for a travelling wave in one space 

and one time dimension and for a classical point particle in one space dimension is

  \boxed {\begin {split} \xi \quad &\longleftrightarrow \quad t\\ f \quad &\longleftrightarrow \quad x\\ 1 \quad &\longleftarrow \quad m\\ \hat F(f) \quad &\longleftrightarrow \quad F(x)\\ \hat E-\hat V(f) \quad &\longleftrightarrow \quad E-V(x) \end {split}} 

 

 

 

    



      

 

This correspondence allows us to understand the qualitative behaviour of travelling waves 

even when we cannot integrate equation ( ̊  ) exactly, using elementary facts from classical 

mechanics, which are encoded in the the mathematics of the previous equations: 

1. The total energy is conserved and can only be converted from kinetic energy (which 

is non-negative!) to potential energy and vice versa. The velocity 9 x of the point particle 

is zero if and only if the kinetic energy is zero, which means that all the energy is stored 

in potential energy: 

9x “ 0 ðñ V p x q “ E . 

2. When the point particle reaches one of the special values of x such that V p x q “ E , 

either of two things happens depending on the acceleration of the particle: 

(a) F p x q “ ´ 

d

 

dx 

V p x q ‰ 0 : 

The acceleration is non-vanishing, therefore the particle reverses its direction of 

motion :

 

These values of x are known as “turning points” . 

(b) F p x q “ ´ 

d

 

dx 

V p x q “ 0 : 

The acceleration vanishes and the particle stops .
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These values of x are known as “equilibrium points” . The approach to equilib- 

rium takes an infinite time. 

˚ EXERCISE

 

: Derive the previous statements by Taylor expanding the potential energy 

about a point where V p x q “ E and substituting the expansion in the energy 

conservation law. 

Now let us translate this discussion to the context of travelling waves. We will focus on the 

examples of the KdV and the sine-Gordon equation here, but more examples are available in 

[Ex 13] in the problems set. 

EXAMPLES

 

: 

1. KdV : Ê “ 0 , V̂ p f q “ f 2 

`

f ´ 

v

 

2 

˘ 

p v ą 0 q

 

From a graphical analysis of V̂ p f q and the analogy between travelling waves and point 

particles in one dimension, we see that there exists a travelling wave solution that starts 

at f “ 0` at ξ Ñ ´8 , increases until the ‘turning point’ f “ v { 2 , and decreases to 

f “ 0` at ξ Ñ `8 . This is nothing but the KdV soliton (3.1) that we found in section 

3.1. If instead the travelling wave solution starts at f “ 0´ at ξ Ñ ´8 , then it will fall 

down the cliff and reach f Ñ ´8 , leading to a singular solution, that we discard. Note 

that if v ă 0 we have that V̂ p 0 q “ 0 , but V̂ p f q ą 0 for small f ‰ 0 . Therefore the only



 

CHAPTER 3. TRAVELLING WAVES 34 

real solution obeying the boundary conditions is the constant zero solution f p ξ q “ 0 

for all ξ . If v “ 0 , in addition to the trivial solution there is also a singular real travelling 

wave solution that we discard on physical grounds. 

2. sine-Gordon : Ê “ 0 , V̂ p f q “ γ2 pcos f ´ 1 q

 

From a graphical analysis of V̂ p f q , we see that two classes of travelling wave solutions 

exist: one where f interpolates between 2 nπ at x Ñ ´8 and 2 p n ` 1 q π x Ñ ´8 , and 

another where f interpolates between 2 nπ at x Ñ ´8 and 2 p n ´ 1 q π x Ñ ´8 . We 

identify these solutions with the kink and anti-kink (3.2) of section 3.2. 

˚ EXERCISE

 

: Using the analogy with a one-dimensional point particle, determine the qual- 

itative behaviour of a travelling wave solution of the KdV equation on a circle 

( i.e. with periodic boundary conditions). [ Hint : allow integration constants 

A, B ‰ 0 and look at V̂ p f q .] [Ex 14*]



 

Chapter 4 

Topological lumps and the Bogomol’nyi 

bound 

The main references for this chapter are §5.3, 5.1 of [Manton and Sutcliffe, 2004] and §2.1 

of [Dauxois and Peyrard, 2006]. 

4.1 The sine-Gordon kink as a topological lump 

In chapter 3 the topological properties of the sine-Gordon kink were mentioned briefly 

– they ensure that it cannot disperse or dissipate to the vacuum. Let us understand these 

topological properties better. As a reminder, the sine-Gordon equation for the field u is 

utt ´ uxx ` sin u “ 0 . 

Starting from the discrete mechanical model involving pendulums of section 3.3, rescaling x 

and t as in footnote 6 so as to eliminate all constants, and taking the continuum limit a Ñ 0 , it 

is not hard to see that the kinetic energy T and the potential energy V of the sine-Gordon 

field are [Ex 15]

T&= \intinf dx~\frac {1}{2} u_t^2 \label {3.1}\\ V&= \intinf dx~\Big [\underbrace {\frac {1}{2} u_x^2}_{\text {twisting}}+\underbrace {(1-\cos u)}_{\text {gravity}}\Big ]~. \label {3.2}










































   








 

REMARK

 

: 

The kinetic and potential energies of the sine-Gordon field are the continuum limits of the 

kinetic and potential energies of the infinite chain of pendulums. They should not be confused 

with 

1

 

2
p f 1q2 and V̂ p f q for the one-dimensional point particle in the analogy of section 3.4. 
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We can use this result to deduce the boundary conditions that we anticipated in section 3.2. 

The boundary conditions follow from requiring that all field configurations have finite 

(total) energy E “ T ` V . Since the total energy is the integral over the real line of the 

sum of three non-negative terms, the limits of all three terms as x Ñ ˘8 must be zero to 

ensure the convergence of the integral. So the finiteness of the energy requires the boundary 

conditions 

ut 

, ux 

, 1 ´ cos u ÝÝÝÝÑ 

x Ñ˘8 

0 @ t . 

Since 1 ´ cos u “ 0 iff u is an integer multiple of 2 π , we need

 \label {3.3} \boxed {u(-\infty ,t)=2 \pi n_-~, \qquad u(+\infty ,t)=2 \pi n_+~,} 

  

   



 

(4.3) 

for some integers n˘. (This means that pendulums are at rest, pointing downwards, as x Ñ 

˘8 .) 

REMARKS

 

:1 

1. The overall value of n˘ 

has no meaning, since u is defined modulo 2 π . A shift of the 

field u ÞÑ u ` 2 π k is unphysical, but it shifts n˘ 

ÞÑ n˘ ` k . What really matters is the 

difference n` ´ n´, which is invariant under this ambiguity: 

1

 

2 π
r u p`8 , t q ´ u p´8 , t qs “ n` ´ n´ “ # of “twists”/“kinks” 

2. The integer n` ´ n´ 

is “TOPOLOGICAL” , i.e. it does not change under any continu- 

ous changes of the field u (and of the energy E ). In particular, it cannot change under 

time evolution, since time is continuous. Therefore it is a constant of motion or a 

“conserved charge” (more about this in the next chapter). Since the conservation of 

n` ´ n´ 

is due to a topological property, we call this a “TOPOLOGICAL CHARGE” .2 

Solutions with the same topological charge are said to belong to the same “TOPOLOG- 

ICAL SECTOR” . 

3. Dispersion and dissipation occur by time evolution, a continuous process which cannot 

change the value of the integer n` 

´ n´. Since the vacuum has n` 

´ n´ 

“ 0 , any 

configuration with n` ´ n´ ‰ 0 cannot disperse/dissipate to the vacuum .

 

1Some of these remarks were made for kinks and antikinks in the previous chapter. Now that we derive them 

from the BC’s, we see that they hold more generally for all solutions. 

2[Advanced remark for those who know some topology – if you don’t, you can safely ignore this:] Mathe- 

matically, n` ´ n´ 

is a “winding number”, the topological invariant which characterises maps S1 Ñ S1. The 

first S1 is the compactification of the spatial real line, with the points at infinity identified, and the second S1 is 

the circle parametrised by u mod 2 π . The winding number counts how many times u winds around the circle as 

x goes from ´8 to `8 .
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VOCABULARY

 

: 

– “TOPOLOGICAL CONSERVATION LAW”: 

The conservation (in time) of a topological charge, that is 

d

 

dt
p topological charge q “ 0 . 

– “TOPOLOGICAL LUMP”: 

A localised field configuration which cannot dissipate or disperse to the vacuum by 

virtue of a topological conservation law. 

So the sine-Gordon kink is a topological lump . It is also a soliton , but to see that we will 

have to check property 3, which concerns scattering. 

Topological lumps also exist in higher dimensions. A notable example is the “magnetic mono- 

pole”, a magnetically charged localised object that exists in certain generalizations of electro- 

magnetism in three space and one time dimensions. Another example is the “vortex”, which 

is a topological lump if space is R2.3 

4.2 The Bogomol’nyi bound 

Among the kink solutions found in (3.2) using the travelling wave ansatz , there was a STATIC 

KINK with zero velocity. Topology tells us that it cannot disperse or dissipate completely 

to the vacuum. But is its precise shape “stable” under small perturbations? This would 

be guaranteed if we could show that it minimises the energy amongst all configurations 

with the same topological charge. The reason is that any perturbation near a minimum of the 

energy would increase the energy, which however is conserved upon time evolution.4 

A useful analogy to keep in mind is with a point particle on a hilly landscape under the force 

of gravity, as in figure 4.1: if the point particle is sitting still at a local miminum of the height, 

minimising the energy (locally), it is in a configuration of stable equilibrium. Any perturbation 

would necessarily move the particle up the hill, but this is not allowed under time evolution 

as it would increase the total energy. 

So we will seek a lower bound for the total energy E “ T ` V in the topological sector of the 

kink, which has topological charge n` ´ n´ “ 1 . The energy is the integral of a non-negative

 

3Indeed there is a topological charge, the ‘vortex number’, which is conserved and can be non-vanishing if 

space is R2. On the other hand, topology implies that the vortex number vanishes on the two-sphere S2: this is 

fortunate, because if it were non-vanishing there would always be hurricanes going around the surface of Earth. 

4We will in fact show that the static kink is a global minimum of the energy amongst configurations with 

unit topological charge. This ensures its stability even when one includes quantum effects, which we are not 

concerned with in this course.
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Figure 4.1: A point particle on a hilly landscape is stable if it locally minimises the energy. 

This happens when it is sitting still at a minimum of the potential energy. 

energy density, so immediately find the lower bound E ě 0 , but we can do better than that:

 E=T+V \qquad &= \qquad \intinf dx~\left [\frac {1}{2}u_t^2 + \frac {1}{2}u_x^2 +(1-\cos u)\right ]\\ &\hspace {-9pt}\underset {(u_t^2\ge 0)}{\ge } \quad ~ \intinf dx~\left [\frac {1}{2}u_x^2 +(1-\cos u)\right ] \\ &= \qquad \intinf dx~\left [\frac {1}{2}u_x^2 +2\sin ^2\frac {u}{2}\right ]\\ &\hspace {-18.5pt}\underset {\substack {\text {``Bogomol'nyi}\\ \text {trick''}}}{=} ~\, \intinf dx~\left [\frac {1}{2}\left (u_x\pm 2\sin \frac {u}{2}\right )^2 \mp 2 \sin \frac {u}{2}\cdot u_x\right ]\\ &= \qquad \intinf dx~\frac {1}{2}\left (u_x\pm 2\sin \frac {u}{2}\right )^2 \pm 4 \left [\cos \frac {u}{2}\right ]^{+\infty }_{-\infty }~. \label {Bogo int} \tag {$\ast $}

    





























    
























    





















  































  









 



























  



























 

A few comments are in order: 

1. The inequality in the second line follows from omitting the non-negative term 

1

 

2 

u2 

t . It is 

“saturated” (that is, it becomes an equality) for static field configurations , such that 

ut “ 0 ; 

2. In the third line we used a half-angle formula; 

3. In the fourth line we used the so called “Bogomol’nyi trick” to replace a sum of squares 

by the square of a sum plus a correction term which is a total x -derivative; 

4. In the fifth line we integrated the total derivative, leading to a “boundary term” (or 

“surface term” ) which only depends on the limiting values of the field at spatial infinity. 

If u satisfies the 1 -kink BC’s 

u p´8 , t q “ 0 , u p`8 , t q “ 2 π

 

,
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then the boundary term evaluates to 

4 

” 

cos 

u

 

2 

ı`8 

´8

“ 4 p´ 1 ´ 1 q “ ´ 8 . 

Picking the lower ( i.e. ´ ) signs in ( ̊  ), we obtain the lower bound

 \label {3.4} \boxed {E\ge \intinf dx~\frac {1}{2}\left (u_x-2\sin \frac {u}{2}\right )^2 + 8 \ge 8} 

















  









  

 

(4.4) 

for the energy, where the second inequality is saturated if the expression in brackets vanishes.5 

Equation (4.4) is known as the “BOGOMOL’NYI BOUND” . 

The Bogomol’nyi bound (4.4) is saturated ( i.e. E “ 8 ) if and only if the field configuration 

is static , that is 

ut “ 0

 

, 

and satisfies the “BOGOMOL’NYI EQUATION”

 \label {3.5} \boxed {u_x = 2 \sin \frac {u}{2}}~. 

  











 

(4.5) 

So we can find the least energy field configurations in the “ 1 -kink topological sector” 

( i.e. with n` ´ n´ “ 1 ) by looking for static solutions u “ u p x q of the Bogomol’nyi equation: 

ux “ 2 sin 

u

 

2 

ùñ 

ż 

dx “ 

ż 

du

 

2 sin 

u

 

2 

“ log tan 

u

 

4 

, 

whose general solution is

 \label {3.6} \boxed {u(x)=4\arctan \left (e^{x-x_0}\right )}~. 

  











 

(4.6) 

This is nothing but the static kink , which we obtained in section 3.2 as a special case of a 

travelling wave solution of the sine-Gordon equation with v “ 0 . 

REMARK

 

: 

Note that the Bogomol’nyi equation, being a first order differential equation (in fact an ODE 

once we impose ut 

“ 0 ), is much easier to solve than the full equation of motion, the sine- 

Gordon equation, which is a second order PDE. 

˚ EXERCISE

 

: Check that a field configuration that saturates the Bogomol’nyi bound is 

automatically a solution of the sine-Gordon equation.

 

5Picking the upper ( i.e. ` ) signs in ( ̊  ) we obtain the lower bound E ě ´ 8 , which is weaker than the trivial 

bound E ě 0 therefore not very useful. The Bogomol’nyi trick always has a sign ambiguity. The choice of sign 

that leads to the stricter inequality depends on the sign of the boundary term.
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Figure 4.2: The energy density of a static kink. 

So we learned that amongst all solutions with topological charge n` ´ n´ “ 1 , the static 

kink has the least energy , hence it is stable . Indeed, topology in principle allows the kink to 

disperse to other solutions with n`´ n´ “ 1 , but the dispersing waves would carry some of the 

energy away. Since the static kink has the least energy in the n` ´ n´ “ 1 topological sector, it 

can’t lose energy, hence it’s stable. This notion of stability which originates from minimising 

the energy in a given topological sector is called “TOPOLOGICAL STABILITY” . 

Using staticity and the Bogomol’nyi equation, we now have a shortcut to compute the energy 

density E of the static kink , namely the integrand of the total energy E “ 

ş`8 

´8
dx E : 

E “ 

1

 

2 

u2 

t 

` 

1

 

2 

u2 

x ` 2 sin2 

u

 

2 

“ 

ut“ 0 

ux“ 2 sin 

u

 

2 

u2 

x 

“ 4sech2
p x ´ x0q , 

which shows that the energy density of the kink is localised near x0, see figure 4.2. 

˚ EXERCISE

 

: Think about how to generalise the Bogomol’nyi bound for higher topological 

charge, for instance n` ´ n´ “ 2 . This is not obvious! [Ex 17] 

4.3 Summary 

There are two ways for a lump to be long-lived: 

1. by INTEGRABILITY (infinitely many conservation laws, more about this next) 

ÝÑ “TRUE” (or “INTEGRABLE”) SOLITONS 

2. by TOPOLOGY (topological conservation law) 

ÝÑ TOPOLOGICAL LUMPS .6

 

6Some people use the term solitons for both integrable solitons and topological lumps, but in this course we 

will only refer to the former as “solitons”).
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It is important to note that these two mechanisms are not mutually exclusive: there are some 

lumps, like the sine-Gordon kink, which are both topological lumps and true solitons. The 

various possibilities and some examples are summarised in the following Venn diagram:



 

Chapter 5 

Conservation laws 

The main references for this chapter are §5.1.1 and §5.1.2 of [Drazin and Johnson, 1989]. 

Conservation laws provide the most fundamental characterisation of a physical system: they 

tell us which quantities don’t change with time. For the purpose of this course, they play a key 

role because they explain why the motion of “true” solitons is so restricted that they scatter 

without changing their shapes. 

The idea of a conservation law is to construct spatial integrals of functions of the field u and 

its derivatives

 \label {4.1} \boxed {Q=\intinf dx~ \rho (u,u_x,u_{xx},\dots ,u_t,u_{tt},\dots )} 







 



    



   

 

(5.1) 

which are constant in time (in physics parlance, they are “ constants of motion” )

 \label {4.2} \boxed {\frac {d}{dt}Q=0} 







 

 

(5.2) 

when u satisfies its equation of motion (EoM) , such as the sine-Gordon equation or the 

KdV equation. The constant of motion (5.1) is called a “CONSERVED CHARGE” or “CON- 

SERVED QUANTITY” and the equation (5.2) stating its time-independence is called a “CON- 

SERVATION LAW” . 

For the KdV and the sine-Gordon equation, it turns out that there exist infinitely many 

conserved quantities . This makes them “integrable systems” (more about this next term) 

and explains many of their special properties. 

42
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5.1 The basic idea 

The standard method for constructing a conserved charge like (5.1) involves finding two func- 

tions ρ and j of u and its derivatives, such that the EoM for u implies the “LOCAL CONSER- 

VATION LAW” or “CONTINUITY EQUATION”

 \label {4.3} \boxed {\frac {\de \rho }{\de t} + \frac {\de j}{\de x} = 0} 

















 

(5.3) 

and the boundary conditions imply

  j\to C\quad \mbox {as}~~ x\to \pm \infty \label {4.4} 

     

 

(5.4) 

with the same constant C at ´8 and `8 . Then 

d

 

dt 

ż `8 

´8 

dx ρ “ 

ż `8 

´8 

dx 

B ρ

 

B t 

“ 

p 5 . 3 q
´ 

ż `8 

´8 

dx 

B j

 

B x 

“ ´r j s
`8 

´8 

“ 

p 5 . 4 q 

0 . 

Hence

 \label {4.5} Q=\intinf dx~\rho 









 

(5.5) 

is a conserved CHARGE . ρ is called the conserved “CHARGE DENSITY” , and j is called 

the conserved “CURRENT DENSITY” (or just “CURRENT” , by a common abuse of termi- 

nology.) 

5.2 Example: conservation of energy for sine-Gordon 

Is the total energy 

E “ 

ż `8 

´8 

dx E

 

conserved for the sine-Gordon field, where the energy density is

 \label {4.6} \boxed {\cE = \frac {1}{2}u_t^2+ \frac {1}{2}u_x^2+ (1-\cos u)} ~? 























    





 

(5.6) 

The energy density E plays the role of ρ here. Can we show then that ρ “ E obeys a continuity 

equation (5.3) for some function j that obeys the limit condition (5.4), when the sine-Gordon 

equation (EoM) 

utt ´ uxx ` sin u “ 0
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holds? Let’s compute:

 \frac {\de \cE }{\de t} &= u_t u_{tt} + u_x u_{xt} + \sin u \cdot u_t \\ &= u_t(u_{tt}+\sin u) +u_x u_{xt} \\ & \hspace {-6pt} \underset {\text {EoM}}{=} u_t u_{xx} +u_x u_{xt} = \frac {\de }{\de x} (u_t u_x) \equiv \frac {\de }{\de x}(-j)~,









 

    

     









 



















 

and since the BC’s for the sine-Gordon equation imply that ut 

ux Ñ 0 as x Ñ ˘8 , we deduce 

that energy is conserved : 

dE

 

dt 

“ 0

 

. 

5.3 Conserved quantities for the KdV equation 

Let us return to the KdV equation 

ut ` 6 uux ` uxxx “ 0 . 

We can rewrite the KdV equation as a continuity equation 

B

 

B t 

u ` 

B

 

B x
p 3 u2 ` uxxq “ 0 

and since the BC’s appropriate for KdV on the line R are that u, ux 

, uxx 

, ¨ ¨ ¨ Ñ 0 as x Ñ ˘8 , 

we deduce that

 \label {4.26} \boxed {Q_1=\intinf dx~u}~, 













 

(5.7) 

is conserved . For the canal, this is the conservation of water1. 

Next, we can ask whether ρ “ u2 is a conserved charge density. Let us compute

  \begin {split} (u^2)_t&=2uu_t\underset {\text {KdV}}{=} -12 u^2 u_x -2u u_{xxx}=-4(u^3)_x - 2u u_{xxx}\\ &= (-4u^3 -2u u_{xx})_x + 2 u_x u_{xx} = (-4u^3-2uu_x +u_x^2)_x~, \end {split} 

 




     

    

     





 

where to go from the first to the second line we used the trick familiar from integration by 

parts, f gx 

“ p f g qx ´ fx 

g . (We say that f gx 

and ´ fx 

g are equal up to a total x -derivative.) 

Hence we deduce that

 \label {4.27} \boxed {Q_2=\intinf dx~u^2}~, 













 

(5.8)

 

1(5.7) is the (net) area under the profile of the wave, taking u “ 0 (flat water surface) as zero. Assuming that 

water has constant density (mass per unit area) and choosing units so that the density is 1 , (5.7) is also the mass 

of the wave.
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which is interpreted as the momentum of the wave, is conserved . 

Next, what about ρ “ u3? Using the notation “ “ ” to mean “equal up to a total x -derivative” 

and striking out terms which are total derivatives (t.d.), we find

  \begin {split} (u^3)_t &= 3u^2 u_t \underset {\text {KdV}}{=} -18 \cancelto {\text {t.d.}}{u^3 u_x}-3u^2 u_{xxx} ``=" 6uu_x u_{xx}\\ & \hspace {-3pt}\underset {\text {KdV}}{=} -u_t u_{xx}-\cancelto {\text {t.d.}}{u_{xxx}u_{xx}} ``=" u_{tx}u_x = \frac {1}{2}(u^2_x)_t~, \end {split} 

 












  








 












 














 

so rearranging we find a third conserved charge

 \label {4.28} \boxed {Q_3=\intinf dx~\left (u^3-\frac {1}{2}u_x^2\right )}~, 





























 

(5.9) 

which is interpreted as the energy of the wave. 

It turns out that the conservation laws (5.7)-(5.9) of mass, momentum and energy follow by 

Noether’s theorem from the “obvious” symmetries

 u &\mapsto u+c &&\Longrightarrow \qquad \text {mass conservation} \\ x &\mapsto x+c' &&\Longrightarrow \qquad \text {momentum conservation} \\ t &\mapsto t+c'' &&\Longrightarrow \qquad \text {energy conservation}

      

   

 

   

 

 

of the KdV equation, so they are expected. But then surprisingly [Miura et al., 1968] found (by 

hand!) eight more conserved charges , all (but one, see [Ex 23] ) of the form 

Qn “ 

ż `8 

´8 

dx p un ` . . . q

 

, 

e.g.

 \label {4.29} \begin {split} Q_4&= \intinf dx~\left (u^4-2u u_x^2+\frac {1}{5}u_{xx}^2\right )\\ Q_5&= \intinf dx~\left (u^5-5u^2 u_x^2 +u u_{xx}^2 - \frac {1}{14}u_{xxx}^2\right )\\ &~~\vdots \\ Q_{10}&= \intinf dx~\left (u^{10}-60u^7 u_x^2 + \text {($29$ terms)} + \frac {1}{4862}u_{xxxxxxxx}^2\right )~. \end {split} 











 

























 

 



























 

   















 

(5.10) 

˚ EXERCISE

 

: Calculate Q6 

, . . . , Q9 

as well and the 29 missing terms in Q10. 

2 

This surprising result raises two natural questions :

 

2Just kidding.
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1. Are there infinitely many more conserved charges? 

2. If so, is there a systematic way to find them? 

5.4 The Gardner transform 

The answer to both questions is affirmative, and is based on a very clever (though at first sight 

unintuitive) method devised by Gardner [Miura et al., 1968]. 

/First, let us suppose that the KdV field u p x, t q can be expressed in terms of another function 

v p x, t q as

 \label {4.30} \boxed {u=\lambda -v^2-v_x}~, 

     





 

(5.11) 

where λ is a real parameter. Substituting (5.11) in the KdV equation we find

0 &=(\lambda -v^2-v_x)_t+6 (\lambda -v^2-v_x)(\lambda -v^2-v_x)_x+(\lambda -v^2-v_x)_{xxx} \nonumber \\ &= \dots \qquad \text {\Ex {24}} \nonumber \\ &=- ~\boxed {\left (2v+\frac {\de }{\de x}\right )\left [v_t+6(\lambda -v^2)v_x+v_{xxx}\right ]=0}~. \label {4.31}

                     

    

















     









 

So 

KdV for u ðñ (5.12) for v

 

, 

and in particular, if v solves

 \label {4.32} \boxed {v_t+6(\lambda -v^2) v_x + v_{xxx} =0}~, 

       





 

(5.13) 

then u given by (5.11) solves KdV. 

For λ “ 0 , (5.13) is the “wrong sign” mKdV equation that you encountered in [Ex 13 (b)] , and

 \label {4.33} \boxed {u=-v^2-v_x} 

   

 

(5.14) 

is known as the Miura transform , found by Miura earlier in 1968 [Miura, 1968]. 

Gardner’s idea was to change Miura’s transformation by setting

 \label {4.34} \boxed {\begin {split} v&= \epsilon w + \frac {1}{2\epsilon } \\ \lambda &= \frac {1}{4\epsilon ^2} \end {split}} 

  















 

(5.15)
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for some non-vanishing real constant ϵ . Then 

λ ´ v2 “ 

1

 

4 ϵ2 

´ 

ˆ 

ϵw ` 

1

 

2 ϵ 

˙2 

“ ´ w ´ ϵ2 w2 , 

which implies that u and w are related by the Gardner transform (GT)

 \label {4.35} \boxed {u=-w-\epsilon w_x-\epsilon ^2 w^2}~. 

     





 

(5.16) 

We will use the free parameter ϵ to great advantage below. 

In terms of w , the KdV equation for u , or equivalently equation (5.12) for v becomes 

ˆ 

2 ϵw ` 

1

 

ϵ 

` 

B

 

B x 

˙ 

“

ϵwt ´ 6 p w ` ϵ2 w2
q ϵwx ` ϵwxxx 

‰

“ 0 , 

or equivalently

 \label {4.36} \boxed { \left (1+\epsilon \frac {\de }{\de x}+2\epsilon ^2 w\right )\left [ w_t -6(w+\epsilon ^2 w^2) w_x + w_{xxx}\right ]=0 }~. 



 












   
 









 

(5.17) 

In particular, any w that solves the simpler equation

 \label {4.37} \boxed { w_t -6(w+\epsilon ^2 w^2) w_x + w_{xxx} =0 }~ 

   
   

 

(5.18) 

produces a u that solves the KdV equation by the Gardner transform (5.16). 

Now we are going to think about this backwards: let’s view u as a fixed solution of KdV , 

while w varies with ϵ so that (5.16) holds. Then 

• For ϵ “ 0

 

, equation (5.17) is nothing but the KdV equation with a reversed middle term. 

Indeed the Gardner transform reduces to u “ ´ w in this case. 

• For ϵ ‰ 0

 

, we encounter two problems : 

1. To obtain w in terms of u , we need to solve a differential equation (5.16); 

2. The differential operator 1 ` ϵ 

B

 

B x 

` 2 ϵ2 w in (5.17) is non-trivial . It might have 

a non-vanishing kernel, so we can’t immediately conclude that (5.18) holds. 

Gardner’s intuition was that we can solve both problems at once by viewing w as a formal
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power series in ϵ :3

 \label {4.38} \boxed {w(x,t)=\sum _{n=0}^\infty w_n(x,t) \epsilon ^n = w_0(x,t) + w_1(x,t) \epsilon + w_2(x,t) \epsilon ^2 + \dots } 

 






             

 

(5.19) 

1. To solve the first problem, we substitute (5.19) in the Gardner transform (5.16)

  \begin {split} u &= - (w_0+w_1 \epsilon +w_2 \epsilon ^2+\dots )- \epsilon (w_0+w_1 \epsilon +w_2 \epsilon ^2+\dots )_x \\ & ~~~~ - \epsilon ^2 (w_0+w_1 \epsilon +w_2 \epsilon ^2+\dots )^2 \\ & \hspace {-3pt} \begin {tabular}{lllll} $=- w_0$&$- \epsilon w_1$ &$- \epsilon ^2 w_2$ &$- \epsilon ^3 w_3$ & $ + \dots $ \\ &$- \epsilon w_{0,x}$ &$- \epsilon ^2 w_{1,x}$ & $- \epsilon ^3 w_{2,x}$ & $+ \dots $\\ & & $-\epsilon ^2 w_0^2$ & $-\epsilon ^3 2 w_0 w_1$ & $+\dots $ \end {tabular} \end {split} 

   

 

        

 

    

  

 

    










  







  









  

 

and invert it to determine w in terms of u . Since u is fixed, it is of order ϵ0. Comparing 

order by order we obtain:

&\epsilon ^0: &&w_0=-u \\ &\epsilon ^1: &&w_1=-w_{0,x}=u_x \\ &\epsilon ^2: &&w_2=-w_{1,x}-w_0^2=-u_{xx}-u^2 \label {4.39}\\ &\epsilon ^3: &&w_3=-w_{2,x}-2w_0 w_1=u_{xxx}+4uu_x \\ & && \vdots \nonumber

    

     



     



   

     

   





 

which in principle determines recursively all the coefficients wn 

of the formal power 

series (5.19) in terms of u . 

2. Since w is a formal power series in ϵ , so is the expression inside the square brackets in 

(5.17): 

“

wt ´ 6 p w ` ϵ2 w2
q wx ` wxxx 

‰

” z p x, t q “ 

8
ÿ 

n “ 0 

znp x, t q ϵn “ z0 ` z1 

ϵ ` z2 

ϵ2 ` . . . 

The same applies to the differential operator 

A ” 1 ` ϵ 

B

 

B x
` 2 ϵ2 w ” 1 ` 

8
ÿ 

n “ 1 

An 

ϵn , 

where 1 is the identity operator, and An 

are linear (differential) operators: 

A1 “ 

B

 

B x 

, A2 “ 2 w0¨ , A3 “ 2 w1¨ , A4 “ 2 w2¨ , . . .

 

3By a formal power series we mean that we don’t worry about the convergence of the series. (5.19) is actually 

an asymptotic expansion, for those who know what that is.
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where I wrote the dots to make clear which operators act by multiplication by a function. 

Then (5.17) becomes the formal power series equation

  \begin {split} 0 &= \left ( 1+\sum _{n=1}^\infty A_n \epsilon ^n\right )\left (\sum _{k=0}^\infty z_k \epsilon ^k\right ) \\ & \hspace {-2pt}\begin {tabular}{lllll} $= z_0$&$ + \epsilon z_1$ &$+ \epsilon ^2 z_2$ &$+ \epsilon ^3 z_3$ & $ + \dots $ \\ &$+ \epsilon A_1 z_0$ &$+ \epsilon ^2 A_1 z_1$ & $+ \epsilon ^3 A_1 z_2$ & $+ \dots $\\ & & $+\epsilon ^2 A_2 z_0$ & $+\epsilon ^3 A_2 z_1$ & $+\dots $ \\ & & & $+\epsilon ^3 A_3 z_0$ & $+\dots $\\ & & & & $+\dots $ \end {tabular} \end {split} 





































  













  









  





  

  

 

which we can solve order by order as follows:

&\epsilon ^0: &&z_0=0 \nonumber \\ &\epsilon ^1: &&z_1=-A_1 z_0 \nonumber \\ &\epsilon ^2: &&z_2=-A_1 z_1-A_2 z_0=0\\ &\epsilon ^3: &&z_3=-A_1 z_2 -A_2 z_1 -A_3 z_0 =0 \nonumber \\ & && \vdots \nonumber

   

   



   

 

  

   

 

 

 



 

Thus we have shown that, order by order in the formal power series in ϵ , equation 

(5.18) holds ! But – punchline ahead – (5.18) is a continuity equation

  \boxed {\frac {\de }{\de t} w + \frac {\de }{\de x} \left (-3w^2-2\epsilon ^2 w^3 + w_{xx}\right )=0}~. 






























 

(5.25) 

Since w , wx 

, wxx 

, ¨ ¨ ¨ Ñ 0 as x Ñ ˘8 order by order in powers of ϵ , this means that the 

charge

 \label {4.42} \boxed {\tilde Q = \intinf dx~w} 









 

(5.26) 

is conserved . 

Now comes the important point: since w “ 

ř8 

n “ 0 

wn 

ϵn is a formal power series in ϵ , so is the 

conserved charge Q̃ :4 

Q̃ “ 

ż `8 

´8 

dx 

8
ÿ 

n “ 0 

wn 

ϵn “ 

8
ÿ 

n “ 0 

ϵn 

ż `8 

´8 

dx wn ” 

8
ÿ 

n “ 0 

ϵn Q̃n 

. 

And since Q̃ is a conserved charge for all values of the free parameter ϵ , it must be that the 

charges

 \label {4.43} \boxed {\tilde Q_n = \intinf dx~w_n} \qquad (n=0,1,2, \dots ) 











       

 

(5.27)

 

4Strictly speaking the middle equality assumes convergence, but we are working with a formal expansion, so 

we don’t need to worry about this subtlety.
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are all separately conserved! 

Going back to (5.22), we find that the first few conserved charges are

 \label {4.44} \boxed {\begin {split} \tilde {Q}_0&= -\intinf dx~u\equiv -Q_1 \\ \tilde {Q}_1&= + \intinf dx~u_x = [u]^{+\infty }_{-\infty } =0 \\ \tilde {Q}_2&= -\intinf dx~(u_{xx}+u^2) = -\intinf dx~u^2 \equiv -Q_2 \\ \tilde {Q}_3&= +\intinf dx~(u_{xxx}+4uu_x)=[u_{xx}+2u^2]^{+\infty }_{-\infty } = 0\\ & \vdots \end {split}} 

 





  

 





  


 

 





    





  

 





      

 



 

(5.28) 

As you might have guessed, the general pattern is as follows:

 \tilde Q_{2n-1} &= \intinf dx ~(\text {total derivative}) =0\\ \tilde Q_{2n-2} &= \text {const} \times Q_n = \text {const} \times \intinf dx~(u^n + \dots ) \neq 0~.







   

      





        

 

See [Drazin and Johnson, 1989] for a general proof. 

The existence of infinitely many conserved charges makes the KdV equation “integrable” . 

As you’ll see in the exercises for this chapter, these unexpected conservation laws give us a lot 

of information about multi-soliton solutions of the KdV equation, see [Ex 23] and [Ex 25] . 

5.5 Extra conservation laws for relativistic field equations 

Let’s return to our other main example, the sine-Gordon model. We’ve already seen that en- 

ergy is conserved, but this is not particularly surprising. In fact for any relativistic field 

theory in 1 space ( x ) + 1 time ( t ) dimensions ( e.g. Klein-Gordon, sine-Gordon, “ ϕ4”, . . . ),

 \label {4.7} \boxed {E= \intinf dx~ \cE = \intinf dx \left [\frac {1}{2}u_t^2+ \frac {1}{2}u_x^2 + V(u)\right ]} 







 





























  



 

(5.29) 

is conserved , provided the equation of motion ( EoM )

 \label {4.8} \boxed {u_{tt}-u_{xx}=-V'(u)} 

    


 

(5.30) 

is satisfied.
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˚ EXERCISE

 

: Check this statement. 

The “scalar potential” V p u q determines the theory. For instance 

V p u q “ 

$ 

’

’

’

& 

’

’

’

% 

1

 

2 

m2 u2 (Klein-Gordon) 

1 ´ cos u (sine-Gordon) 

λ

 

2
p u2 ´ a2q2 (“ ϕ4”) 

. . . 

A deep theorem due to Emmy Noether, already mentioned in passing above, shows that the 

conservation of energy follows from the invariance of the theory under arbitrary time 

translations t ÞÑ t ` c . Similarly, invariance under space translations x ÞÑ x ` c1 implies 

the conservation of momentum P . 

We will not delve into Noether’s theorem, but you might encounter it in other courses. In 

any case, it is of limited help for our purposes: our main interest will be in more surprising, 

‘bonus’, charges, similar to those already seen for the KdV equation in the last section. The 

question that we would like to answer is: 

Can there be more conserved quantities, in addition to energy and momentum?

 

We will answer this question constructively. 

The first step is to switch to light-cone coordinates

 \label {4.9} \boxed {x^\pm = \frac {1}{2}(t\pm x)} \Longleftrightarrow \begin {cases} t&=x^++x^-\\ x&=x^+-x^- \end {cases}~, 









 







   

   



 

(5.31) 

which are so called because the trajectories of light rays are x` “ const or x´ “ const for 

left-moving or right-moving rays respectively. By the chain rule we calculate

 \de _\pm \equiv \frac {\de }{\de x^\pm } &= \frac {\de t}{\de x^\pm } \frac {\de }{\de t} + \frac {\de x}{\de x^\pm } \frac {\de }{\de x} = \frac {\de }{\de t} \pm \frac {\de }{\de x} \equiv \de _t\pm \de _x \\[5pt] &\Longrightarrow \quad \de _+\de _- = \de _t^2 - \de _x^2~,



















































  

  











 

so the EoM can be written as

 \label {4.10} \boxed {u_{+-}=-V'(u)}~, 

  






 

(5.32) 

where we used the shorthand notation f˘ ” 

B f

 

B x˘ 

” B˘ 

f . 

Now suppose that a couple of densities T and X can be found such that given the equation of 

motion (5.32),

 \label {4.11} \boxed {\de _- T = \de _+ X}~. 



 







 

(5.33)
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Converted back to the original space and time coordinates x and t , this is nothing but the 

continuity equation (5.3) 

Bt p T ´ X q
looomooon 

ρ 

´Bx p T ` X q
looomooon 

´ j 

“ 0 . 

with ρ “ T ´ X and j “ ´ T ´ X . Provided that the limiting values of ´ T ´ X as x Ñ ˘8 

agree so that (5.4) holds, this means that 

ş8 

´8
p T ´ X q dx will be a conserved quantity. 

The goal is to construct examples of such p T , X q pairs, and to simplify life I’ll suppose that 

T is a polynomial in x`-derivatives of u : this means we are looking for “polynomial con- 

served densities” . We will also (mostly) disregard total x`-derivatives in T , or in other words 

consider two polynomial conserved densities which differ by a total x`-derivative to be equiv- 

alent: if p T , X q solves (5.33) and T 1 “ T ` B` 

U , then

  \partial _-T'=\partial _-T+\partial _-\partial _+ U=\partial _+X' 






 

 



 

where X 1 “ X ` B´ 

U . Hence p T 1 , X 1q is another solution to (5.33), but so long as the limits 

of U as x Ñ ˘8 are equal, it leads to exactly the same conserved quantity as before:

  \int _{-\infty }^{\infty }\!\left (T'-X'\right )dx - \int _{-\infty }^{\infty }\!\left (T-X\right )dx = \int _{-\infty }^{\infty }\!\left (\partial _+U-\partial _-U\right )dx = \int _{-\infty }^{\infty }2\partial _xU\,dx = \left [2U\right ]_{-\infty }^{\infty }=0\,. 






 

 





    







 

  







   



 

 

One more concept is useful: the “rank" , or “Lorentz spin” of a single term in a general 

polynomial in u and its light-cone derivatives is the number of B` 

derivatives minus the 

number of B´ 

derivatives . For instance p u`q3 u´ 

u``´ 

has Lorentz spin 3 ´ 1 ` p 2 ´ 1 q “ 3 . 

According to the theory of special relativity, objects of different spins transform differently 

under the “Lorentz group” of symmetries of relativistic field equations. If you would like to 

know more about Lorentz transformations and Lorentz spin, you can read this optional note. 

Terms with different Lorentz spins will never cancel against each other in (5.33), since using 

the equation of motion (5.32) to convert an occurance of u`´ 

into ´ V 1p u q does not affect the 

rank. As a result, each spin can be considered separately and so, for s “ 0 , 1 , 2 . . . , we will look 

for solutions p Ts ̀  1 

, Xs ́  1q to (5.33), where Ts ̀  1 

is a polynomial in the x`-derivatives of u with 

Lorentz spin s ` 1 . Via (5.33), Xs ́  1 

must then have spin s ́  1 . The corresponding conserved 

charge will be written as Qs:

 \label {4.13} \boxed {Q_s = \intinf dx~(T_{s+1}-X_{s-1})} 







  

 

(5.34) 

As x Ñ ˘8 we’ll assume that all derivatives of u tend to zero, but (to allow for topolog- 

ical lumps) u itself might tend to other, possibly unequal, values. Notice also that for each 

pair p Ts ̀  1 

, Xs ́  1q the roles of x` and x´ can be swapped throughout to find a partner pair 

p T´ s ́  1 

, X´ s ̀  1q where T´ s ́  1 

is a polynomial in x´ derivatives, with Lorentz spin ´ s ́  1 .

http://www.maths.dur.ac.uk/~tnmm74/pictures_animations_Solitons/Lorentz_and_lightcone.pdf


 

CHAPTER 5. CONSERVATION LAWS 53 

Proceeding spin by spin: 

s “ 0

 

T1 “ u` 

is the unique polynomial density of spin 1, up to an irrelevant multiplicative factor which 

can be absorbed in the normalisation of the charge. It solves (5.33) with X´ 1 

“ u´, 

since B´ 

u` 

“ u´` 

“ u`´ 

“ B` 

u´. The corresponding spin zero conserved charge is 

the topological charge 

Q0 “ 

ż `8 

´8 

dx p u` ´ u´q “ 2 

ż `8 

´8 

dx ux “ 2 r u s
`8 

´8 

. 

Note

 

: T1 

differs from zero by a total x`-derivative, T1 

“ 0 ` B` 

U with U “ u , so by 

the rules above we might want to discard it. That would be too hasty, since this U could 

have different limits as x Ñ ˘8 , in fact, this happens precisely in those cases where 

the topological charge is non-trivial. 

s “ 1

 

T2 Ą u`` 

, u2 

`, 

which is a shorthand for: T2 

is a linear combination of u`` 

and u2 

`. However u`` 

“ 

p u`q` 

is a total derivative, and since u` 

Ñ 0 as x Ñ ˘8 we can disregard this term 

without loss of generality, and consider T2 “ u2 

`. Then 

B´ 

T2 “ B´ 

u2 

` “ 2 u` 

u`´ 

“ 

EoM
´ 2 V 1

p u q u` “ ´ 2 B` 

V p u q ” B` 

X0 

with X0 “ ´ 2 V p u q . Therefore

 \label {4.16} \boxed {Q_1= \intinf dx ~(T_2-X_0)=\intinf dx~[u_+^2+2V(u)]} 







   







  

 

(5.35) 

is conserved, for any V . Swapping x` and x´, T´ 2 

“ u2 

´ 

is another conserved density, 

with the same X0, leading to

 \label {4.aa} \boxed {Q_{-1}= \intinf dx ~(T_2-X_0) = \intinf dx~[u_-^2+2V(u)]} 







   







  

 

(5.36) 

Taking the sum and difference and choosing a convenient normalization, we find two
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conserved charges

&\frac {1}{4}(Q_1+Q_{-1}) = \intinf dx~\left [\frac {1}{4}(u_+^2+u_-^2)+V(u)\right ] \nonumber \\ &\qquad \quad \equiv \; \boxed {E = \intinf dx~\left [\frac {1}{2}u_t^2 + \frac {1}{2}u_x^2 + V(u)\right ] } \label {4.17}\\ &\frac {1}{4}(Q_{-1}-Q_1) = \intinf dx~ \frac {1}{4}(u_-^2-u_+^2) \nonumber \\ &\qquad \quad \equiv \; \boxed {P = -\intinf dx~u_t u_x } ~, \label {4.18}






  
















 

  



 





























  












  














 



  













 

which are interpreted as the energy E and the momentum P . 

s “ 2

 

T3 Ą u``` 

, u`` 

u` 

, u3 

`, 

but u``` 

“ p u``q` 

and u`` 

u` 

“ 

1

 

2
p u2 

`q` 

are total derivatives of functions which 

vanish at spatial infinity, hence they can be disregarded. So without loss of generality 

we can take T3 “ u3 

` 

and then 

B´ 

T3 “ B´ 

u3 

` “ 3 u2 

` 

u`´ 

“ 

EoM
´ 3 V 1

p u q u2 

` 

. 

The RHS of the previous equation cannot be a total x`-derivative , because the highest 

x` derivative of u (in this case u`) does not appear linearly. 

˚ EXERCISE

 

: Think about it and convince yourself that this statement is correct. Suppose 

that B 

n 

` 

u is the highest x`-derivative of u appearing in a function Y of u and 

its x`-derivatives. How does the highest x`-derivative of u appear in B` 

Y 

then? 

s “ 2

 

We learn therefore that there is no conserved charge Q2 

of spin 2 built out of poly- 

nomial conserved densities. 

s “ 3

 

T4 Ą u```` 

, u``` 

u` 

, u2 

`` 

, u`` 

u2 

` 

, u4 

`, 

but we can drop the first and fourth term as they are total derivatives of functions which 

vanish at spatial infinity. Moreover u``` 

u` 

“ ´ u2 

`` ` p u`` 

u`q`, so we can also dis- 

regard one of u``` 

u` 

and u2 

`` 

without loss of generality. The most general expression 

for T4 

up to an irrelevant total x`-derivative is therefore

 \label {4.19} \boxed {T_4 = u_{++}^2+\frac {1}{4}\lambda ^2 u_+^4}~, 

 

















 

(5.39) 

where λ is a constant to be determined below and the factor of 1 { 4 was inserted for later
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convenience.5 Then

\begin {split} \de _- T_4 &= 2u_{++}u_{++-}+\lambda ^2 u_+^3 u_{+-} \\ & \underset {\text {EoM}}{=} -2u_{++} \left (V'(u)\right )_+ - \lambda ^2 u_+^3 V'(u) \\ &= -2 u_{++}u_+ V''(u) - \lambda ^2 u_+^3 V'(u)\,. \end {split} \nonumber \\ \intertext {This may not seem very promising, but the highest derivative in the first term occurs linearly, allowing a total derivative to be extracted using the trick familiar from integration by parts:} &= - (u_+^2 V''(u))_+ + u_+^3 V'''(u) - \lambda ^2 u_+^3 V'(u) \nonumber \\ &= - (u_+^2 V''(u))_+ + u_+^3 \left [ V'''(u) - \lambda ^2 V'(u) \right ]~. \label {4.20}



 

 








 
















 






              

            








 




 











 






  






 

We are hoping to obtain a total x`-derivative. The first term in (5.40) is a total x`- 

derivative, but in the second term the highest derivative, which is u`, does not appear 

linearly but rather to the third power. By the previous argument which was the topic of 

the exercise, the second term is a total x`-derivative if and only if

 \label {4.21} \boxed {V'''(u)-\lambda ^2 V'(u)=0}~. 


  

 





 

(5.41) 

If (5.41) holds , we have X2 “ ´ u2 

` 

V 2p u q and

 \label {4.22} \boxed {Q_3 = \intinf dx (T_4-X_2) = \intinf dx~\left [ u_{++}^2 + \frac {1}{4}\lambda ^2 u_+^4 + u_+^2 V''(u)\right ]} 







  





















 








 

(5.42) 

is a conserved charge of spin 3 . If instead (5.35) does not hold, there is no extra 

(polynomial) conserved charge of spin 3. 

To summarize, the relativistic field theories which have an extra conserved charge of 

spin 3 are those with a scalar potential V p u q which satisfies equation (5.41) for some value of 

the constant λ . Let us examine the various possibilities: 

1. λ2 “ 0

 

: V p u q “ A ` B p u ´ u0q
2, 

where A and B are constants. Up to a linear redefinition of u , this scalar potential leads 

to the Klein-Gordon equation . This is a linear equation which describes a free field 

( i.e. a field free from interactions) and is therefore not interesting from the point of view 

of solitons.

 

5To be precise, T4 

should be written as a linear combination of u2 

`` 

and u4 

`. It turns out that the coefficient 

of u`` 

must be non-vanishing, hence we can normalise it to 1 .
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2. λ2 ‰ 0

 

: V p u q “ A ` B eλu ` C e´ λu, 

where A, B and C are constants. 

a) If only one of B , C is non-vanishing, the EoM is either 

C “ 0 :

 

u`´ “ ´ B λeλu or B “ 0 :

 

u`´ “ C λe´ λu . 

By a linear redefinition of u , we can always rewrite the EoM as the Liouville 

equation

 \label {4.23} \boxed {u_{+-}=e^u}~. 

 





 

(5.43) 

b) If neither B or C vanish, then by a linear redefinition of u we can write the EoM 

as the sine-Gordon equation

 \label {4.24} \boxed {u_{+-} = - \sin u} 

   

 

(5.44) 

if λ2 ă 0 , or as the sinh-Gordon equation

 \label {4.25} \boxed {u_{+-} = - \sinh u} 

   

 

(5.45) 

if λ2 ą 0 . 

The equations (5.43)-(5.45) are special: they have “hidden” conservation laws that generic 

interacting relativistic field equations u`´ “ ´ V 1p u q lack. More can be done in this direction 

– in particular, it is possible to show that the extra charge just found for Sine-Gordon is the 

first of an infinite sequence, just like for KdV – but instead the next chapter will look into how 

the sine-Gordon kinks scatter against each other.



 

Chapter 6 

Bäcklund transformations 

The main reference for this chapter is §5.4 of [Drazin and Johnson, 1989]. 

So far, we have constructed solutions for moving solitons only as travelling waves, which de- 

scribe the propagation of a single soliton. Our next goal will be to construct analytic solutions 

for multiple colliding solitons. In these cases it won’t be possible to reduce the partial differ- 

ential equation to an ordinary differential equation, so the existence of such exact solutions is 

much more surprising. The method that we will use in this chapter is a solution-generating 

technique called the Bäcklund transformation . 

The method was introduced in the late 19th century by the Swedish mathematician Albert 

Victor Bäcklund and by the Italian mathematician Luigi Bianchi1 in the 1880s to map be- 

tween pairs of surfaces in three-dimensional space. The sine-Gordon equation appears in this 

context when one considers hyperboloids, which are surfaces of negative curvature. 

There are two main uses of the Bäcklund transformation: 

1. To generate solutions of a difficult PDE from solutions of a simpler PDE ; 

2. To generate new solutions of a given PDE from already known solutions of the 

same PDE . 

We will mostly be interested in use 2 , but you will see examples of use 1 in Ex 26-28 in the

 

1who, notably, was born Parma, the hometown of next term’s lecturer. This is the same Bianchi after whom 

the Bianchi identities in differential geometry and general relativity are named. 
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problem sheet. Our final goal in this chapter will be to obtain multi-soliton solutions of the 

sine-Gordon equation. 

6.1 Definition 

Consider two functions u and v , and two differential equations

&\boxed {P[u]=0} \label {5.1} \\ &\boxed {Q[v]=0} \label {5.2}

  





 





 

where P and Q are two differential operators. 

If there is a pair of relations (which could be differential equations)

 \label {5.3} \boxed {R_1[u,v]=0~, \quad R_2[u,v]=0} 

       

 

(6.3) 

between u and v such that 

- If P r u s “ 0 , i.e. (6.1), then (6.3) can be solved for v , to give a solution of (6.2), Q r v s “ 0 ; 

- If Q r v s “ 0 , i.e. (6.2), then (6.3) can be solved for u , to give a solution of (6.1), P r u s “ 0 ; 

then (6.3) is called a Bäcklund transformation (BT) . If furthermore P “ Q , so that the two 

differential equations are identical, then (6.3) is called an auto-Bäcklund transformation 

(a-BT) . 

This is useful if (6.3) is easier to solve than (6.1) or (6.2). Then we can use (6.3) to generate 

solutions of the harder equation from solutions of the easier equation. If P “ Q , we can start 

from a simple seed solution ( e.g. u “ 0 ) to generate new non-trivial solutions. 

Vocabulary

 

: 

‚ (6.1) and (6.2) are “integrability conditions” for the Bäcklund transformation (6.3). 

‚ (6.3) can be integrated for v if the integrability condition P r u s “ 0 is satisfied. 

‚ (6.3) can be integrated for u if the integrability condition Q r v s “ 0 is satisfied. 

6.2 A simple example 

Take the two-dimensional Laplace operator P “ Q “ B2 

x ` B2 

y 

in (6.1) and (6.2):

P[u]&= u_{xx}+u_{yy}=0 \label {5.4}\\ Q[v]&= v_{xx}+v_{yy}=0 \label {5.5}

    

 

   

 





   

 

and for the Bäcklund transformation (6.3)

 \label {5.6} \begin {split} R_1[u,v]&=u_x-v_y=0\\ R_2[u,v]&=u_y+v_x=0~. \end {split} 

    



       

 

(6.6) 

Let us check that (6.4)-(6.5) are integrability conditions for (6.6). Differentiating (6.6) with 

respect to x and y and adding or subtracting we find

 0 &= +\de _x R_1+\de _y R_2 = +u_{xx} - v_{yx} + u_{yy} + v_{xy} = u_{xx} + u_{yy} \\ 0 &= -\de _y R_1+\de _x R_2 = -u_{xy} + v_{yy} + u_{yx} + v_{xx} = v_{xx} + v_{yy}~,

 

 

       

  

 

 

           



 

therefore the relations (6.6) imply (6.4) and (6.5).2 This shows that (6.6) is an auto-Bäcklund 

transformation for the two-dimensional Laplace equation. 

EXAMPLE

 

: 

v p x, y q “ 2 xy solves the Laplace equation (6.5). Let us use the a-BT to find another solution 

u of the same equation: 

# 

ux “ vy 

“ 2 x 

uy 

“ ´ vx “ ´ 2 y 

ùñ 

# 

u “ x2 ` f p y q 

f 1p y q “ ´ 2 y ñ f p y q “ ´ y2 ` c , 

so we find the function u p x, y q “ x2 ´ y2 ` c , where c is a constant. It is immediate to check 

that this u solves the Laplace equation (6.4). 

The equations R1r u, v s “ R2r u, v s “ 0 in (6.6) are nothing but the Cauchy-Riemann equa- 

tions for the holomorphic ( “ complex analytic) function w “ u ` iv of the complex variable 

z “ x ` iy . In the example above, w p z q “ z2 ` c . The equations P r u s “ 0 and Q r v s “ 0 

in (6.4)-(6.5) simply state that the real and imaginary parts of a holomorphic function are har- 

monic, that is, they solve the Laplace equation. Two such functions u and v are often called 

harmonic conjugate of each other. 

REMARKS

 

: 

1. Given v , the Bäcklund transformation (6.6) is a system of two equations for u . Generi- 

cally there won’t be any solutions for the system (6.6). For example, if we pick v “ x2, 

then the system 

# 

ux “ vy 

“ 0 

uy 

“ ´ vx “ ´ 2 x 

has no solutions for u . But v “ x2 doesn’t solve (6.5)! The integrability condition (6.5) 

is what guarantees that the system (6.6) can be consistently solved for u .

 

2Note: in this example we don’t even need to use the other differential equation. This is not always the case.
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2. This auto-Bäcklund transformation generates a new solution to the Laplace equation 

from a seed solution, but if we apply it a second time we get back the original seed solu- 

tion (up to an irrelevant integration constant that we can ignore). So this auto-Bäcklund 

transformation is an involution. To get further solutions we will need to introduce a 

parameter. 

6.3 The Bäcklund transformation for sine-Gordon 

Recall that the sine-Gordon equation written in light-cone coordinates x˘ “ 

1

 

2
p t ˘ x q is

 \label {5.7} \boxed {u_{+-}=-\sin u}. 

   





 

(6.7) 

Let us try the Bäcklund transformation

 \label {5.8} \boxed {\begin {split} (u-v)_+ &= \frac {2}{a}\sin \left (\frac {u+v}{2}\right )\\ (u+v)_- &= -2a\sin \left (\frac {u-v}{2}\right ) \end {split}} 

  









 







    

 







 

(6.8) 

where a is a (non-zero) parameter. Cross-differentiating, and recalling that sin p A ˘ B q “ 

sin A cos B ˘ cos A sin B , which implies sin p A ` B q ` sin p A ´ B q “ 2 sin A cos B ,

 (u-v)_{+-} &= \onea \cos \left (\frac {u+v}{2}\right )\cdot (u+v)_- = -2 \cos \left (\frac {u+v}{2}\right ) \sin \left (\frac {u-v}{2}\right )\\ &=-\sin u+\sin v\\ (u+v)_{-+} &= -a \cos \left (\frac {u-v}{2}\right )\cdot (u-v)_+= -2 \cos \left (\frac {u-v}{2}\right ) \sin \left (\frac {u+v}{2}\right )\\ &=-\sin u-\sin v~.

  









 







     

 









 







     

    

 







     

 









 







      

 

Adding and subtracting, we find that both u and v obey the sine-Gordon equation:

&\boxed {u_{+-}=-\sin u} \label {5.9} \\ &\boxed {v_{+-}=-\sin v} \label {5.10}

   





   





 

Therefore (6.8) is an auto-Bäcklund transformation for the sine-Gordon equation, for any non- 

zero value of a . The extra parameter will allow us to generate multi-soliton solutions. We will 

start in the next section by rederiving the one-kink solution. 

6.4 First example: the sine-Gordon kink from the vacuum 

Let us take the vacuum solution

 \label {5.11} \boxed {v=0} 

 

 

(6.11)
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as our initial (seed) solution. Then the auto-Bäcklund transformation (6.8) is

 \label {5.12} \begin {split} u_+&= \twoa \sin \frac {u}{2}\\ u_-&= -2a \sin \frac {u}{2}~. \end {split} 

















  









 

(6.12) 

We can integrate both equations by separation of variables, using the indefinite integral 

ż 

du

 

sin 

u

 

2 

“ 2 log tan 

u

 

4 

up to an integration constant. We get

 \label {5.13} \begin {cases} \twoa x^+ = 2 \log \tan \frac {u}{4}+f(x^-)\\ -2a x^- = 2 \log \tan \frac {u}{4}+g(x^+) \end {cases} 









   







 

   









 

(6.13) 

where the functions f and g are “constants” of integration. They are only constant with respect 

to the variable that is integrated, but they can (and do!) depend on the other variable. 

Subtracting and rearranging, we get

 \label {5.14} \twoa x^+ + g(x^+) = -2a x^- + f(x^-)~. 










 
 



 

(6.14) 

The left-hand-side is only a function of x`, while the right-hand-side is only a function of x´. 

Since the two sides are equal, they must therefore be equal to a constant, which we set to be 

´ 2 c for future convenience. Hence

 f(x^-) &= 2a x^- -2c\\ g(x^+) &= -\twoa x^+-2c


 




 










 

and so 

2 log tan 

u

 

4 

“ 

2

 

a 

x`
´ 2 ax´

` 2 c , 

that is

 \label {5.15} \boxed {u=4\arctan \left (e^{\onea x^+-a x^-+c}\right )}~. 

  



















 

(6.15) 

Finally, we convert to p x, t q coordinates: 

1

 

a 

x`
´ ax´

“ 

1

 

2 a
p t ` x q´ 

a

 

2
p t ´ x q “ 

1

 

2 

„ˆ 

a ` 

1

 

a 

˙ 

x ´ 

ˆ 

a ´ 

1

 

a 

˙ 

t 

ȷ 

“ 

1 ` a2

 

2 a 

ˆ 

x ´ 

a2 ` 1

 

a2 ´ 1 

t 

˙ 

.
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Defining

 \label {5.16} \boxed { \begin {split} v &:= \frac {a^2-1}{a^2+1}\\ \epsilon &:= \sign (a)\\ \gamma &:= \frac {1}{\sqrt {1-v^2}} \underset {\ast \text {Ex}}{=} \frac {1+a^2}{2|a|} \end {split} }~, 



 



 

 











 





 









 

(6.16) 

the solution (6.15) generated by an auto-Bäcklund transformation of the vacuum is

  \boxed {u(x,t)=4\arctan \left (e^{\epsilon \gamma (x-x_0-vt)}\right )}~, 

   











 

(6.17) 

where we traded the integration constant c for x0. This solution describes a kink or an anti- 

kink moving at velocity v . 

Properties:

 

a ą 0 : kink | a | ą 1 : right-moving 

a ă 0 : anti-kink | a | ă 1 : left-moving

 

a ă ´ 1 :

 

´ 1 ă a ă 0

 

0 ă a ă 1

 

a ą 1

 

Right-moving

 

Left-moving

 

Left-moving

 

Right-moving

 

anti-kink

 

anti-kink

 

kink

 

kink

 

So the auto-Bäcklund transformation creates a kink/anti-kink from the vacuum! By varying 

the parameter a P R zt 0 u and the integration constant x0 

or c , we reproduce all the kink and 

anti-kink solutions derived in section 3.2 as travelling waves. 

The amazing fact is that this holds more generally: the auto-Bäcklund transformation (almost) 

always adds a kink or an anti-kink to the seed solution.3 (The only exception is if one tries to 

add a soliton with the same velocity as one already present.) Therefore we can think of the 

auto-Bäcklund transformation as a solution-generating technique which “adds” kinks or 

anti-kinks. 

We will use the following graph to denote the action of a Bäcklund transformation on with 

parameter a and integration constant c on a seed solution u1, which adds a kink or anti-kink 

and generates the new solution u2:

 

3Which of the two is added depends on the seed. More about this later.
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u1

 

u2

 

a

 

c

 

We can add a kink/anti-kink wherever we like (by choosing c ) and with whatever velocity we 

like (by choosing a ). For example

 

u0

 

u1

 

u2

 

u3

 

a1

 

c1

 

a2

 

c2

 

a3

 

c3

 

adds three kinks/anti-kinks to the seed solution u0. 

The problem with this is that the integrations get harder and harder as we keep adding solitons. 

Luckily, a nice theorem tells us that, having found one-soliton solutions, we can obtain multi- 

soliton solutions without doing any further integrals. 

6.5 The theorem of permutability 

Let’s apply the Bäcklund transformation twice, with parameters a1 

and a2, in the two possible 

orders:

 

u0

 

u1

 

u2

 

u3

 

u4

 

a1

 

a2

 

a1

 

a2

 

The final results u3 

and u4 

both look like the seed solution u0 

with two added solitons, with 

parameters a1 

and a2. Could they actually be the same solution? The answer is yes, according 

to the following theorem: 

THEOREM

 

(Bianchi 1902): 

For any u1 

and u2, the integration constants in the second Bäcklund transformations, 

which generate u3 

and u4, can be arranged such that u3 

and u4 

are equal.

 

In other words, the a1 

and a2 

BT’s can be made to commute . Diagrammatically:
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u0

 

u1

 

u2

 

u3

 

a1

 

a2

 

a2

 

a1

 

I will spare you the proof of the theorem, which is a bit involved. Hopefully the statement 

makes intuitive sense, given the soliton content of u3 

and u4. 

This result has a nice application. We have two ways of getting to u3 

from u0: either through 

u1 

or through u2. By comparing these two ways we will be able to get rid of all derivatives 

in the Bäcklund transformations and thereby obtain an algebraic relation between the four 

solutions u0 

, u1 

, u2 

, u3. 

Let’s start by considering the B` 

parts of the transformations, and let’s look at the upper route 

first:

 

u0

 

u1

 

u3

 

a1

 

a2

 

We have

 \label {5.18} \begin {split} (u_1-u_0)_+&=\frac {2}{a_1} \sin \frac {u_1+u_0}{2}\\ (u_3-u_1)_+&=\frac {2}{a_2} \sin \frac {u_3+u_1}{2}~. \end {split} 

  









 





  









 







 

(6.18) 

Adding the two equations to cancel u1 

out in the left-hand side, we get

 \label {5.19} \boxed {(u_3-u_0)_+= \frac {2}{a_1}\sin \frac {u_1+u_0}{2}+\frac {2}{a_2} \sin \frac {u_3+u_1}{2}}~. 

  









 















 









 

(6.19) 

For the lower route
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u0

 

u2

 

u3

 

a2

 

a1

 

we swap a1 Ø a2, u1 Ø u2 

and get

 \label {5.20} \boxed {(u_3-u_0)_+= \frac {2}{a_2}\sin \frac {u_2+u_0}{2}+\frac {2}{a_1} \sin \frac {u_3+u_2}{2}}~. 

  









 















 









 

(6.20) 

We have found two different expressions for p u3´ u0q`. Equating them, we obtain an algebraic 

relation between u0 

, u1 

, u2 

, u3:

 \label {5.21} \boxed { \frac {1}{a_1}\sin \frac {u_1+u_0}{2}+\frac {1}{a_2} \sin \frac {u_3+u_1}{2}= \frac {1}{a_2}\sin \frac {u_2+u_0}{2}+\frac {1}{a_1} \sin \frac {u_3+u_2}{2}}~. 









 















 















 















 









 

(6.21) 

This is very useful: for example, starting from u0 

equal to the vacuum and two one-soliton 

solutions u1 

, u2, we can generate a 2-soliton solution u3 

algebraically. We can then iterate the 

procedure and get a 3-soliton solution, then a 4-soliton solution, and so on and so forth. What 

we have found is akin to a “non-linear superposition principle” : the Bäcklund transfor- 

mation and the permutability theorem provide us with a machinery to “add” solutions of a 

non-linear equation! 

To check that this procedure is consistent, let’s see what happens for the B´ 

part of the Bäck- 

lund transformations. For the upper route

 

u0

 

u1

 

u3

 

a1

 

a2

 

we have

 \label {5.22} \begin {split} (u_1+u_0)_-&=-2a_1 \sin \frac {u_1-u_0}{2}\\ (u_3+u_1)_-&=-2a_2 \sin \frac {u_3-u_1}{2}~. \end {split} 

    

 





    

 







 

(6.22) 

Subtracting the two equations we get

 \label {5.23} \boxed {(u_0-u_3)_-= 2a_2\sin \frac {u_3-u_1}{2}-2a_1 \sin \frac {u_1-u_0}{2}}~. 

    

 





 

 









 

(6.23)
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For the lower route

 

u0

 

u2

 

u3

 

a2

 

a1

 

we swap again a1 Ø a2, u1 Ø u2 

and get

 \label {5.24} \boxed {(u_0-u_3)_- = 2a_1 \sin \frac {u_3-u_2}{2}-2a_2 \sin \frac {u_2-u_0}{2}}~. 

    

 





 

 









 

(6.24) 

Equating (6.23) and (6.24), we find the algebraic relation

 \label {5.25} \boxed { a_2\sin \frac {u_3-u_1}{2}- a_1 \sin \frac {u_1-u_0}{2} = a_1 \sin \frac {u_3-u_2}{2}- a_2 \sin \frac {u_2-u_0}{2} }~. 



 





 

 





 

 





 

 









 

(6.25) 

Consistency requires that the two algebraic relations (6.21) and (6.25) agree. To see that, let’s 

first rewrite (6.21) in the following form: 

1

 

a1 

´ 

sin 

u1 ` u0

 

2 

´ sin 

u3 ` u2

 

2 

¯ 

“ 

1

 

a2 

´ 

sin 

u2 ` u0

 

2 

´ sin 

u3 ` u1

 

2 

¯ 

. 

Multiplying by a1 

a2{ 2 and using the identity sin A ˘ sin B “ 2 sin 

A ̆  B

 

2 

cos 

A ̄  B

 

2 

, this becomes

 \label {5.26} \boxed {\begin {split} &a_2 \sin \frac {u_1+u_0-u_3-u_2}{4} \cancel {\cos \frac {u_1+u_0+u_3+u_2}{4}} \\ &\qquad \qquad \qquad \qquad \qquad \qquad = a_1 \sin \frac {u_2+u_0-u_3-u_1}{4} \cancel {\cos \frac {u_2+u_0+u_3+u_1}{4}} ~ \end {split}} 



     





























     





 

     





























     





 

(6.26) 

where we are allowed to simplify the common cosine factor in the two sides because the 

argument is a function of x and t which is generically different from π { 2 modulo π . 

Similarly, (6.25) can be rearranged as 

a1 

´ 

sin 

u3 ´ u2

 

2 

` sin 

u1 ´ u0

 

2 

¯ 

“ a2 

´ 

sin 

u3 ´ u1

 

2 

` sin 

u2 ´ u0

 

2 

¯ 

, 

which upon using the same trigonometric identity as above becomes

 \label {5.27} \boxed {\begin {split} &a_1 \sin \frac {u_3-u_2+u_1-u_0}{4} \cancel {\cos \frac {u_3-u_2-u_1+u_0}{4}} \\ &\qquad \qquad \qquad \qquad \qquad \qquad = a_2 \sin \frac {u_3-u_1+u_2-u_0}{4} \cancel {\cos \frac {u_3-u_1-u_2+u_0}{4}} ~ \end {split}} 



     





























     





 

     





























     





 

(6.27)
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which agrees with equation (6.26) upon simplification. So everything is consistent. 

To conclude this discussion, let’s manipulate (the simplified version of) equation (6.26) a bit 

further, with the aim of determining u3 

given u0 

, u1 

and u2. Letting A “ p u0 

´ u3q{ 4 and 

B “ p u1 ´ u2q{ 4 , (6.26) becomes

 a_1 \sin (A-B)&=a_2 \sin (A+B) \\ \Longrightarrow \quad a_1 (\sin A \cos B - \sin B \cos A) &= a_2 (\sin A \cos B + \sin B \cos A)~.

       

                   

 

Dividing through by cos A cos B , we find

 a_1 (\tan A - \tan B ) &= a_2 (\tan A + \tan B)~.\\ \Longrightarrow \quad (a_1-a_2) \tan A &= (a_1+a_2) \tan B~.

          

           

 

In terms of u0 

, u1 

, u2 

, u3, this reads

 \label {5.28} \boxed {\tan \frac {u_0-u_3}{4} =\frac {a_1+a_2}{a_1-a_2} \tan \frac {u_1-u_2}{4} }~, 



 







 



 



 









 

(6.28) 

which is an improvement on (6.26) since u3 

appears only once. Equivalently, we can write

 \label {5.29} \boxed {\tan \frac {u_3-u_0}{4} =\frac {a_2+a_1}{a_2-a_1} \tan \frac {u_1-u_2}{4} }~. 



 







 



 



 









 

(6.29) 

Either of (6.28) or (6.29) allow us to express u3 

in terms of u0 

, u1 

, u2. 

6.6 The two-soliton solution 

Finally a payoff. Take the vacuum as the seed solution, i.e. u0 “ 0 . Then u1 

and u2 

are known 

from before: they are single kinks or antikinks. Equation (6.29) gives the double Bäcklund 

transformed u3 

as

 \label {5.32} \tan \frac {u_3}{4} = \frac {a_2+a_1}{a_2-a_1} \tan \frac {u_1-u_2}{4} = \frac {a_2+a_1}{a_2-a_1} \frac {\tan \frac {u_1}{4}-\tan \frac {u_2}{4}}{1+\tan \frac {u_1}{4}\tan \frac {u_2}{4}}~, 











 



 



 







 



 



















 

















 

(6.30) 

where we used the trigonometric identity 

tan p A ´ B q “ 

tan A ´ tan B

 

1 ` tan A ¨ tan B 

for the second equality. The 1-soliton ( i.e. kink or antikink) solutions are

 \label {5.30} \boxed {\tan \frac {u_i}{4}=e^{\theta _i}} \quad (i=1,2) 













  

 

(6.31)
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where

 \label {5.31} \boxed {\theta _i=\frac {x^+}{a_i}-a_i x^-+c_i = \epsilon _i\gamma _i(x-\bar {x}_i-v_it)} ~, 












  

   







 

(6.32) 

as seen in section 6.4. Here ¯ x1 , 2 

are the centres of the two solitons at t “ 0 . Substituting 

equation (6.31) in equation (6.30) we find the 2-soliton solution xx

 \label {5.34} \boxed {\tan \frac {u_3}{4} = \mu \frac {e^{\theta _1}-e^{\theta _2}}{1+e^{\theta _1+\theta _2}}} 











 



 

 

(6.33) 

where

 \label {5.33} \boxed {\mu =\frac {a_2+a_1}{a_2-a_1}} 



 



 

 

(6.34) 

REMARK

 

: 

If the two solitons have the same velocity v1 “ v2, which means 

a2 

1 ´ 1

 

a2 

1 ` 1 

“ 

a2 

2 ´ 1

 

a2 

2 ` 1 

ùñ a1 “ ˘ a2 

, 

then µ “ 0 or 8 and the 2-soliton solution (6.33) breaks down. In particular, there is no static 

2-soliton solution! As we will see later, this is because the two solitons exert a force on one 

another. 

But this is too fast. We haven’t confirmed yet that equation (6.33) contains two solitons. Let’s 

understand that next. 

6.7 Asymptotics of multisoliton solutions 

We will focus here on the 2-soliton solution of the sine-Gordon equation, but the method 

applies more generally to any multi-soliton solutions of integrable equations ( e.g. the KdV 

equation). 

Our goal will be to study the new solution (6.33) and identify two solitons hidden in its asymp- 

totics for t Ñ ¯8 , namely BEFORE and AFTER the collision. Here is an example of what the 

solution may look like at early times (before the collision) and at late times (after the collision) 

in the case of a collision of a kink and an anti-kink:
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It is not completely obvious how to find the early time and late time asymptotics analytically. 

If we just take t ˘ 8 with x fixed, the two solitons will be at spatial infinity and we will miss 

them (unless one of the two has zero velocity, in which case we will see that soliton). We 

should instead follow one or the other soliton by letting

 \label {5.35} \boxed {t \to \pm \infty \qquad \text {with} \qquad X_V=x-Vt \quad \text {fixed}}~, 

   

    





 

(6.35) 

for some appropriate constant velocity V . If there is a soliton moving at velocity V in the 

original p x, t q coordinates, it will appear stationary in the p XV 

, t q coordinates. For this reason 

p XV 

, t q is called a “comoving frame” : they are coordinates for a reference frame which moves 

together with an object ( e.g. a soliton) of velocity V . 

Let us try this for the solution (6.33) which we obtained from a double Bäcklund transformation 

of the vacuum. We will now use u to denote the field in the resulting solution, which reads 

tan 

u

 

4 

“ µ 

eθ1 ´ eθ2

 

1 ` eθ1` θ2 

with 

µ “ 

a2 ` a1

 

a2 ´ a1 

, θi “ ϵi 

γip x ´ vi 

t ´ ¯ xiq . 

If we switch to a comoving frame with velocity V , the exponents read

 \label {5.36} \begin {split} \theta _i &= \epsilon _i \gamma _i (x-Vt +Vt -v_it-\bar x_i)\\&= \epsilon _i \gamma _i (X_V -(v_i-V)t-\bar x_i)~, \end {split} 

 

       

 





      

 

(6.36) 

where we see the appearance of the “relative velocity” vi 

´ V , that is the velocity in the 

comoving frame. 

For each soliton we now have three cases for the limit (6.35), corresponding to a positive, zero 

or negative relative velocity for the soliton: 

Case

 

t Ñ ´8

 

t Ñ `8

 

V ă vi

 

θi Ñ ` ϵi8

 

θi Ñ ´ ϵi8 

V “ vi

 

θi 

finite

 

θi 

finite 

V ą vi

 

θi Ñ ´ ϵi8

 

θi Ñ ` ϵi8
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Recall that ϵi “ ˘ 1 is a sign, and γi ą 0 so it does not affect the sign of θi 

in the limit. 

This tells us that if V ‰ v1 

, v2

 

, then θ1 

, θ2 Ñ ˘8 as | t | Ñ 8 . This implies that4 

tan 

u

 

4 

“ µ 

eθ1 ´ eθ2

 

1 ` eθ1` θ2 

Ñ ˘8 or 0 . 

So u { 4 tends to an integer multiple of π { 2 , which means that u tends to an integer multiple 

of 2 π : the field is in the vacuum. The conclusion is that if we go off to infinity in the original 

p x, t q plane in any direction apart from 

dx

 

dt 

“ v1 

, v2, then u Ñ 2 π n for some n P Z . 

If instead V “ v1 

or v2

 

, we need to study the limit more carefully. We will consider a single 

case a1 

, a2 ą 0

 

, leaving the other cases for the exercises. Since a1 

‰ a2 

for the solution to 

exist, let us take without loss of generality 

a2 ą a1 ą 0

 

ùñ v2 ą v1 

, ϵ1 “ ϵ2 “ 1 , µ ą 0 . 

Consider V “ v1

 

first, or "let’s ride the slower soliton". In the comoving frame the exponents 

θi 

read

 \label {5.37} \boxed { \begin {split} \theta _1 &= \gamma _1(x-v_1 t-\bar x_1) = \gamma _1 (X_{v_1}-\bar x_1) \\ \theta _2 &= \gamma _2(x-v_2 t-\bar x_2) = \gamma _2 (X_{v_1}-(v_2-v_1)t-\bar x_2) \end {split} } 

   

     

   

         

 

(6.37) 

so θ1 

stays finite, whereas θ2 Ñ ¯8 as t Ñ ˘8 with Xv1 

fixed (I used that v2 ą v1). 

One of the two limits is easier to analyse, so let’s start with that: 

1. t Ñ `8

 

: 

In this limit θ2 Ñ ´8 , so eθ2 Ñ 0 and

 \tan \frac {u}{4} &= \mu \frac {e^{\theta _1}-e^{\theta _2}}{1+e^{\theta _1+\theta _2}}\\ &\to \mu e^{\theta _1}\\ &= \mu e^{\gamma _1 (X_{v_1}-\bar x_1)}\\ &= e^{\gamma _1 \left (x-v_1t-\bar x_1+\frac {1}{\gamma _1} \log \mu \right )}~,











 



 




























       

       

 ++&: \qquad \tan (u/4)\to 0\\ +-&: \qquad \tan (u/4)\to +\infty \\ -+&: \qquad \tan (u/4)\to -\infty \\ --&: \qquad \tan (u/4)\to 0~.
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where in the last line we have expressed the finite limit in the comoving coordinates in 

terms of the original p x, t q coordinates. 

This is a kink, the centre of which moves with velocity v1 

along the trajectory

 \label {5.38} \boxed {x=v_1t+\bar x_1 -\frac {1}{\gamma _1}\log \frac {a_2+a_1}{a_2-a_1}}~. 

 

  









 



 





 

(6.38) 

The last term is negative and represents a backward shift in space of the slower soliton 

compared to where it would have been at the same time in the absence of the faster 

soliton. (Equivalently, we can view this as a time delay for reaching a fixed value of x .) 

2. t Ñ ´8

 

: 

In this limit θ2 Ñ `8 , so eθ2 Ñ `8 and

 \tan \frac {u}{4} &= \mu \frac {e^{\theta _1}-e^{\theta _2}}{1+e^{\theta _1+\theta _2}}\\ &\to -\mu e^{-\theta _1}~.











 



 

 

 

Recalling that tan 

`

A ˘ 

π

 

2 

˘

“ ´ 

1

 

tan A
, this means that

 \tan \left (\frac {u}{4}\pm \frac {\pi }{2} \right ) &\to \mu ^{-1} e^{\theta _1} \\ &= e^{\gamma _1 \left (x-v_1t-\bar x_1-\frac {1}{\gamma _1} \log \mu \right )}~.










































 

Therefore 

u
ˇ

ˇ 

t Ñ´8 , Xv1 

finite « ˘ 2 π ` 4 arctan e
γ1 

´ 

x ́  v1 

t ́  ¯ x1´ 

1

 

γ1 

log µ 

¯ 

. 

(The ˘ sign ambiguity can be fixed by continuity. It turns out that ´ 2 π is correct.) 

This is a kink, the centre of which moves with velocity v1 

along the trajectory

 \label {5.39} \boxed {x=v_1t+\bar x_1+\frac {1}{\gamma _1}\log \frac {a_2+a_1}{a_2-a_1}}~. 

 

  









 



 





 

(6.39) 

The last term is positive and represents a forward shift of the slower soliton compared 

to where it would have been at the same time in the absence of the faster soliton. (Equiv- 

alently, we can view this as a time advancement.) 

Comparing the trajectories at early times ( t Ñ ´8 ) and at late times ( t Ñ `8 ), we see that 

the collision with the faster soliton shifts the slower soliton backwards by 

2

 

γ1 

log 

a2 ` a1

 

a2 ´ a1 

, 

as exemplified by this figure:
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We say that the slower soliton has a negative phase shift:

 \label {5.40} \boxed {\text {PHASE SHIFT}_{\text {slower}}= - \frac {2}{\gamma _1}\log \frac {a_2+a_1}{a_2-a_1}} 

  









 



 

 

(6.40) 

We conclude that the slower kink emerges from the collision with the same shape and velocity, 

but delayed by a finite phase shift. 

Now consider V “ v2

 

, or "let’s ride the faster soliton". The calculation is similar to what we 

did above, so I’ll let you work out the details in [Ex 30] . If you do this exercise you will 

find a surprise: even though a2 

ą 0 , so that acting on the vacuum with the a2-Bäcklund 

transformation produces a kink, the component of the two-soliton solution (6.33) that moves 

at velocity v2 

is actually an anti-kink! So, even though the Bäcklund transformation always 

adds a soliton, the nature of the added soliton depends on what is already there. 

The shifts have opposite signs to before, as exemplified by this figure:
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This results in a positive phase shift:

 \label {5.41} \boxed {\text {PHASE SHIFT}_{\text {faster}}= + \frac {2}{\gamma _2}\log \frac {a_2+a_1}{a_2-a_1}}~. 

  









 



 





 

(6.41) 

Summarising, we have the following picture for the collision of the anti-kink and the kink:

 

Figure 6.1: Schematic summary of the kink-antikink solution. 

See also here for the plot of the kink-antikink solution with parameters a1 

“ 1 . 1 and a2 

“ 2 , 

here for a contour plot of its energy density, which clearly shows the trajectories of the kink 

and the anti-kink, and here for an animation of the time evolution. 

REMARK

 

: 

From the plot of the exact solution or the contour plot of its energy density we see that the 

kink and the anti-kink attract each other. Indeed we observe that they get closer during the 

interaction. 

The remaining cases for the signs of a1 

and a2 

can be analysed similarly, see [Ex 31] and [Ex 

32] . In particular, the 2-soliton solution that contains two kinks is depicted in figure 6.7.5 (See 

also here for a plot of the kink-kink solution with parameters a1 

“ 0 . 6 and a2 

“ ´ 1 . 5 , here 

for a contour plot of its energy density, which clearly shows the trajectories of the two kinks, 

and here for an animation of the time evolution.)

 

5The solution that contains two anti-kinks can be obtained by sending u ÞÑ ´ u .

http://www.maths.dur.ac.uk/~tnmm74/pictures_animations_Solitons/antikink-kink.jpg
http://www.maths.dur.ac.uk/~tnmm74/pictures_animations_Solitons/antikink-kink_energy_density.jpg
http://www.maths.dur.ac.uk/~tnmm74/pictures_animations_Solitons/antikink-kink_animation.gif
http://www.maths.dur.ac.uk/~tnmm74/pictures_animations_Solitons/antikink-kink.jpg
http://www.maths.dur.ac.uk/~tnmm74/pictures_animations_Solitons/antikink-kink_energy_density.jpg
http://www.maths.dur.ac.uk/~tnmm74/pictures_animations_Solitons/kink-kink.jpg
http://www.maths.dur.ac.uk/~tnmm74/pictures_animations_Solitons/kink-kink_energy_density.jpg
http://www.maths.dur.ac.uk/~tnmm74/pictures_animations_Solitons/kink-kink_animation.gif
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Figure 6.2: Schematic summary of the kink-kink solution. 

From the plot of the exact solution or the contour plot of its energy density we see that the 

two kinks repel each other. Indeed they get further apart during the interaction. Curiously, 

they also seem to swap their identities! 

INTERPRETATION:

 

ATTRACTIVE FORCE between kink and anti-kink 

REPULSIVE FORCE between kink and kink 

REPULSIVE FORCE between anti-kink and anti-kink

 

So kinks and anti-kinks behave similarly to elementary particles with electric charge, such as 

the electron and the positron. The role of electric charge is played here by the topological 

charge: 

Solitons with like topological charges repel 

Solitons with opposite topological charges attract.

 

It is quite amazing that lump of fields can behave so similarly to pointlike elementary particles. 

In the 1950’s and 1960’s, Tony Skyrme used versions of kinks (and anti-kinks) in four spacetime 

dimensions to model the behaviour of protons and neutrons in atomic nuclei. This is a very far-

http://www.maths.dur.ac.uk/~tnmm74/pictures_animations_Solitons/kink-kink.jpg
http://www.maths.dur.ac.uk/~tnmm74/pictures_animations_Solitons/kink-kink_energy_density.jpg
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reaching idea, which unfortunately we don’t have time to investigate further in this module. 

We have seen that kinks and anti-kinks attract each other. This raises a natural question: 

can they stick together, or in physics parlance “form a bound state”? The answer is yes. The 

resulting bound state of a kink and an anti-kink is the “breather”, which we now turn to. 

6.8 The breather 

Recall the general 2-soliton solution (6.33) of the sine-Gordon equation, that we rewrite here 

for convenience: 

u “ 4 arctan 

ˆ 

a2 ` a1

 

a2 ´ a1 

eθ1 ´ eθ2

 

1 ` eθ1` θ2 

˙

 

. 

This is a solution of the sine-Gordon equation for any values of the Bäcklund parameters a1 

and a2 

(and integration constants c1 

and c2), even complex values. However, the sine-Gordon 

field u is an angle and so it must be real. There are essentially two options to achieve this:6 

1. a1 

, a2 

(and c1 

, c2) P R :

 

this is what we have considered so far; 

2. a2 “ a˚ 

1 

(and c2 “ c˚ 

1 ):

 

this is what we will consider next. But let’s first check that the 

corresponding u is real:

 u^* &= \left [4\arctan \left (\frac {a_2+a_1}{a_2-a_1} \frac {e^{\theta _1}-e^{\theta _2}}{1+e^{\theta _1+\theta _2}}\right )\right ]^*\\ &=4\arctan \left (\frac {a_2^*+a_1^*}{a_2^*-a_1^*} \frac {e^{\theta _1^*}-e^{\theta _2^*}}{1+e^{\theta _1^*+\theta _2^*}}\right )\\ &=4\arctan \left (\frac {a_1+a_2}{a_1-a_2} \frac {e^{\theta _2}-e^{\theta _1}}{1+e^{\theta _2+\theta _1}}\right )\\ &=4\arctan \left (\frac {a_2+a_1}{a_2-a_1} \frac {e^{\theta _1}-e^{\theta _2}}{1+e^{\theta _1+\theta _2}}\right )=u~.










 



 

 



 



 





 







 






 






 








 



 



 

 



 



 



 



 

 



 



 

 

To get to the second line we used the fact that arctan p z q and ez are complex analytic 

functions, therefore r arctan p z qs
˚

“ arctan p z˚q and r ezs
˚

“ ez
˚ . To get to the third line 

we used θ2 “ θ˚ 

1 , which follows from a2 “ a˚ 

1 

and c2 “ c˚ 

1 . 

Let us then consider option 2 and try a solution with arbitrary a1 

“ a˚ 

2 

” a and with c1 

“

 

6To be precise, one can also add to the integration constants c1 

and c2 

an integer multiple of π i . This has the 

effect of permuting the two solitons if the multiple is odd, and has no effect if the multiple is even.



 

CHAPTER 6. BÄCKLUND TRANSFORMATIONS 76 

c2 “ 0 for simplicity. Define

 \label {5.42} \boxed { \begin {split} a_1&=a=A+iB=|a|e^{i\varphi }\\ a_2&=\bar a=A-iB=|a|e^{-i\varphi } \end {split} } 

       

       

 

(6.42) 

where A “ Re p a q , B “ Im p a q , φ “ arg p a q , and let

 \label {5.43} \boxed { \begin {split} \theta _1&=\alpha +i\beta \\ \theta _2&=\alpha -i\beta \end {split} }~, 

   

   





 

(6.43) 

with α and β real functions of x, t to be determined below. Then

 \tan \frac {u}{4}&= \frac {|a|(e^{-i\varphi }+e^{i\varphi })}{|a|(e^{-i\varphi }-e^{i\varphi })}\cdot \frac {e^{\alpha +i\beta }-e^{\alpha -i\beta }}{1+e^{2\alpha }}\\ &=\frac {2\cos \varphi }{-2i\sin \varphi }\cdot \frac {2i \sin \beta }{2\cosh \alpha }











 



 


 



 



 



 


 



 

 

which simplifies to

 \label {5.44} \boxed {\tan \frac {u}{4}=-\frac {\cos \varphi }{\sin \varphi }\frac {\sin \beta }{\cosh \alpha }}~. 


























 

(6.44) 

To finish the calculation, let’s determine the functions α , β in terms of the coordinates x, t and 

the parameters | a | and φ :

 \label {5.45} \begin {split} \alpha +i\beta = \theta _1 &= \frac {1}{a}x^+-ax^- \\ &= \frac {\bar a}{|a|^2}x^+-a x^- = \frac {A-iB}{|a|^2}x^+-(A+iB)x^-~. \end {split} 

    























 






   

 

(6.45) 

Therefore

 \alpha = \re (\theta _1)& = \frac {A}{|a|^2}x^+-A x^-\\ &= \frac {A}{|a|}\left (\frac {1}{|a|}x^+ - |a| x^-\right )~.

   

































 

We can now do similar manipulations to those after equation (6.15) to find

 \label {5.46} \boxed {\alpha = \frac {A}{|a|}\gamma (x-vt) \underset {\eqref {5.42}}{=} \cos \varphi \cdot \gamma (x-vt)}~, 









  



    





 

(6.46) 

where

 \label {5.47} \boxed { \begin {split} v&= \frac {|a|^2-1}{|a|^2+1}\\ \gamma &= \frac {1}{\sqrt {1-v^2}} = \frac {1+|a|^2}{2|a|} \end {split} }~. 



 



 











 



 









 

(6.47)
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˚ EXERCISE

 

: Show that similarly [Ex 33]

 \label {5.48} \hspace {-70pt} \boxed {\beta = \frac {B}{|a|}\gamma (vx-t) \underset {\eqref {5.42}}{=} \sin \varphi \cdot \gamma (vx-t)}~. 









  



    





 

(6.48) 

Substituting these expressions in (6.44) we find the breather solution

 \label {5.49} \boxed {\tan \frac {u}{4} = - \cot \varphi \cdot \frac {\sin (\sin \varphi \cdot \gamma (vx-t))}{\cosh (\cos \varphi \cdot \gamma (x-vt))} }~. 









   

    



    





 

(6.49) 

REMARK

 

: 

• The ratio of the prefactor and the denominator in the RHS, 

´ cot φ

 

cosh p cos φ ¨ γ p x ´ v t qq 

, 

defines an envelope which moves at the group velocity v . Recall that | v | ă 1 , where 1 

is the speed of light, so this is consistent with the laws of special relativity. 

• The numerator 

sin p sin φ ¨ γ p x ´ v t qq 

defines a carrier wave which moves at the phase velocity 1 { v . 

To see why the solution (6.49) is called a breather, let us set | a | “ 1 , or equivalently v “ 0 . 

(This can be achieved by switching to a comoving frame if v ‰ 0 .) Then the breather simplifies 

to

 \label {5.50} \boxed {\tan \frac {u}{4} = \cot \varphi \cdot \frac {\sin (\sin \varphi \cdot t)}{\cosh (\cos \varphi \cdot x)}}~ 









  

  



  

 

(6.50) 

and the field looks like a bouncing (or “breathing”) bound state of a kink and an anti-kink, 

with time period

 \label {5.51} \boxed {\tau = \frac {2\pi }{|\sin \varphi |}}~. 







 





 

(6.51) 

See figure (6.3) for a summary of the v “ 0 breather solution, this for a plot of the breather 

solution with v “ 0 and φ “ π { 10 , this for a contour plot of its energy density, which clearly 

shows the trajectories of the breathing pair of kink and anti-kink, and this for an animation 

of the time evolution.

http://www.maths.dur.ac.uk/~tnmm74/pictures_animations_Solitons/breather.jpg
http://www.maths.dur.ac.uk/~tnmm74/pictures_animations_Solitons/breather_energy_density.jpg
http://www.maths.dur.ac.uk/~tnmm74/pictures_animations_Solitons/breather_animation.gif
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Figure 6.3: Summary of the v “ 0 breather solution. 

One can show7 that the v “ 0 breather has energy Ebreather “ 16 cos φ . Since a static kink and 

a static anti-kink have energy Ekink 

“ Eantikink 

“ 8 , the binding energy of the kink and the 

anti-kink in the breather is 

Ebinding “ Ebreather ´ Ekink ´ Eantikink “ ´ 16 p 1 ´ cos φ q . 

This is negative as expected: the binding lowers the energy of the solution. 

As φ Ñ 0

 

, the binding energy tends to zero. It is immediate to see from equation (6.51) that 

the time period of the bounce diverges: τ „ 1 {| φ | Ñ 8 . The spatial size of the breather also 

diverges like [Ex 34] 

xmax „ ´ log | φ |

 

Ñ 8 . 

In this limit the kink and the antikink become more and more loosely bound. The resulting 

solution 

u “ 4 arctan p t ¨ sech p x qq 

describes a kink and an anti-kink starting infinitely far away from one another and doing half 

an oscillation. Since sech p x q « 2 e´| x | as | x | Ñ 8 , the kink and the anti-kink do not follow 

linear trajectories as t Ñ ˘8 . Rather, the asymptotic trajectories of the kink and the anti-kink 

are given by | x | „ log | t | .

 

7This is a good but technical exercise, which is not in the problem sheet.



 

Chapter 7 

The Hirota method 

The main reference for this chapter is §5.3 of [Drazin and Johnson, 1989]. 

This is an alternative to the Bäcklund transformationas a way to generate multi-soliton solu- 

tions, which is sometimes available when the Bäcklund transformation is not. It was devised 

by Hirota [Hirota, 1971] to write N -soliton solutions of the KdV equation, and was then 

generalised to a large class of equations. We will focus on the KdV equation in this chapter. 

7.1 Motivations 

7.1.1 Series solutions 

Let us substitute

 \label {6.1} \boxed {u=w_x} 

 

 

(7.1) 

in the KdV equation 

ut ` 6 uux ` uxxx “ 0 . 

We find the equation 

wxt ` 6 wx 

wxx ` wxxxx “ 0 , 

which we can integrate with respect to x : 

wt ` 3 w2 

x ` wxxx “ g p t q . 

We will drop the integration “constant” (with respect to x ) g p t q in what follows, since it can 

be absorbed in a redefinition of w that does not change u “ wx: 

woldp x, t q “ wnewp x, t q ` 

ż t 

t0 

dt1 g p t1q . 

79
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Using the new w (and dropping the subscript “new”), we have the following equation:

 \label {6.2} \boxed {w_t + 3 w_x^2 +w_{xxx}=0}~. 

 

   





 

(7.2) 

For w small, the w2 

x 

term is negligible and the equation is linear – and hence, easier to solve. 

To be more systematic, we can look for a series solution

  w = \epsilon w_1 + \epsilon ^2w_2+\dots \,. 

        

 

Substituting in and solving order by order in ϵ :

 \epsilon ^1~:&\quad w_1{}_t+w_1{}_{xxx}=0\qquad &\mbox {the linear equation}\\ \epsilon ^2~:&\quad w_2{}_t+3w_1{}_x{}^2+w_2{}_{xxx}=0\qquad &\mbox {the first `correction'}

        

   


     

 

and so on. In principle we can solve these equations in turn, rather as we did for the Gardner 

transform. 

Bad news: We’d need to continue infinitely far to find an exact formula for w . 

Good news: The method would be saved if it happened that wm 

“ 0 for all m ą n for some 

n . Then the approximate solution up to order n would turn out the be exact . 

Bad news: This phenomenon does not happen for the simple scheme just described. Some- 

thing more subtle will be needed, which is exactly what Hirota discovered. 

7.1.2 Some hints 

A close relative of KdV is Burger’s equation :

  u_t+uu_x-\lambda u_{xx}=0~, 

      

 

where λ is a parameter. Substituting u “ ´ 2 λvx{ v “ ´ 2 λ 

B

 

B x
p log v q (exercise!) turns this into 

the linear heat equation

  v_t=\lambda v_{xx}\,. 

 



 

Further evidence that logarithmic derivatives might have a role to play comes if we recall the 

one-soliton solution of KdV:

  u=2\mu ^2 ~\sech ^2\left [\mu (x-x_0-4\mu ^2 t)\right ] 

  



   


 

with

  \mu = \frac {\sqrt {v}}{2}~. 















 

This one-soliton solution can be written as u “ wx 

with

  w=2\mu ~ \tanh \left [\mu (x-x_0-4\mu ^2 t)\right ]\,. 
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We can integrate the right-hand side once more, using tanh y “ 

d

 

dy 

log cosh y to find

  u = 2 \frac {\de ^2}{\de x^2} \log \cosh \left [\mu (x-x_0-4\mu ^2 t)\right ]\,. 

 











   




 

This can be simplified further. Letting X “ x ´ x0 ´ 4 µ2 t ,

 u &= 2 \frac {\de ^2}{\de x^2} \log \frac {e^{-\mu X}(1+e^{2\mu X})}{2}\\ &= 2 \frac {\de ^2}{\de x^2} \left [-\mu X -\log 2+\log \left (1+e^{2\mu X}\right )\right ]\\ &= 2 \frac {\de ^2}{\de X^2} \log \left (1+e^{2\mu X}\right )~.

 









 















    



 















 





 

In terms of the original variables,

  \boxed {u(x,t) = 2 \frac {\de ^2}{\de x^2} \log \left (1+e^{2\mu (x-x_0-4\mu ^2 t)}\right )}~. 

  











 







 

This is the form of the one-soliton solution of KdV that we will refer to in the following. 

7.2 KdV equation in bilinear form 

7.2.1 The quadratic form of the KdV equation 

Inspired by the rewritten form of the one-soliton solution, let’s substitute

 \label {6.9} \boxed {w= 2 \frac {\de }{\de x} \log f = \frac {f_x}{f}} \quad \Longleftrightarrow \quad \boxed {u= 2 \frac {\de ^2}{\de x^2} \log f} 

 







 









  









 

(7.3) 

in equation (7.2).1 Then

  \begin {split} \frac {1}{2}w_t &= \frac {f_{xt}f-f_x f_t}{f^2}~,\\ \frac {1}{2}w_x &= \frac {f_{xx}f-f_x^2}{f^2}~, \\ \frac {1}{2}w_{xx} &= \dots \qquad \qquad \qquad {\text {\Ex {35}}} \\ \frac {1}{2}w_{xxx} &= \frac {f_{xxxx}}{f}-4 \frac {f_{xxx}f_x}{f^2}-3 \frac {f_{xx}^2}{f^2}+12 \frac {f_{xx}f_x^2}{f^3}-6 \frac {f_x^4}{f^4}~, \end {split} 











 



















  















     



























































 

(7.4) 

and equation (7.2) for w becomes [Ex 35] 

fxt

 

f 

´ 

fx 

ft

 

f 2 

` 3 

f 2 

xx

 

f 2 

´ 4 

fxxx 

fx

 

f 2 

` 

fxxxx

 

f 

“ 0

 

1In the literature on integrable systems, the function f is now called the τ -function.
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for f . 

Multiplying by f 2, we find the so called quadratic form of the KdV equation :

 \label {6.11} \boxed {f f_{xt}-f_x f_t +3 f_{xx}^2-4f_x f_{xxx}+f f_{xxxx}=0}~. 

 

  

 

   





 

(7.5) 

Some cancellations have taken place to get to the quadratic form (7.5) of the KdV equation, but 

at first sight this might not seem progress on the initial equation (7.2). But (7.5) is quadratic 

in f and it can be rewritten in a neat way. A hint for that is that 

B

 

B x 

B

 

B t 

ˆ

1

 

2 

f 2 

˙ 

“ 

B

 

B x
p f ftq “ f fxt ` fx 

ft 

. 

This is almost like the first two terms in (7.5), except for the relative sign. We will fix this sign 

problem shortly. 

7.2.2 Hirota’s bilinear operator 

Hirota defined a bilinear differential operator D which maps a pair of functions p f , g q into a 

single function D p f ¨ g q . If we work on C8 functions, then

 D~: \qquad C^\infty \times C^\infty & \to C^\infty \\ (f,g) & \mapsto D(f\cdot g)~,

 




     

 

and bilinearity means that

  \begin {split} D(a_1 f_1 + a_2 f_2\cdot g )&=a_1 D(f_1\cdot g)+ a_2 D(f_2\cdot g)\\ D(f\cdot b_1 g_1 + b_2 g_2) &=b_1 D(f\cdot g_1)+ b_2 D(f\cdot g_2) \end {split} 



 

   

   

 

 

 

 

   

 

 

for any constants a1 

, a2 

, b1 

, b2. 

REMARK

 

: 

This is unlike the usual linear differential operators that you are familiar with, such as 

` 

B

 

B x 

˘n, 

which maps a single function f to a single function 

B 

n f

 

B xn . 

For any integers m, n ě 0 , we define Hirota’s bilinear differential operator D 

m 

t 

D 

n 

x 

by

 \label {6.12} \boxed { [D_t^m D_x^n (f\cdot g)](x,t):= \left (\frac {\de }{\de t}-\frac {\de }{\de t'}\right )^m \left (\frac {\de }{\de x}-\frac {\de }{\de x'}\right )^n f(x,t)g(x',t')\bigg |_{\substack {x'=x\\ t'=t}} }~. 











   



































  

















 

(7.6)
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Let us look at a few examples. We start with

 \label {6.13} \begin {split} [D_t(f\cdot g)](x,t) &= \left (\frac {\de }{\de t}-\frac {\de }{\de t'}\right ) f(x,t)g(x',t')\bigg |_{\substack {x'=x\\ t'=t}}\\ &= f_x(x,t)g(x',t')-f(x,t)g_{t'}(x',t')\bigg |_{\substack {x'=x\\ t'=t}} \\ & = f_t(x,t) g(x,t)- f(x,t) g_t(x,t)~, \end {split} 

   


















  













       













        

 

(7.7) 

so 

Dtp f ¨ g q “ ft 

g ´ f gt 

and Dtp f , f q “ 0 , 

and similarly for Dx. Next we look at

  \begin {split} [D_t D_x(f\cdot g)](x,t) &= \left (\frac {\de }{\de t}-\frac {\de }{\de t'}\right )\left (\frac {\de }{\de x}-\frac {\de }{\de x'}\right ) f(x,t)g(x',t')\bigg |_{\substack {x'=x\\ t'=t}}\\ &= \left (\frac {\de }{\de t}-\frac {\de }{\de t'}\right )\left (f_x(x,t)g(x',t')-f(x,t)g_{x'}(x',t')\right )\bigg |_{\substack {x'=x\\ t'=t}} \\ & = f_{xt}(x,t) g(x,t)-f_t(x,t) g_x(x,t)-f_x(x,t) g_t(x,t) + f(x,t) g_{xt}(x,t)~, \end {split} 



   

































  
































      













                

 

so

 \label {6.15} D_t D_x (f\cdot g) = f_{xt}g-f_t g_x-f_x g_t+f g_{xt} \qquad \text {and} \qquad D_t D_x (f\cdot f) = 2(f f_{tx}-f_t f_x)~. 



   

 

 

 



      



 

(7.8) 

This is promising, because the right-hand-side of the last expression reproduces the first two 

terms in the quadratic form of the KdV equation (7.5), up to an overall factor of 2 . Let’s proceed 

and compute

 \label {6.16} D_x^2(f\cdot g) = f_{xx} g-2f_x g_x + f g_{xx}~, 



   

 

 



 

(7.9) 

which implies 

D2 

xp f ¨ f q “ 2 p f fxx ´ f 2 

xq . 

REMARK

 

: 

Note that D2 

xp f ¨ f q ‰ 0 even though Dxp f ¨ f q “ 0 . This is not inconsistent, because 

D2 

xp f ¨ f q ‰ Dx p Dxp f ¨ f qq . In fact, the right-hand side of this last expression is meaningless, 

since the outer Dx 

must act on a pair of functions, but Dxp f ¨ f q is a single function. 

Finally, we can calculate

  \begin {split} D_x^4(f\cdot g)&= \dots \qquad \qquad \qquad \text {\Ex {36}}\\ &= f_{xxxx}g-4f_{xxx}g_x+6 f_{xx}g_{xx}-4 f_x g_{xxx}+f g_{xxxx}~. \end {split} 



       



 

 

 

 



 

Note that the result is like B4 

xp f g q , but with alternating signs! So

 \label {6.18}D_x^4 (f\cdot f)=2(f f_{xxxx}-4 f_x f_{xxx}+3 f_{xx}^2)~. 



      

  



 

(7.10)
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Here is the miracle: the KdV equation in its quadratic form (7.5) can be recast as

 \label {6.19} \boxed {(D_t D_x+D_x^4)(f\cdot f)=0} 



 

    

 

(7.11) 

where the bilinear operator Dt 

Dx ` D4 

x 

is defined by linearity on the space of operators of the 

type (7.6), namely p Dt 

Dx ` D4 

xqp f ¨ g q “ Dt 

Dxp f ¨ g q ` D4 

xp f ¨ g q . Equation (7.11) is the so 

called bilinear form of the KdV equation . 

REMARK

 

: 

Observe that we can formally factor the Hirota operator as 

Dt 

Dx ` D4 

x “ p Dt ` D3 

xq Dx 

, 

which is a short-hand for 

p Dt 

Dx ` D4 

xqp f , g q “ pBt ´ Bt1 ` pBx ´ Bx1q
3
qpBx ´ Bx1q f p x, t q g p x1 , t1q 

ˇ

ˇ

ˇ

ˇ

x1“ x 

t1“ t 

. 

This is not an accident. It is related to the fact that the differential operator Bt ` B3 

x 

appears in 

the linearised KdV equation for u , and therefore the differential operator pBt ` B3 

xqBx 

appears 

in the linearisation of the equation for w (before integration with respect to x ). 

7.3 Solutions 

We will need two ideas to find multi-soliton solutions. The first is inspired by a rather basic 

observation: if we take f “ 1 , then the KdV field is the vacuum u “ 0 ; if instead we take 

f “ 1 ` e2 µ p x ́  x0´ 4 µ2 t q , 

then the u is the one-soliton (travelling wave) solution of KdV. Since (7.11) is a bilinear equa- 

tion, this suggests that multi-soliton solutions might be obtained from an f which is a sum of 

exponentials of linear functions of x and t , with 1 “ e0 as the trivial case. But before we get 

to the general case, let us check the Hirota formalism by rederiving this one-soliton solution. 

7.3.1 Example: 1-soliton 

Let’s try

 \label {6.20} \boxed {f=1+e^\theta } 

   

 

(7.12) 

with

  \theta =ax+bt+c~, 

      

 

where a, b, c are constants.
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Lemma 1. If θi “ ai 

x ` bi 

t ` ci 

( i “ 1 , 2 ), then [Ex 38]

 \label {6.22} \boxed {D_t^m D_x^n (e^{\theta _1}\cdot e^{\theta _2})=(b_1-b_2)^m(a_1-a_2)^n e^{\theta _1+\theta _2}}~. 











     


 






 

(7.13) 

In particular

 \label {6.23} \begin {split} &D_t^m D_x^n (e^\theta \cdot e^\theta )=0 \qquad \qquad \text {(unless $m=n=0$)}\\ &D_t^m D_x^n (e^\theta \cdot 1)=(-1)^{m+n} D_t^m D_x^n (1\cdot e^\theta )=b^m a^n e^\theta ~. \end {split} 











         











   










    

 

(7.14) 

Therefore the bilinear form of the KdV equation for f “ 1 ` eθ is

  \begin {split} 0~~ &=~~~~ (D_t D_x + D_x^4)(1+e^\theta \cdot 1+e^\theta )\\ &\hspace {-12.5pt}\underset {\text {bilinearity}}{=} (D_t D_x + D_x^4) \left [(1\cdot 1)+(1\cdot e^\theta )+(e^\theta \cdot 1)+(e^\theta \cdot e^\theta )\right ] \\ &\hspace {-5pt} \underset {\eqref {6.23}}{=}~~~ 2(D_t D_x +D_x^4)(e^\theta \cdot 1)\\ &\hspace {-5pt} \underset {\eqref {6.23}}{=}~~~ 2(ba+a^4)e^\theta = 2a(b+a^3)e^\theta ~. \end {split} 

 

 

     






 





             








 

 





 

   

 

There are two ways to solve this algebraic equation: 

1. a “ 0 :

 

then f is independent of x , and u “ 0 . 

2. b “ ´ a3:

 

then 

f “ 1 ` eax ́  a3 t ̀  c , 

and

 \label {6.25} \boxed {u= 2 \frac {\de ^2}{\de x^2}\log \left (1+e^{ax-a^3t+c}\right )}~, 

 











 







 

(7.15) 

which is nothing but the one-soliton solution with velocity v “ a2, up to redefinitions 

of the constants. 

7.3.2 The N -soliton solution (sketch) 

The second idea is to look for a power series solution (or a so-called “perturbative expansion” 

in an auxiliary parameter ϵ ,

 \label {6.26} \boxed {~f(x,t)= \sum _{n=0}^\infty \epsilon ^n ~f_n(x,t)~ \quad \text {with} \quad f_0=1~}~, 

  






     





 

(7.16) 

and hope that the series terminates at some value of n , so that we can take ϵ to be finite and 

eventually set it to 1 .
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We will write the bilinear form of KdV as

  \boxed {B(f\cdot f)=0} \qquad \text {with} \qquad \boxed {B=D_t D_x +D_x^4}~. 

    



  

 







 

Substituting in (7.16), we find

  \begin {split} 0&= B(\sum _{n_1=0}^\infty \epsilon ^{n_1}f_{n_1}\cdot \sum _{n_2=0}^\infty \epsilon ^{n_2}f_{n_2})~\\ &= \sum _{n_1=0}^\infty \sum _{n_2=0}^\infty \epsilon ^{n_1+n_2} B( f_{n_1}\cdot f_{n_2}) \end {split} 

 



























 

 

where in the second line we used the bilinearity of the Hirota operator B . Gathering terms of 

the same degree n “ n1 ` n2 

in ϵ , we can rewrite this as

 \label {6.28} \boxed { 0=\sum _{n=0}^\infty \epsilon ^n \sum _{m=0}^n B(f_{n-m}\cdot f_m) \underset {B(1\cdot 1)=0}{=} \sum _{n=1}^\infty \epsilon ^n \sum _{m=0}^n B(f_{n-m}\cdot f_m) }~. 















  















 





 

(7.17) 

Let’s solve this equation order by order in ϵ . We find that

 \label {6.30} \boxed {\sum _{m=0}^n B(f_{n-m}\cdot f_m)=0 \quad \forall ~n=1,2,\dots } 






           

 

(7.18) 

with f0 “ 1 . Writing (7.18) as

 \label {6.31} \boxed {B(f_n\cdot 1)+B(1\cdot f_n)=(\text {expression in } f_1,f_2,\dots ,f_{n-1})}~, 

         



    





 

(7.19) 

makes it clear that we can solve (7.18) recursively to determine the Taylor coefficients of f . 

We will need another lemma: 

Lemma 2. [Ex 39] For any function f ,

  \boxed {D_t^m D_x^n (f\cdot 1)=(-1)^{m+n} D_t^m D_x^n (1\cdot f) = \frac {\de ^m}{\de t^m} \frac {\de ^n}{\de x^n}f}~. 











   










   























 

Using this lemma, we can write the recursion relation (7.19) more explicitly as

 \label {6.33} \boxed { \frac {\de }{\de x} \left (\frac {\de }{\de t}+\frac {\de ^3}{\de x^3}\right ) f_n = -\frac {1}{2} \sum _{m=1}^{n-1}B(f_{n-m}\cdot f_m)}~, 
























 











 





 

(7.20) 

which is valid for all n “ 1 , 2 , . . . . In the following this recursion relation, which determines 

fn 

in terms of all the fm 

with m ă n , will be referred to as An.
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For n “ 1 this reduces to 

B

 

B x 

ˆ

B

 

B t
` 

B3

 

B x3 

˙ 

f1 “ 0 

or, with appropriate boundary conditions,

  \boxed { \left (\frac {\de }{\de t}+\frac {\de ^3}{\de x^3}\right ) f_1 = 0}~, 


















 





 

which is a linear equation. A simple solution is

 \label {6.35} \boxed {f_1 = \sum _{i=1}^N e^{a_i x - a_i^3 t + c_i} \equiv \sum _{i=1}^N e^{\theta _i}}~, 



























 

(7.21) 

where ai 

and ci 

are, as usual, constants. 

The higher fn 

can then be determined recursively using An 

(7.20). The amazing fact is that 

with f1 

as in equation (7.21), the expansion (7.16) terminates at order N . All the higher equa- 

tions An ą N 

are solved with fn ą N 

“ 0 ! This is quite non-trivial: it requires that f1 

, . . . , fN 

satisfy the consistency conditions that the RHS of An 

vanish for n “ N ` 1 , . . . , 2 N . 

The N -soliton solution of KdV is then given by

  \boxed {f=1+f_1+f_2+ \dots + f_N}~, 

           





 

where we set ϵ “ 1 (or absorbed it in the constants ci). 

EXAMPLES

 

: 

N “ 1

 

In this case 

f1 “ ea1 

x ́  a3 

1 

t ̀  c1 ” eθ1 

and A2 

reads 

BxpBt ` B
3 

xq f2 “ ´
1

 

2 

B p eθ1 ¨ eθ1q “ 

(7.14) 

0 . 

So we can take f2 

“ 0 (and f3 

“ f4 

“ ¨ ¨ ¨ “ 0 as well). Setting ϵ “ 1 , or absorbing ϵ in 

c1, we get 

f “ 1 ` eθ1 , 

the one-soliton solution as we found in (7.15). 

N “ 2

 

In this case 

f1 “ eθ1 ` eθ2
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and A2 

reads

 \de _x (\de _t+\de _x^3)f_2~~ &= ~~ -\frac {1}{2}B(e^{\theta _1}+e^{\theta _2}\cdot e^{\theta _1}+e^{\theta _2}) \nonumber \\ &\hspace {-12pt} \underset {\substack {\text {bilinearity}\\ + \eqref {6.22}}}{=} -B(e^{\theta _1}\cdot e^{\theta _2}) \nonumber \\ &\hspace {-22pt} \underset {\substack {B=D_tD_x+D_x^4\\ + \eqref {6.22}}}{=} -(a_1-a_2)[-a_1^3+a_1^3+(a_1-a_2)^3]e^{\theta _1+\theta _2}\nonumber \\ &= ~~ 3a_1 a_2 (a_1-a_2)^2 e^{\theta _1+\theta _2}~.

 











     







 










 

 

   





 


 

So let’s try 

f2 “ Aeθ1` θ2 

for some constant A to be determined. Substituting in the previous equation we find

 (a_1+a_2)[-a_1^3-a_2^3+(a_1+a_2)^3]A e^{\theta _1+\theta _2} &= 3a_1 a_2 (a_1-a_2)^2 e^{\theta _1+\theta _2}\nonumber \\[4pt] \Rightarrow \quad 3 a_1 a_2(a_1+a_2)^2 A &=3a_1a_2(a_1-a_2)^2 \nonumber \\[4pt] \Rightarrow \quad A &= \left (\frac {a_1-a_2}{a_1+a_2}\right )^2~.

 

 

   

 

 




 
 

 


 



 



 





 

So we get

 \label {6.39} \boxed {f=1+e^{\theta _1}+e^{\theta _2}+ \left (\frac {a_1-a_2}{a_1+a_2}\right )^2 e^{\theta _1+\theta _2}} 

      



 



 





 

(7.22) 

for the 2-soliton solution of KdV, where again we set ϵ “ 1 or absorbed it into shifts of 

c1 

and c2. 

˚ EXERCISE

 

: Show that B p f1 ¨ f2q “ 0 and B p f2 ¨ f2q “ 0 , so that one can consistently 

set f3 “ f4 “ ¨ ¨ ¨ “ 0 . [Ex 40] 

General N

 

Let’s first rewrite the 2-soliton solution (7.22) that we have just found:

 f &=(1+e^{\theta _1})(1+e^{\theta _2})-e^{\theta _1+\theta _2} + \left (\frac {a_1-a_2}{a_1+a_2}\right )^2 e^{\theta _1+\theta _2}\\ &=(1+e^{\theta _1})(1+e^{\theta _2})- \frac {4a_1 a_2}{(a_1+a_2)^2} e^{\theta _1+\theta _2}\\ &= \begin {vmatrix} 1+e^{\theta _1} & \frac {2a_1}{a_1+a_2}e^{\theta _2}\\ \frac {2a_2}{a_1+a_2}e^{\theta _1} & 1+e^{\theta _2} \end {vmatrix}~.

        



 



 





     







 







 















  





 

So we can write

  \boxed {f=\det (S)}~, \quad \text {where} \quad \boxed {S_{ij}=\delta _{ij}+ \frac {2a_i}{a_i+a_j}e^{\theta _j}}~, 
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where here i, j P t 1 , 2 u .2 

It turns out that this formula generalises to higher N , with S an N ˆ N matrix of the 

same form but with i, j P t 1 , . . . , N u , giving the N -soliton solution of KdV. This can be 

proved by induction. One can also show that 

fn “ 

ÿ 

1 ď i1ă i2ă¨¨¨ă inď N 

eθi1` θi2`¨¨¨` θin 

ź 

1 ď j ă k ď n 

ˆ 

aij 

´ aik

 

aij 

` aik 

˙2 

. 

7.4 Asymptotics of 2-soliton solutions and phase shifts 

To see that the N “ 2 solution (7.22) does indeed involve two solitons, we can follow the 

same logic as in section 6.7, where we studied the asymptotics of 2-soliton solutions of the 

sine-Gordon equation. Namely, we switch to an appropriate comoving frame and only then 

take t Ñ ˘8 . 

Recall that 

f “ 1 ` eθ1 ` eθ2 ` Aeθ1` θ2 

where 

θi “ ai 

x ´ a3 

i 

t ` ci 

, A “ 

ˆ 

a1 ´ a2

 

a1 ` a2 

˙2 

. 

We can take 0 ă a1 ă a2

 

without loss of generality3 so v1 

“ a2 

1 

ă v2 

“ a2 

2. Let’s follow the 

slower soliton first:

  \boxed {t \to \pm \infty \quad \text {with} \quad X_{a_1^2}=x-a_1^2 t \quad \text {fixed}}~. 

   



  









 

Then

  \begin {split} \theta _1 &= a_1 X_{a_1^2}+c_1\\ \theta _2 &= a_2 \left (X_{a_1^2}-(a_2^2-a_1^2)t\right )+c_2~. \end {split} 

 






 








 









 

Let us consider the two limits in turn. 

1. t Ñ `8

 

: in this limit θ1 

stays fixed and θ2 Ñ ´8 , so

  f \to 1+e^{\theta _1}~. 

    

 

This describes a KdV soliton centred at

  \boxed {x_{\text {centre}}(t)=a_1^2 t-\frac {c_1}{a_1}}~. 

 















 

2Note that using eθi instead of eθj in the definition of the matrix element Sij 

produces the same determinant. 

3Convince yourself of this statement.
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2. t Ñ ´8

 

: in this limit θ1 

stays fixed and θ2 Ñ `8 , so

  f \to e^{\theta _2} (1+Ae^\theta _1)~. 

   



 

The prefactor eθ2 does not matter, because

  \begin {split} u &= 2 \frac {\de ^2}{\de x^2} \log f \equiv 2 \frac {\de ^2}{\de x^2} \left [\theta _2+\log (1+Ae^{\theta _1})\right ]\\ &= 2 \frac {\de ^2}{\de x^2} \log (1+Ae^{\theta _1})\\ &= 2 \frac {\de ^2}{\de x^2} \log \left (1+e^{a_1x-a_1^3 t+c_1+\log A}\right )~. \end {split} 

 







  









   










 













 











 

where in the second line we used that θ2 

is linear in x , and in the third line we expressed 

the result in the original p x, t q coordinates. This describes a KdV soliton centred at

  \boxed {x_{\text {centre}}(t)=a_1^2 t-\frac {c_1+\log A}{a_1}}~. 

 





  









 

Therefore the slower soliton has a negative phase shift:

  \boxed {\text {PHASE SHIFT}_{\text {slower}}= \frac {1}{a_1}\log A = - \frac {2}{a_1} \log \left |\frac {a_2+a_1}{a_2-a_1}\right |<0 }~. 

 







  

















 



 















 

Next, let’s follow the faster soliton:

  \boxed {t \to \pm \infty \quad \text {with} \quad X_{a_2^2}=x-a_2^2 t \quad \text {fixed}}~. 

   



  









 

Then

  \begin {split} \theta _1 &= a_1 \left (X_{a_2^2}-(a_1^2-a_2^2)t\right )+c_1\\ \theta _2 &= a_2 X_{a_2^2}+c_2~. \end {split} 

 








 







 








 

Again, we consider the two limits in turn. 

1. t Ñ ´8

 

: in this limit θ1 Ñ ´8 and θ2 

stays fixed, so 

f Ñ 1 ` eθ2 . 

This describes a KdV soliton centred at

  \boxed {x_{\text {centre}}(t)=a_2^2 t-\frac {c_2}{a_2}}~. 
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2. t Ñ `8

 

: in this limit θ1 Ñ `8 and θ2 

stays fixed, so 

f Ñ eθ1p 1 ` Aeθ 

2q , 

which describes a KdV soliton centred at

  \boxed {x_{\text {centre}}(t)=a_2^2 t-\frac {c_2+\log A}{a_2}}~. 

 





  









 

Therefore the faster soliton has a positive phase shift:

  \boxed {\text {PHASE SHIFT}_{\text {faster}}= -\frac {1}{a_2}\log A = \frac {2}{a_2} \log \left |\frac {a_2+a_1}{a_2-a_1}\right |>0 }~. 

  







 

















 



 















 

Summarising, from the analysis of the asymptotics of the 2-soliton solution we obtain the 

picture in Fig. 7.1. We have therefore verified that KdV solitons satisfy the third defining

 

Figure 7.1: Schematic summary of the 2-soliton solution of KdV. 

property of a soliton 3: when two KdV solitons collide, they emerge from the collision with 

the same shapes and velocities that they had before the collision. The effect of the interaction 

is in the phase shifts of the two solitons, which capture the advancement of the faster soliton 

and the delay of the slower soliton. 

We can also look at the exact 2-soliton solution encoded in (7.3) and (7.22) to get a better feel 

for what happens during the collision. Here is a plot of the 2-soliton solution with parameters

http://www.maths.dur.ac.uk/~tnmm74/pictures_animations_Solitons/2-solitons_KdV.jpg
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a1 

“ 0 . 7 and a2 

“ 1 . The contour plot below clearly shows the trajectories of the two KdV 

solitons and how they repel each other and swap identities when they get close, resulting in 

a phase shift. Finally, here is an animation of their time evolution.

 

Figure 7.2: A two-soliton solution of the KdV equation.

http://www.maths.dur.ac.uk/~tnmm74/pictures_animations_Solitons/2-solitons_KdV_animation.gif


 

Chapter 8 

Overview of the inverse scattering 

method 

For this chapter, see section 4.2 of [Drazin and Johnson, 1989] and section III of [Aktosun, 

2009]. 

8.1 Initial value problems 

So far we have seen a variety of methods to construct particular solutions to integrable 

PDEs. 

Question

 

: can we find a general solution to these PDEs? 

In more detail, we want to solve the following Initial Value Problem (IVP): 

Given a wave equation and ‘enough’ initial data at an initial time t “ 0 , find u p x, t q at all 

later times t ą 0 .

 

For there to be a unique solution, sufficient initial data must be specified: 

• If the PDE is 1st order in time , e.g. KdV, we must specify u p x, 0 q

 

; 

• If the PDE is 2nd order in time , e.g. sine-Gordon, we must specify u p x, 0 q , utp x, 0 q

 

; 
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• etc. 

[Why stop there? This is because given these initial data we can use the PDE to solve for 

higher t derivatives at t “ 0 . E.g. for KdV, if I tell you u p x, 0 q , you can use the PDE to find out 

what utp x, 0 q must be: it’s not an independent datum.] 

But given that information, can we actually construct u p x, t q for all t ą 0 , analytically if 

possible? So far, the answer is no, unless the initial condition happens to be a snapshot of one 

of the special solutions seen before. 

E.g. in KdV, what if 

(a) u p x, 0 q “ 2 sech2
p x q 

(b) u p x, 0 q “ 2 . 001 sech2
p x q 

(c) u p x, 0 q “ 6 sech2
p x q ? 

Case (a) is a snapshot of a one-soliton solution at t “ 0 , so, assuming the uniqueness of 

solutions,1 the answer to (a) at all later times is

  u(x,t>0)=2\sech ^2(x-4t)\,, 

    
  

 

which describes a single soliton moving to the right with velocity v “ 4 . But what about (b) 

and (c)? 

It turns out that 

(b) Ñ t 2 solitons, 1 very small, both moving right, ` some dispersing junk moving left u 

(c) Ñ t 2 solitons, both moving right, and that’s all u 

In fact, the initial condition for (c) is a snapshot of a “pure” 2-soliton solution. 

Inverse scattering will allow us to understand situations like (b), and give a much more 

complete understanding of when things like (a) and (c) occur. As you might remember seeing 

“experimentally” at the start of last term, whenever the height h of the u p x, 0 q “ h sech2
p x q 

initial condition of KdV is h “ N p N ` 1 q , with N “ 1 , 2 , 3 , . . . , we are in a situation like (a) or 

(c), where this is precisely an N -soliton solution. But why? Inverse scattering gives analytic

 

1Uniqueness of the solution follows if the IVP is well-posed . It can be shown that the KdV initial value problem 

is locally/globally well-posed if one works in a suitable function space [Kenig et al., 1991]
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insight into this question. 

To get an idea of how this might work, let’s first look at a simpler setting: linear wave equa- 

tions. 

8.2 Linear initial value problems 

For a linear wave equation , the general solution is a linear transformation of the initial 

data . 

Examples 

1. The heat equation

 \label {8.1} \boxed {u_t=u_{xx}}\qquad (x\in \bR , t>0)\,. 

 



     

 

(8.1) 

Given the initial data u p x, 0 q ” u0p x q , the general solution u p x, t q at t ě 0 is

 \label {8.2} \boxed {u(x,t)=\intinf \frac {1}{\sqrt {4\pi t}} \,e^{-(x-x')^2/(4t)}u_0(x')\,dx'} 

 


















 

(8.2) 

and this is a linear transform of u0p x q (it’s actually a “Green’s function” solution). 

˚ EXERCISE

 

: Check that (8.2) solves (8.1) and reduces to u p x, 0 q “ u0p x q at t “ 0 . 

2. The Klein-Gordon equation

 \label {kg1} \boxed {u_{tt}-u_{xx}+m^2 u=0}\qquad (x\in \bR , t>0)\,. 

     



     

 

(8.3) 

This is second-order in t , so we need to specify u p x, 0 q and utp x, 0 q :

 \label {kg2} u(x,0) = \alpha (x)\,,\qquad u_t(x,0) = \beta (x)\,. 

        

 

(8.4) 

With luck, t (8.3) + (8.4) u is a well-posed initial value problem. t can be solved using a Fourier 

transform with respect to x , seen in AMV. Recall that this is like the Fourier series, but for 

functions on a infinite line. See the handout for a reminder of the key properties of the Fourier 

transform that we’ll need. 

Given u p x, t q , set

 \label {8.5} \boxed { \begin {split} \widetilde u(k,t)&= \intinf dx~ e^{-ikx}~u(x,t) \\ u(x,t)&=\intinf \frac {dk}{2\pi }~ e^{ikx}~\widetilde u(k,t) \end {split} } 

 





  

 















 

(8.5)

https://www.maths.dur.ac.uk/users/stefano.cremonesi/pictures_animations_Solitons/fourier.pdf
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where the second equation ( ‘inverse Fourier transform ’) shows how to get u back from r u . Note 

that t is a spectator in the (inverse) Fourier transform, which trades x for the conjugate variable 

k . 

Working with ru p k , t q instead of u p x, t q is a good move, because (8.3) for u implies

 \label {kg3} \boxed {\widetilde u_{tt}+(k^2+m^2)\widetilde u=0} 

   
 

 

(8.6) 

for ru , and this equation is easier to solve: there are only t derivatives, so it is as an ordinary 

differential equation (ODE) in t for each value of k , rather than a PDE in x, t . 

The general solution of (8.6) is

  \begin {split} \widetilde u(k,t) &= A(k)\,e^{i\omega t} + B(k)\,e^{-i\omega t}~, \qquad \text {where}\\ \omega &=\omega (k)\equiv \sqrt {k^2+m^2} \qquad \text {(dispersion relation)} \end {split} 

   
   

  





   

 

(8.7) 

and the integration constants A and B can be fixed by matching with the initial condition at 

t “ 0 :

 \label {8.8} \begin {split} \widetilde \alpha (k)\equiv \widetilde u_(k,0)&=A(k)+B(k) \\ \widetilde \beta (k)\equiv \widetilde u_t(k,0)&=i\omega \left (A(k)-B(k)\right )~. \end {split} 

 

    

        

 

(8.8) 

Solving for A and B and simplifying the resulting expression for the Fourier transformed field 

ru p k , t q , we obtain

 \label {8.9} \boxed {\begin {split} \widetilde u(k,t)&= \frac {1}{2} \left (\widetilde \alpha (k) + \frac {\widetilde \beta (k)}{i\omega }\right )e^{i\omega t}+ \frac {1}{2} \left (\widetilde \alpha (k) - \frac {\widetilde \beta (k)}{i\omega }\right )e^{-i\omega t}\\ &=\widetilde \alpha (k)\cos (\omega t) + \frac {1}{\omega }\widetilde \beta (k)\sin (\omega t)~. \end {split}} 

 










































  







 

 

(8.9) 

Finally, an inverse Fourier transform allows u p x, t q to be found:

 \label {8.10} \boxed {\begin {split} u(x,t) &= \intinf ~\frac {dk}{2\pi } \left [ \widetilde \alpha (k)\cos (\omega t) + \frac {1}{\omega }\widetilde \beta (k)\sin (\omega t)\right ] e^{ikx}\\ &= \intinf \intinf \frac {dk dx'}{2\pi } \left [ u(x',0)\cos (\omega t) + \frac {1}{\omega } u_t(x',0)\sin (\omega t) \right ] e^{ik(x-x')} \end {split}} 

 













 































  







 





 

(8.10) 

with ω “ ω p k q “ 

?

 

k2 ` m2. Again, this is a linear function of the initial data u p x, 0 q and 

utp x, 0 q . (This won’t be true for KdV.) 

KEY FEATURE:

 

the Fourier transformed data ru p k , t q for each value of k evolved sepa- 

rately and in a simple way in the “transformed” equation (8.6). (Something like this will still 

be true for KdV.)
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GENERAL PICTURE

 

for solving linear Initial Value Problems :2

INITIAL DATA

𝑢 𝑥, 0 , 𝑢𝑡(𝑥, 0)

FT-ed INITIAL DATA

𝑢(𝑘, 0), 𝑢𝑡(𝑘, 0)
~ ~

SOLUTION

𝑢 𝑥, 𝑡

FT-ed SOLUTION

𝑢(𝑘, 𝑡)~

Simpler ODE

Original PDE

FT FT -1

 

and we follow the indirect path Ó
Ñ

Ò to solve the direct but harder problem Ñ. 

8.3 Outline of the method to solve the IVP for KdV 

The above logic will turn out to be the correct “big idea” for KdV also, but in a much more 

subtle way since the KdV equation is nonlinear, therefore the Fourier transform is of no help. 

The method goes as follows:

 

2The initial data are written for 2nd order in time equations such as the Klein-Gordon equation, and need to 

be modified appropriately according to the degree in time of the differential equation.
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INITIAL DATA

𝑢 𝑥, 0

INITIAL SCATTERING DATA

𝑆(0)

Simpler equation

KdV equation

DISASSEMBLY
(or SCATTERING)

SOLUTION

𝑢 𝑥, 𝑡

SCATTERING DATA

𝑆(𝑡)

REASSEMBLY
(or INVERSE 

SCATTERING)

(linear ODEs)

a c

b

d

 

Again, instead of doing step (d) directly, we will go the roundabout route of (a) Ñ (b) Ñ (c). 

All these three steps will turn out to be nontrivial, even though simpler than (d). 

8.3.1 The KdV-Schrödinger connection 

We will follow the route of the original discoverers of the method, Gardner, Greene, Kruskal 

and Miura (GGKM) , in 1967 [Gardner et al., 1967]. Their aim was to solve the KdV equation

 \label {kdv1} \boxed {u_t+6uu_x+u_{xxx}=0} 

     

 

(8.11) 

for t ą 0 on the full line ´8 ă x ă 8 , with the initial condition

 \label {8.12} \boxed {u(x,0)=f(x)}~, 

   





 

(8.12) 

where f p x q is sufficiently localised in space.3 

Recall first the (generalised) Miura transformation: if v p x, t q satisfies

  & v_t + 6(\lambda -v^2)v_x+v_{xxx}=0 ~,\label {Miura_a} 

        

 

(8.13) 

then

 \label {Miura_b} \boxed {u=\lambda -v^2-v_x} 

     

 

(8.14)

 

3Technically, we demand 

ż `8 

´8 

dx p 1 ` | x |q| f p x q| ă 8 .
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solves the KdV equation (8.11). Now think about this backwards: take u to be known, and try 

to solve (8.14) for v . (We can ignore (8.13) from now on.) Equation (8.14) is a so called Riccati 

equation (a 1st order ODE quadratic in the unknown), and there is a standard trick to solve 

such an equation be rewriting it as a linear 2nd order ODE: write

 \label {8.15} \boxed {v=\psi _x/\psi } 

 

 

(8.15) 

for some other function ψ , and try to find ψ first. With a small amount of rearrangement (8.14) 

becomes

  \label {schr} \boxed {\psi _{xx}+u\psi =\lambda \psi }~. 

   





 

(8.16) 

Now (8.16) is interesting (and this is what attracted GGKM’s attention) because it’s a well- 

known equation: the time-independent Schrödinger equation , the quantum-mechanical 

equation for a point particle moving in a potential V p x q “ ´ u p x q . 

The QM interpretation of the equation won’t be too important here, apart from the fact that a 

great deal was known about its solutions, and GGKM were able to exploit this. The important 

thing is that any field profile u can be associated with another family of functions ψ by 

solving (8.16), which is sometimes called the associated linear problem . 

8.3.2 Recipe for constructing the KdV solution (in 3 steps) 

Let’s begin to unpack the diagram 8.3.

 

a

 

DISASSEMBLY (or SCATTERING)

 

Note that t appears in (8.16) only as a parameter, in u p x, t q (the differential equation is in x ). 

Start at t “ 0

 

: the initial data u p x, 0 q plays the role of a potential. For each eigenvalue λ , ψ is a 

different “eigenfunction” of the differential operator L “ 

B2

 

B x2 ` u .4 This is the associated lin- 

ear problem (at t “ 0 ). The function ψ p x q describes the scattering of a quantum-mechanical 

particle (or wave) off the potential, with certain reflection/transmission coefficients , which 

capture the asymptotic behaviour of ψ as x Ñ ˘8 . The set of these coefficients, for different 

values of λ , are the initial scattering data S p 0 q .5 The scattering data is analogous to rα p k q 

and 

rβ p k q in the linear (Klein-Gordon) case, while λ is like k .

 

b

 

TIME EVOLUTION

 

Next we’ll have to evolve the eigenvalues λ and the scattering data S forward in time t . 

Here we are helped by an amazing fact: if u p x, t q solves the KdV equation, then the eigenvalues

 

4 ψ is an eigenvector of the operator L (in an infinite dimensional vector space, in fact a Hilbert space). But L 

is a differential operator in x and f is therefore a function of x , so it’s called an “eigenfunction”. 

5More precisely, we will need the reflection coefficients plus some extra data. More about this later.
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λ p t q are independent of t . Therefore we only need to evolve the scattering data S p 0 q into 

S p t q . It turns out that this time evolution is simple : it is governed by linear ODEs . This 

uses an ingenious idea of Peter Lax.

 

c

 

REASSEMBLY (or INVERSE SCATTERING)

 

The final step is to reconstruct the potential u p x, t q from the scattering data S p t q at time 

t . This is called “inverse scattering” . It may be surprising that one can do it – ‘Can one hear 

the shape of a drum?’, as Marc Kac put in a related context –, but that this is possible for these 

Schroedinger problems was already known at the time of GGKM. 

This will be a long story, so it will be good to keep this “roadmap” in mind as we go, starting 

with step (a).

https://en.wikipedia.org/wiki/Peter_Lax
https://en.wikipedia.org/wiki/Hearing_the_shape_of_a_drum
https://en.wikipedia.org/wiki/Hearing_the_shape_of_a_drum


 

Chapter 9 

The basics of scattering theory 

A reference for this chapter are sections 3.1 and 3.2 of [Drazin and Johnson, 1989]. Any Quan- 

tum Mechanics book will also cover the relevant material. 

Our aim in this chapter is to analyse the possible solutions to the eigenvalue problem Lψ “ λψ , 

that is

 \label {eigenvalue_prob} \left (\frac {d^2}{dx^2}+u(x)\right )\psi (x) = \lambda \psi (x) 













 

 

(9.1) 

with ψ p x q bounded for all x (which restricts the possible values of λ ). Note that this relaxes 

slightly the requirement that 

ş`8 

´8
| ψ |2 dx ă 8 , i.e. ψ P L2p R q , which is made in the context of 

Quantum Mechanics. 

Note:

 

in this chapter the KdV time t just appears as a parameter in u p x, t q , and stays fixed 

(therefore will be dropped from the notation). The operator L in the eigenvalue problem (9.1) 

should then be viewed as a (second order) ordinary differential operator in x . 

9.1 Overview: the physical interpretation 

FACT: the equation

 \label {tdse} \boxed { i\frac {\partial }{\partial \tau }\Psi (x,\tau ) = \left (-\frac {\partial ^2}{\partial x^2}+V(x)\right )\Psi (x,\tau )~, } 








  











 



  

 

(9.2) 

known as the time-dependent Schrödinger equation , describes a particle (of mass 

1

 

2
) mov- 

ing on a line in a potential V p x q in quantum mechanics (in natural units, where ℏ “ 1 ). The 

wavefunction Ψ tells you where the particle is likely to be: | Ψ p x, τ q|2 dx is the probability to 

101



 

CHAPTER 9. THE BASICS OF SCATTERING THEORY 102 

find it in the interval r x, x ` dx s at time τ . (Note: this time τ is not

 

to be confused with the 

KdV time t .) 

To solve (9.2), separate variables

 \Psi (x,\tau )=\psi (x)\phi (\tau ) 

    

 

(9.3) 

and substitute in and rearrange to find

 i\frac {\dot \phi }{\phi } = \frac {-\psi ''+V\psi }{\psi }=\mbox {constant}\equiv k^2~, 











  





   

 

(9.4) 

where the dot denotes 

d

 

dτ 

, the dash 

d

 

dx
, and the constant was called k2 for later convenience. 

Solving first the equation for ϕ ,

 \dot \phi =-ik^2\phi ~~\Rightarrow ~~ \boxed {\phi (\tau )=e^{-ik^2\tau }}~, 

      





 

(9.5) 

while ψ p x q satisfies the time independent Schrödinger equation

 \label {tise} \boxed { \left (-\frac {d^2}{dx^2}+V(x)\right )\psi (x)=k^2\psi (x) }~, 











 



 





 

(9.6) 

which is the same as (9.1) with the identifications

 \label {identifications} \boxed { \begin {split} u& =-V~~\\ \lambda &=-k^2 \end {split}}~. 

 

 





 

(9.7) 

In quantum mechanics, (9.6) then describes a particle with energy E “ k2 “ ´ λ moving in 

the potential V p x q “ ´ u p x q . 

With the link to the KdV equation in mind, we’ll consider potentials which tend to zero (suf- 

ficiently fast, as in footnote 3) as x Ñ ˘8 :

 

In classical mechanics, a particle with total (kinetic plus potential) energy E “ T ` V is 

localised, and bounces off the potential at the “turning points” x˚ 

where V p x˚q “ E .
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By contrast, in quantum mechanics, there’s a non-zero chance to find the particle anywhere 

(where V is finite), and the particle can ‘tunnel’ through potential barriers which are impen- 

etrable in classical mechanics.

 

The scattering data will be encoded in the asymptotics (limiting behaviour) of ψ p x q as 

x Ñ ˘8 . 

Since V p x q Ñ 0 as x Ñ ˘8 , (9.6) in these regions reduces to

 \boxed { -\frac {d^2}{dx^2}\psi =k^2\psi } 









 

 

(9.8) 

with two independent (plane wave) solutions e˘ ik x. (Hence k “
?

 

E “
?

 

´ λ is the absolute 

value of the wave number of these plane waves.) 

So the general solution with eigenvalue E “ k2 has the asymptotics

 \label {genasymp} \boxed { \begin {split} \psi (x) &\approx A(k)e^{ikx} + B(k)e^{-ikx}~,\qquad x\to -\infty \\ \psi (x) &\approx C(k)e^{ikx} + D(k)e^{-ikx}~,\qquad x\to +\infty \end {split} } 

 
    

  
    

 

(9.9) 

and, restoring the τ -dependence,

  \boxed { \begin {split} \Psi (x,\tau ) &\approx A(k)e^{ikx-ik^2\tau } + B(k)e^{-ikx-ik^2\tau }~,\qquad x\to -\infty \\ \Psi (x,\tau ) &\approx C(k)e^{ikx-ik^2\tau } + D(k)e^{-ikx-ik^2\tau }~,\qquad x\to +\infty \end {split} } 

   

    

    

    

 

(9.10) 

showing that for real k ą 0 the ‘ A ’ and ‘ C ’ terms correspond to right-moving waves , while the 

‘ B ’ and ‘ D ’ terms correspond to left-moving waves, taking k ą 0 without loss of generality:
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This solution will be bounded

 

for any values for A , B , C and D if E “ k2 ą 0 . 

As we’ll see in examples, solving (9.6) in the middle region where V p x q ‰ 0 interpolates 

between the two asymptotic regions and imposes two relations among A , B , C and D , leaving 

two undetermined coefficients, as expected for a 2nd order ODE. 

To fix these remaining coefficients, for k2 ą 0

 

we will impose

  \boxed { A(k)=1~,\qquad D(k)=0 } 

     

 

(9.11) 

and write

  \begin {split} B(k)&\equiv R(k)\qquad \mbox {(the {\bf reflection coefficient})}\\ C(k)&\equiv T(k)\qquad \mbox {(the {\bf transmission coefficient})} \end {split} 

    

      

 

(9.12) 

so that the resulting scattering solution has asymptotics

 \label {asymp_scattering} \boxed { \begin {split} \psi (x) &\approx e^{ikx} + R(k)e^{-ikx}~,\qquad && x\to -\infty \\ \psi (x) &\approx T(k)e^{ikx} ~, \qquad \qquad && x\to +\infty \end {split} } 

 
    

      

 

(9.13) 

and represents a unit flux (since A p k q “ 1 ) of incoming particles from the left, partially re- 

flected from the potential and partially transmitted through it:

 

It can be shown (Ex 52) that

 \label {coserv_prob} \boxed { |R(k)|^2+|T(k)|^2=1} 




 




 

(9.14)
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meaning that with probability 1 the particle is either reflected or transmitted (conservation of 

probability). 

Aside: the Wronskian 

Results such as | R p k q|2 ` | T p k q|2 “ 1 , derived in exercise 52, are proved using a gadget called 

the Wronskian . For two functions f p x q and g p x q , their Wronskian is the function

  \boxed { W[f,g](x)=f'(x)g(x)-f(x)g'(x)\,. } 

    
  



 

Two facts about W : 

1) If f and g are linearly dependent, the W r f , g s “ 0 identically. 

(It’s easy to see that W is antisymmetric, and linear in each of its arguments. Then if, say, 

f p x q “ α g p x q with α a constant, W r f , g s “ W r α g , g s “ α W r g , g s “ 0 .) 

2) The converse statement, that W r f , g s “ 0 implies that f and g are linearly dependent, is 

more tricky. The following is easily proved: if 

a) W r f , g sp x q “ 0 on some interval, and 

b) one or other of f and g is nonzero on that interval, 

then f and g are linearly dependent on that interval. 

(Say it’s g that is nonzero. Dividing W r f , g sp x q “ 0 through by g2 shows that 

d

 

dx
p f { g q “ 0 , 

so f { g “ constant, and f and g are linearly dependent.) 

Notes: 

• Some sort of extra condition such as b) is needed: consider, as suggested by Peano in 1889,

  f(x)=x^2~,\quad g(x)=x|x|=x^2\sign (x)\,. 

         

 

Then f and g are not linearly dependent on R , even though W r f , g s “ 0 everywhere. (Exer- 

cise: check this!) 

• In fact, though it won’t be proved here, the result that W r f , g sp x q “ 0 everywhere implies f 

and g are linearly dependent does hold if both f and g are analytic. This is true of solutions to 

the ODEs we are dealing with here, so we will therefore assume that the converse statement 

to 1) does hold in all cases we will need. 

Now back to the time independent Schrödinger equation

  \left (-\frac {d^2}{dx^2}+V(x)\right )\psi (x)=E\psi (x)=k^2\psi (x)\,. 











 



    

 

So far we have looked at cases with k2 “ E ą 0 . For k2 ă 0

 

, let k “ iµ with µ ą 0 real, so 

E “ ´ µ2. Then the asymptotics of the general solution (9.9) become

  \boxed { \begin {split} \psi (x) &\approx a(\mu )e^{-\mu x} + b(\mu )e^{\mu x}~,\qquad && x\to -\infty \\ \psi (x) &\approx c(\mu )e^{-\mu x} + d(\mu )e^{\mu x}~,\qquad && x\to +\infty \end {split}} 

 
    

 
    

 

(9.15)
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and it follows that

 \boxed {\phantom {(}\mbox {$\psi $ bounded}\phantom {)}} ~~ \Leftrightarrow ~~ \boxed {\,a(\mu )=d(\mu )=0\,} 





    

 

(9.16) 

In such cases ψ is not only bounded, it also tends to zero at ˘8 and satisfies 

ş`8 

´8
| ψ |2 dx ă 0 . 

Note that there might be no

 

values for µ at which this happens. But if it does, the correspond- 

ing ψ is called a bound state solution . 

Fact: Given a potential V p x q tending to zero at ˘8 (and ą ´8 except possibly for discrete 

values of x ), bound state solutions only exist for a finite

 

(possibly empty) set of µ ’s:

 \bigl \{\mu _k\bigr \}_{k=1}^N = \bigl \{\mu _1,\mu _2,\dots \mu _N\bigr \}\,,~~~~~~\mu _1<\mu _2<\dots < \mu _N\,. 
















   



        



 

(9.17) 

Summary 

Bounded solutions to

  \left (-\frac {d^2}{dx^2}+V(x)\right )\psi (x)=E\psi (x)=k^2\psi (x), 











 



   

 

or equivalently 

` 

d2

 

dx2 

` u p x q
˘

ψ p x q “ λψ p x q with u p x q “ ´ V p x q and λ “ ´ E , come in two 

flavours when V p x q Ñ 0 as x Ñ ˘8 : 

1. E “ k2 “ ´ λ P p 0 , `8q : the “continuous spectrum” , leading to scattering solu- 

tions which are bounded , and have oscillatory asymptotics ; 

2. E “ ´ µ2 “ ´ λ P t´ µ2 

1 

, ´ µ2 

2 

, . . . ´ µ2 

Nu : the “discrete spectrum” , leading to bound 

state solutions which are square integrable ( i.e. 

ş`8 

´8
| ψ p x q|2 dx ă 8 ), and have 

damped asymptotics . 

(Note: for some rather-special, slowly-decaying potentials, there may also be some square 

integrable solutions with k2 ą 0 . These so-called ‘bound states in the continuum’ (BICs) crop 

up in a number of physical applications, but won’t be relevant for the current discussion.) 

9.2 Examples 

9.2.1 Zero potential: V p x q “ 0 

This was already done, essentially, when looking at the asymptotics for general V . We must 

solve ´ 

d2

 

dx2 

ψ “ k2 ψ for all x P R . There are two cases to consider. 

(a) k2 ą 0

 

:

https://en.wikipedia.org/wiki/Bound_state_in_the_continuum
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The general solution, valid for all

 

x , not just asymptotically, is

 \psi (x)=Ae^{ikx}+Be^{-ikx}~. 

 
 

 

(9.18) 

Restoring the τ dependence, it describes a left or right moving wave, bounded for all 

real values of k . 

Comparing with (9.9) shows that in this case C p k q “ A p k q and D p k q “ B p k q . Imposing 

A p k q “ 1 and D p k q “ 0 then gives us the scattering solution:

  \psi (x)=e^{ikx}~, 

  

 

from which it follows that

 \boxed { R(k)=0\,,\quad T(k) =1 } 

      

 

(9.19) 

If you think about it this should seem reasonable: with no potential, a particle incident 

from the left is transmitted through to the right with probability 1 . 

(b) k2 “ ´ µ2 ă 0

 

: 

The general solution from part (a) turns into

 \psi (x)=ae^{-\mu x}+be^{\mu x}\,. 

 
 

 

(9.20) 

and the only way to keep this bounded as x Ñ ˘8 is to set a “ b “ 0 . Thus there are 

no

 

bound state solutions for this problem. 

Summary 

For u “ 0 , the problem L p u q ψ “ λψ , ψ bounded, has a ‘scattering’ solution for all real λ ă 0 , 

and no solutions for λ ą 0 :
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9.2.2 Delta function potential: V p x q “ aδ p x q 

Here a is a real constant and δ p x q is the Dirac delta function. Recall that δ p x q can be viewed 

as the limit of a sequence (a ‘delta sequence’) of unit-area functions which are increasingly 

concentrated at the origin, so that for any continuous1 (test) function f p x q ,

  \intinf \delta (x)f(x)\,dx = f(0)\,. 





     

 

We seek a single solution ψ p x q , solving the equation in regions (1) and (2), and also consistent 

with the potential at x “ 0 . 

(a) k2 ą 0 :

 

In regions (1) and (2), V p x q “ 0 , so ψ satisfies ´ 

d2

 

dx2 

ψ “ k2 ψ and as in example 1, the 

solutions in the two regions are

 \label {phiab} \boxed {\psi (x)=\begin {cases} A(k)e^{ikx}+B(k)e^{-ikx}~, & x<0\\ C(k)e^{ikx}+D(k)e^{-ikx}~, & x>0\\ \end {cases}} 





     

      

 

(9.21) 

To finish, we must match the two parts of the solution at x “ 0 , and this will determine 

the relation(s) between A , B , C and D . 

To find the matching conditions, let us integrate the time-independent Schroedinger 

equation

 \label {tise_delta} -\psi ''(x)+a\delta (x)\psi (x)=k^2\psi (x)\, 


   

 

(9.22) 

in an infinitesimal neighbourhood r´ ϵ, ` ϵ s of x “ 0 :

  \int _{-\epsilon }^{+\epsilon }\!dx\left [-\psi ''(x)+a\delta (x)\psi (x)\right ] =k^2\int _{-\epsilon }^{+\epsilon }\!dx\,\psi (x)~~~ 






   







 

1If f p x q is discontinuous, then the result of the integral is the average of the right and left limits limx Ñ 0˘ f p x q . 

We won’t need to worry about such subtleties.
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 \Rightarrow \qquad -\left [\psi '(x)\right ]_{-\epsilon }^{+\epsilon }+a\psi (0)= k^2\int _{-\epsilon }^{+\epsilon }\!dx\,\psi (x)\,. \qquad 

 




   





 

 

(9.23) 

Provided that ψ is bounded (which it is), the RHS of this equation tends to 0 as ϵ Ñ 0 , 

and taking this limit implies ´ r ψ1p x q s
0` 

0´ ` aψ p 0 q “ 0 , or

 \label {dphidisc} \boxed { {~}\left [\,\psi '(x)\,\right ]_{0^-}^{0^+}=a\psi (0)~ }~. 














 

(9.24) 

The attentive reader will have noticed that we have implicitly assumed that ψ p x q is 

continuous at x “ 0 . It is not hard to relax that assumption to deduce a modified version 

of (9.24), which can then be used to deduce that ψ p x q is continuous:

  \label {phidisc} \boxed { {~}\left [\,\psi (x)\,\right ]_{0^-}^{0^+}=0~}~. 

 










 

(9.25) 

(Alternatively, the same conclusion can be derived by integrating (9.22) twice. We rec- 

ommend this exercise to the motivated reader.) 

Applying the matching conditions (9.25) and (9.24) to (9.21) we have

  \begin {cases} A+B=C+D\\ ik(C-D)-ik(A-B)=a(A+B)=a(C+D) \end {cases} 



     

             

 

which in turn implies

  \begin {cases} A+B=C+D\\ A-B=\left (1-\frac {a}{ik}\right )C-\left (1-\frac {a}{ik}\right ) D\,. \end {cases} 



     

  





























 

Adding and subtracting,

 \label {gensol} \begin {split} A&=\left (1-\frac {a}{2ik}\right )C-\frac {a}{2ik}D\\ B&=\frac {a}{ik}C+\left (1+\frac {a}{2ik}\right ) D\,. \end {split} 

















































 

(9.26) 

Substituting into (9.21) gives the general solution, with two undetermined constants as 

expected. 

To get to the scattering solution , set D “ 0 and then divide through so that A “ 1 :

 \label {scattering_soln} \boxed { \psi (x)= \begin {cases} e^{ikx}+\frac {a}{2ik-a}\,e^{-ikx} ~,& x<0\\[3pt] \frac {2ik}{2ik-a}\,e^{ikx}~, & x>0 \end {cases} } 













   







   

 

(9.27) 

and from this the reflection and transmission coefficients can be read off:

  \begin {split} R(k)&=\frac {a}{2ik-a} \\ T(k)&=\frac {2ik}{2ik-a} \end {split} 







 

 





 

 

(9.28)
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and it’s easy to see that

 |R(k)|^2+|T(k)|^2=1 




 




 

(9.29) 

as expected. 

(b) k2 “ ´ µ2 ă 0 :

 

Setting k “ iµ in (9.21), (9.26) with µ ą 0 we obtain the general solution in this regime:

 \psi (x)= \begin {cases} A(i\mu )e^{-\mu x}+B(i\mu )e^{\mu x}~, & x<0\\[3pt] C(i\mu )e^{-\mu x}+D(i\mu )e^{\mu x}~, & x>0 \end {cases} 





     

      

 

(9.30) 

Given that we chose µ ą 0 , this is bounded as x Ñ ˘8 iff

 \boxed {A(i\mu )= D(i\mu )=0}~. 

   





 

(9.31) 

Substituting into (9.26),

  \begin {cases} 0=\bigl (1+\frac {a}{2\mu }\bigr )C\\ B=-\frac {a}{\mu }C \end {cases} 



















 









 

giving two options: 

1. A “ B “ C “ D “ 0 (trivial); 

2.

 \boxed { \mu =-\frac {a}{2}\,,\quad B=C }~. 

 







  





 

(9.32) 

Given that we took µ ą 0 , option 2 means that there is a bounded solution with k2 ă 0 

only for a ă 0

 

. The bound state solution is then

 \label {bound_state_delta} \boxed { \,\psi (x)=e^{\frac {a}{2}|x|} = \begin {cases} e^{\frac {a}{2}x}\,,&x<0\\[3pt] e^{-\frac {a}{2}x}\,,&x>0 \end {cases}\, } 

 




















   









   

 

(9.33) 

and for this case

 \boxed { \,k^2=-\frac {a^2}{4}\, }~. 

 











 

(9.34)
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NOTE: we can obtain bound state solutions by an alternative method. First, observe that we 

need D p k q “ 0 for the general solution to be bounded as x Ñ ˘8 . Hence we could substitute 

k “ iµ directly in the scattering solution (9.27):

 \label {} \boxed { \psi (x)= \begin {cases} e^{-\mu x}+\frac {a}{-2\mu -a}\,e^{\mu x} ~,& x<0\\[3pt] \frac {-2\mu }{-2\mu -a}\,e^{-\mu x}~, & x>0 \end {cases} }~, 













   







   





 

(9.35) 

which looks hopelessly unbounded as x Ñ ´8 due to the e´ µx term. There is a trick though: 

let’s change normalization by dividing through by T p iµ q “ 

2 µ

 

2 µ ̀  a
, which gives

 \label {} \boxed { \psi (x)= \begin {cases} \frac {2\mu +a}{2\mu }e^{-\mu x}-\frac {a}{2\mu }\,e^{\mu x} ~,& x<0\\[3pt] e^{-\mu x}~, & x>0 \end {cases} }~. 



















   

   





 

(9.36) 

This re-normalized solution is now bounded as x Ñ ´8 if (and only if) µ “ ´ 

a

 

2
, in which 

case we recover the bound state solution (9.33).2 

Summary 

For V p x q “ ´ u p x q “ aδ p x q , the eigenvalue problem L p u q ψ “ λψ , with ψ bounded, has a 

scattering solution for all real λ ă 0 , and either no solutions for λ ą 0 if a ě 0 , or one solution 

for λ ą 0 if a ă 0 :

 

2We could have alternatively divided by R p iµ q and reached the same conclusion.
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• For all k2 ą 0

 

, a scattering solution

 \label {scattering_soln_delta_2} \boxed { \psi (x)= \begin {cases} e^{ikx}+R(k)\,e^{-ikx} ~,& x<0\\ T(k)\,e^{ikx}~, & x>0 \end {cases} } 





      

     

 

(9.37) 

exists with reflection and transmission coefficients

  \boxed { R(k)=\frac {a}{2ik-a}~, \qquad T(k)=\frac {2ik}{2ik-a}}~. 







 

  





 





 

(9.38) 

• For isolated k2 “ ´ µ2 ă 0

 

, a bound state solution

 \label {bound_state_soln_delta_2} \boxed { \psi (x)= \begin {cases} \frac {R(i\mu )}{T(i\mu )}e^{\mu x}~,& x<0\\ e^{-\mu x}~, & x>0 \end {cases} } 











   

   

 

(9.39) 

exists if µ “ ´ a { 2

 

, such that

  \boxed { \frac {1}{T(i\mu )}=0}~. 













 

(9.40) 

The general story 

For potentials V p x q which tend to zero as x Ñ ˘8 , bound state solutions can be obtained 

from scattering solutions by 

1. dividing the scattering solution through by T p k q ; 

2. setting

  \boxed {k=i\mu =\text {pole of}~ T(k)~ \text {on the positive imaginary axis}}~. 
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The above condition determines the discrete spectrum of ´ 

d2

 

dx2 

` V p x q . 

Note: the transmission coefficient T p k q can be equivalently replaced by the reflection coeffi- 

cient R p k q above. Their poles coincide because they satisfy (9.14). 

For more examples, see Ex 53 and 54 in the problem sheet. 

9.3 Reflectionless potentials 

We now return to the initial field configurations u p x, 0 q “ a sech2
p x q that were tried for the 

KdV field earlier. These seemed to lead to interesting field evolutions whenever a was equal 

to n p n ` 1 q with n a positive integer, and it’s natural to wonder whether this interesting 

behaviour is also apparent in the correpsonding scattering problem. 

The relevant potential is

 \boxed { V(x)=-a\,\sech ^2(x) } 

   


 

(9.41) 

as illustrated below:

 

The time independent Schödinger equation (T.I.S.E.) to be solved is

 \boxed { -\psi ''(x)-a\,\sech ^2(x)\,\psi (x)=k^2\psi (x) } 


  

  

 

(9.42) 

and we’re after bounded solutions to this eigenvalue problem. 

Substituting

 \boxed {y=\tanh (x)}~\in (-1,1) 

 



 

 

(9.43) 

so that

 \frac {d}{dx}=\sech ^2(x)\frac {d}{dy} =(1-y^2)\frac {d}{dy} 
















  







 

(9.44) 

the T.I.S.E. becomes

 \label {glea} \boxed {\, \frac {d}{dy}\Bigl [ (1-y^2)\frac {d\psi }{dy}\Bigr ] +\Bigl (\frac {k^2}{1-y^2}+a\Bigr )\psi =0\, } 









 















 





 

 

(9.45) 

and putting

 \boxed {\, k^2=-m^2\,,\quad a=n(n+1) } 

       

 

(9.46)
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this becomes the general (or associated) Legendre equation :

 \label {gle} \boxed {\, \frac {d}{dy}\Bigl [ (1-y^2)\frac {d\psi }{dy}\Bigr ] +\Bigl (n(n+1)-\frac {m^2}{1-y^2}\Bigr )\psi =0\, } 









 













  





 



 

 

(9.47) 

This equation has been much studied, and its solutions are known in general in terms of certain 

special functions. 

Fact 1 : 

If n “ 1 , 2 , 3 , . . . ( i.e. n P Zě 0

 

) and m “ 0

 

(so k “ 0 ), then (9.47) becomes the Legendre 

equation and its bounded solution for y P r´ 1 , 1 s is

 \psi =P_n(y)=\frac {1}{n!\,2^n}\frac {d^n}{dy^n}(y^2-1)^n\,, 

  














 



 

(9.48) 

the nth Legendre polynomial of the first kind . The first few examples are:

 P_1(y)&=y\\[2pt] P_2(y)&=-\fract {1}{2}+\fract {3}{2}y^2\\[2pt] P_3(y)&=-\fract {3}{2}y+\fract {5}{2}y^3\\[2pt] P_4(y)&=\fract {3}{8}-\fract {15}{4}y^2+\fract {35}{8}y^4~.

 

 














 








































 

In general, Pjp´ y q “ p´ 1 qj Pjp y q and Pjp 1 q “ 1 . Since y “ ˘ 1 corresponds to x “ ˘8 , this 

means that these are bounded

 

solutions to the Schrödinger equation (tending to 1 or maybe 

´ 1 as x Ñ ˘8 ) but they are not bound states

 

(for which ψ would have to tend to zero as 

x Ñ ˘8 ). 

(The second solutions, the Legendre functions of the second kind , Qnp y q , blow up at y “ ˘ 1 .) 

Fact 2 : 

If n P Zě 0 

, bounded solutions to (9.47) only exist for

 \boxed { \,m=0, 1, 2\dots n\, } 

       

 

(9.49) 

and are

 \label {glp} P^m_n(y)=(-1)^m(1-y^2)^{m/2}\frac {d^m}{dy^m}P_n(y)\,.\, 







 


 











 

(9.50) 

These are the associated Legendre ‘polynomials’ of the first kind (the word polynomials 

is in quotes since for m odd, m { 2 is not an integer so they aren’t strictly speaking polynomials). 

Fact 3 :
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Even when m and n are not integers (and in fact even when they are complex), solutions to 

(9.47) can be written explicitly using certain special functions. We have that

 \boxed { \,P_n^m(y)= \frac {1}{\Gamma (1-m)}\left (\frac {1+y}{1-y}\right )^{m/2} {}_2F_1\bigl (-n,n{+}1;1{-}m;\fract {1-y}{2}\bigr ) } 













 



 



 









 









 

(9.51) 

solves (9.47), and reduces to (9.50) if n P Zě 0 

and m “ 0 , 1 , . . . n . 

Here

 \boxed { \,\Gamma (z)=\int _0^{\infty }dt\,t^{z-1}e^{-t}\, } 









 

(9.52) 

is Euler’s Gamma function , which satisfies

 \label {Gamma_property1} \Gamma (z+1)=z \Gamma (z)~, 

    

 

(9.53) 

which along with Γ p 1 q “ 1 implies that

 \label {Gamma_factorial} \Gamma (N+1)=N!~~\mbox {if~} N\in \mathbb {Z}_{\ge 0}~. 

        



 

(9.54) 

Other key properties are that

 \label {Gamma_properties2} \begin {split} \Gamma (z)&\neq 0~~\forall z\\ \frac {1}{\Gamma (z)}&= 0~~\mbox {iff}~ z\in \{0,-1,-2,\dots \}\\ \Gamma (z)\Gamma (1-z)&=\frac {\pi }{\sin (\pi z)}~. \end {split} 

  







          

  









 

(9.55) 

2 

F1 

is the hypergeometric function and has the Taylor expansion

 \label {hypergeom} \boxed {\, {}_2F_1(a,b;c;z) = \frac {\Gamma (c)}{\Gamma (a)\Gamma (b)}\sum _{k=0}^{\infty } \frac {\Gamma (k+a)\Gamma (k+b)}{\Gamma (k+c)}\frac {z^k}{k!}~ } 



   












   



 









 

(9.56) 

for | z | ă 1 , and is defined by analytic continuation elsewhere. The first few terms are

  {}_2F_1(a,b;c;z) =1+\frac {ab}{c}z +\frac {a(a{+}1)b(b{+}1)}{c(c{+}1)}\frac {z^2}{2!} +\dots ~. 



     





















   

 

So, up to normalisation, a potentially bounded solution to (9.45) is

 \boxed {\psi (x)=P_n^m(y=\tanh (x))} 

 





 

 

(9.57) 

with

 \label {m_n} \boxed {m=ik\,,\quad n=\frac {\sqrt {1+4a}}{2}-\frac {1}{2}}~. 

    





 

















 

(9.58) 

Note that in (9.58) we picked the roots which give the scattering solution with particles inci- 

dent from the left. Observe also that n is real (and n ě ´1

 

2
) if a ě ´1

 

4
, and n ě 0 if a ě 0 . 

(a) k2 ą 0 – the continuous spectrum
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• x Ñ `8 :

 

In this limit y “ tanh p x q « 1 ´ 2 e´ 2 x Ñ 1´ and so

  {}_2F_1(\dots ;\fract {1-y}{2})\to {}_2F_1(\dots ;0)=1\,;\quad \frac {1+y}{1-y}\approx e^{2x}\,. 



  







 

      

 



 

 

 

Putting these bits together,

 \boxed {\, \psi \approx \frac {1}{\Gamma (1-ik)}\,e^{ikx}\, } 







 



 

(9.59) 

as x Ñ `8 . 

• x Ñ ´8 :

 

In this limit y “ tanh p x q « ´ 1 ` 2 e2 x Ñ ´ 1` and 

1 ̀  y

 

1 ́  y 

« e2 x, and it turns 

out that

  \frac {1}{\Gamma (1{-}m)}\,{}_2F_1(-n,n{+}1;1{-}m;\fract {1-y}{2})\approx \frac {\Gamma (-m)}{\Gamma (1{-}m{+}n)\Gamma (-m{-}n)}+ \frac {\Gamma (m)}{\Gamma (-n)\Gamma (n{+}1)}\,e^{-2mx}\,. 









 
























 

This asymptotic can be proved using the already-mentioned properties of the hyperge- 

ometric function together with the identity

 \frac {\sin (\pi (c{-}a{-}b))}{\pi }\,{}_2F_1(a,b;c;z)&=\frac {{}_2F_1(a,b;c;1{-}z)}{\Gamma (c{-}a)\Gamma (c{-}b)\Gamma (a{+}b{-}c{+}1)}\\ &-(1{-}z)^{c-a-b}\, \frac {{}_2F_1(c{-}a,c{-}b;c{-}a{-}b{+}1;1{-}z)}{\Gamma (a)\Gamma (b)\Gamma (c{-}a{-}b{+}1)}~.









   



  










  







 

Hence

 \boxed {\, \psi \approx \frac {\Gamma (-ik)}{\Gamma (1{-}ik{+}n)\Gamma (-ik{-}n)}\,e^{ikx} +\frac {\Gamma (ik)}{\Gamma (-n)\Gamma (n{+}1)}\,e^{-ikx}~ } 




















 

(9.60) 

as x Ñ ´8 . 

Normalising this scattering solution so that the coefficient of eik x at ´8 is 1 , we can read off 

the values of R p k q and T p k q :

 \label {R_T_reflectionless} \boxed { \begin {split} R(k)&= \frac {\Gamma (ik)\Gamma (1{-}ik{+}n)\Gamma (-ik{-}n)}{\Gamma (-ik)\Gamma (1{+}n)\Gamma (-n)} = -\frac {\sin (\pi n)}{\pi }\, \frac {\Gamma (ik)\Gamma (1{-}ik{+}n)\Gamma (-ik{-}n)}{\Gamma (-ik)} \\ T(k)&= \frac {\Gamma (1{-}ik{+}n)\Gamma (-ik{-}n)}{\Gamma (1{-}ik)\Gamma (-ik)}\,. \end {split} } 






















 









 

(9.61) 

Note: The sin p π n q factor in R p k q means that it vanishes for all k if n is an integer. The 

corresponding potentials

 \boxed {\, V(x)= -n(n{+}1)\,\sech ^2(x)~ } 

   


 

(9.62) 

with n P Zě 0 

(without loss of generality since a is unchanged if we flip sign to n ` 1 { 2 ) are 

called reflectionless : no particles are reflected for any value of k .
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(b) k2 ă 0 – the discrete spectrum 

To find the discrete spectrum, set k “ iµ , where µ ą 0 , and divide the scattering solution 

through by T p iµ q to find a possible eigenfunction

 \boxed { \,\psi (x)\approx \begin {cases} \frac {1}{T(i\mu )}e^{-\mu x}+\frac {R(i\mu )}{T(i\mu )}\,e^{\mu x} & x\to -\infty \\[3pt] e^{-\mu x} & x\to +\infty \end {cases}\, } 



















  

  

 

(9.63) 

This is automatically bounded as x Ñ `8 ; it will be bounded as x Ñ ´8 if (and only if) 

µ ě 0 is such that 1 { T p iµ q “ 0 . (In fact we’ll require µ ą 0 , since 

ş`8 

´8
| ψ |2 dx should be finite 

for the discrete spectrum.) This in turn requires

  \frac {1}{T(i\mu )}= \frac {\Gamma (1+\mu )\Gamma (\mu )}{\Gamma (1+\mu +n)\Gamma (\mu -n)} = 0\,. 









 



     

 

 

Given that µ must be a positive real number and that Γ p z q has no zeros, there are two options: 

(1) 1 ` µ ` n “ ´ j , with j P Zě 0; 

(2) µ ´ n “ ´ h , with h P Zě 0. 

• If n R R then there are no real solutions for µ ; 

• if n P R we can take n ě ´ 1 { 2 without losing generality, since (1) Ø (2) when n ÞÑ 

´ 1 ´ n . 

Then (1) never holds, while solutions for positive µ do exist for option (2) provided n ě 0 :

 \boxed { \, \mu =n, n-1, n-2\dots n-\floor {n} \, } 

             

 

(9.64) 

where t n u “ ‘floor’ of n “ {largest integer ď n }. So

 \boxed { \, \mbox {Total number of bound states} = \ceil {n} \, } 

     

 

(9.65) 

where r n s “ ‘ceiling’ of n “ {smallest integer ě n }. (If n is an integer, then the last eigenvalue, 

for µ “ 0 , should be discarded as the corresponding ψ is not square integrable and so is not a 

bound state. It’s in the continuous spectrum instead.) 

Summary for V p x q “ ´ a sech2
p x q “ ´ n p n ̀  1 q sech2

p x q :



 

CHAPTER 9. THE BASICS OF SCATTERING THEORY 118 

‚ a ă 0 :

 

‚ a “ n p n ` 1 q ą 0 : 

( n not an integer (say n “ 2 . 5 ) on the left, n P Zą 0 

(say n “ 2 ) on the right)



 

Chapter 10 

Time evolution of the scattering data 

See section 5.2 [Drazin and Johnson, 1989] and [Aktosun, 2009] for this chapter. 

10.1 Scattering data for general potentials 

So far we’ve seen that for any localised initial data u p x, 0 q for the KdV equation, the auxiliary 

time-independent Schrödinger equation

  -\psi ''(x)+V(x)\psi (x)=k^2\psi (x) 


    

 

(10.1) 

with potential V p x q “ ´ u p x, 0 q has 

1. A continuous spectrum of non-negative eigenvalues E “ k2 ě 0 and eigenfunctions

  \boxed { \,\psi (x)\approx \begin {cases} e^{ikx}+R(k)\,e^{-ikx} ~, & x\to -\infty \\ T(k)\,e^{ikx} ~, & x\to +\infty \end {cases}\, } 





      

     

 

(10.2) 

normalised so that the incoming flux is one; 

2. A (maybe empty) discrete spectrum of negative eigenvalues E “ k2 “ ´ µ2 

n ă 0 , indexed 

by n “ 1 , 2 . . . N . These look like

 \boxed { \,\psi _n(x)\approx \begin {cases} c_n\,e^{\mu _n x}~, & x\to -\infty \\ d_n\,e^{-\mu _n x}~, & x\to +\infty \end {cases}\, } 









   





   

 

(10.3) 

So far the ψn’s we have found have been normalised so that dn 

“ 1 , but now we will 

119
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instead normalise them so that

  \boxed { \langle \psi _n,\psi _n\rangle =\intinf |\psi _n(x)|^2\,dx=1}~. 



 






  





 

Once ψn 

has been normalised in this way, the number cn 

is called the normalising coefficient 

and it will be needed later to reconstruct V p x q “ ´ u p x q . More precisely, to reconstruct V p x q 

we will need to know the eigenvalues and the asymptotics of the eigenfunctions as x Ñ ´8 :

 \boxed {\,S= \left \{ R(k)\,,~~\left \{\mu _n,c_n\right \}_{n=1}^N\, \right \}\, } 





 








 

(10.4) 

This is called the scattering data , refining the notion of scattering data given earlier. 

• Clearly, u (or V “ ´ u ) determines the scattering data completely (this was step (a) , 

disassembly, of the roadmap). 

• Amazingly, the converse also holds: u (or V “ ´ u ) can be reconstructed uniquely from 

the scattering data (step (c) , reassembly). 

• The next major task is to return to step (b) , time evolution, to see precisely how the 

scattering data evolves. 

Before going there, let’s make precise the scattering data for two sets of potentials studied 

earlier.
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10.2 Examples of scattering data 

1) V p x q “ a δ p x q :

 

For all values of a we have

  \boxed {\, R(k)=\frac {a}{2ik-a} \,}~. 







 





 

• For a ě 0 that’s all. 

• For a ă 0 there is also a single bound state ψ p x q “ Ae´ µ | x | with µ “ ´ a { 2 ą 0 . Normalising 

determines A2{ µ “ 1 so A “
?

 

µ “ 

a

 

´ a { 2 , up to an irrelevant sign ambiguity. 

Thus the general scattering data for u p x, 0 q “ ´ aδ p x q , V p x q “ aδ p x q , is

 \boxed {\, S(0)= \begin {cases} ~\Bigl \{\,R(k)=\frac {a}{2ik-a} \Bigr \} &\mbox {if}~ a\ge 0\\[8pt] ~\Bigl \{\,R(k)=\frac {a}{2ik-a}~, ~\bigl \{\mu _1=-a/2, c_1=\sqrt {-a/2}\,\bigr \}~\Bigr \} &\mbox {if}~ a< 0 \end {cases} \,} 

























  















   











  

 

(10.5) 

2) V p x q “ ´ n p n ̀  1 q sech2p x q

 

, n P Zě 0: 

(a) Scattering states: R p k q “ 0 , since the potential is reflectionless. 

(b) Bound states: we have ψmp x q “ A P 

m 

n 

p tanh p x qq , m “ 1 , 2 . . . n , where A is a normali- 

sation constant that can be fixed by imposing

  1 = \intinf |\psi _m(x)|^2\,dx = A^2\int _{-1}^1 P_n^m(y)^2\,\frac {dy}{1-y^2} = A^2\,\frac {(n{+}m)!}{m(n{-}m)!} 








  


















 









 

where the last equality makes use of one of the standard properties of P 

m 

n 

. 

In addition P has the asymptotics

  P_n^m(\tanh (x))\approx (-1)^n\frac {(n{+}m)!}{m!(n{-}m)!}\,e^{mx}\,,\quad x\to -\infty \,. 







 








    

 

Hence the asymptotics of the normalised bound state is

  \psi _m(x)\approx (-1)^n\frac {1}{m!} \sqrt {\frac {m(n{+}m)!}{(n{-}m)!}}\,e^{mx}\,,\quad x\to -\infty ~. 

 


















    

 

The full scattering data is

 \boxed {S(0)= \left \{ \,R(k)=0\,,~~ \left \{ \mu _m^{(n)}=m\,,~ c_m^{(n)}=(-1)^n\fract {1}{m!} \sqrt {\fract {m(n{+}m)!}{(n{-}m)!}}\, \right \}_{m=1}^n\, \right \} \,}~. 





  







  






























 

(10.6)
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3) V p x q “ ´ n1p n1 ` 1 q sech2p x q

 

, n1 “ n ` ϵ , n P Zě 0, | ϵ | ! 1 : This is a small 

perturbation of the previous case, hence the potential is almost reflectionless. 

The discrete eigenvalues are 

µ “ p ϵ, q 1 ` ϵ, 2 ` ϵ, . . . , n ` ϵ . 

(The first eigenvalue µ “ ϵ is there only if ϵ ą 0 . Let’s assume that ϵ ă 0 and not worry about 

it.) 

Compared to the previous case, we just need to replace factorials by gamma functions:

  \Gamma (n')=\Gamma (n)\left (1+\epsilon \psi (n) + \calO (\epsilon ^2) \right ) 


 



   


 

(10.7) 

where

  \boxed {\psi (z):= \frac {\Gamma '(z)}{\Gamma (z)}} 









 

(10.8) 

is the digamma function . Expanding to first order in ϵ one finds

 \label {10.9} \boxed { c_m^{(n')}approx c_m^{(n)}\left [1+\epsilon \left (\frac {1}{m}+\frac {1}{2}\psi (n+m+1)-\psi (m+1) \right ) \right ] } 











 
















       



 

(10.9) 

for the discrete eigenvalues

 \label {10.10} \boxed { \mu _m^{(n')}=m+\epsilon }~,\qquad m=1,\dots ,n. 





  



       

 

(10.10) 

The reflection coefficients is easier and more interesting. From (9.61) we obtain

 \label {10.11} \boxed { \begin {split} R(k)&= -\frac {\sin (\pi (n+\epsilon )}{\pi }\, \frac {\Gamma (ik)\Gamma (1-ik+n+\epsilon )\Gamma (-ik-n-\epsilon )} {\Gamma (-ik)} \\ &\approx \epsilon \cdot (-1)^{1+n} \frac {\Gamma (ik)\Gamma (1-ik+n)\Gamma (-ik-n)} {\Gamma (-ik)} \end {split} }~. 

 
 





         





  
     









 

(10.11) 

Equations ( ?? ) are the scattering data for n1 “ n ` ϵ with 0 ă ´ ϵ ! 1 . 

Now that we have worked out the scattering data for some initial values of the KdV field, we’d 

like to understand how to evolve the scattering data forward in (KdV) time t , when u “ ´ V 

evolves according to the KdV equation ut ` 6 uux ` uxxx “ 0 .
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10.3 The idea of a Lax pair 

We want to solve the initial value problem for a PDE

 \label {general_PDE_1st_order_t} \boxed {u_t=N(u)} 

  

 

(10.12) 

where N p u q is a function of u, ux 

, uxx 

, . . . (but no t derivatives), and with the boundary con- 

ditions u, ux 

, uxx 

, ¨ ¨ ¨ Ñ 0 as x Ñ ˘8 . For the KdV equation N p u q “ ´ 6 uux ´ uxxx, but we 

can be more general. 

We’ll think of ψxx ` uψ “ λψ at some fixed time t as an eigenvalue problem :

  \label {eprob} L(u)\psi =\lambda \psi 

 

 

(10.13) 

where L p u q is the following differential operator:

  \label {Ldef} L(u)=\frac {\partial ^2}{\partial x^2}+u(x,t)\,. 









  

 

(10.14) 

Notes: 

1. You should think of differential operators such as L , or B{B x , or whatever, as acting on 

all functions sitting to their right. 

2. (10.13) does pick out “special” values of λ (the eigenvalues ) since we require that ψ p x q is 

square integrable ( i.e. 

ş`8 

´8
| ψ p x q|2 dx ă 8 ) which in particular means ψ p x q Ñ 0 both as 

x Ñ ´8 and as x Ñ `8 . (Later, we will relax this a little to allow solutions ψ that are 

merely bounded , but for now we will require that the stronger condition holds.) 

3. The “ t ” in (10.14) has nothing to do with the time in the time-dependent Schrödinger 

equation you might see in quantum mechanics; rather, it’s the KdV time. 

Since L depends on u , and u depends on t , the eigenfunctions ψ and (in principle) the eigen- 

values λ might be different at different (KdV) times. 

But, we have two remarkable facts: 

THEOREM

 

: 

(i) If u “ u p x, t q evolves by the KdV equation, then the set of eigenvalues t λ u of L p u q (the 

spectrum of L p u q ) is independent of t ; 

(ii) There is a set of eigenfunctions ψ of L p u q which evolves in t simply, as

 \label {psi_t} \psi _t=M(u)\psi ~, 

   

 

(10.15)



 

CHAPTER 10. TIME EVOLUTION OF THE SCATTERING DATA 124 

where M p u q is another differential operator.

 

The result (i) is particularly striking – it says that the spectra of B2{B x2 ` u p x, 0 q and B2{B x2 ` 

u p x, t q are the same, which is very unexpected since u p x, 0 q and u p x, t q might look very dif- 

ferent. 

PROOF

 

: 

First, we’ll assume that an operator M p u q can be found such that the time evolution of L p u p x, t qq 

is given by

  \begin {split} L(u)_t &= M(u)L(u)-L(u)M(u) \\ &= [M(u),L(u)] \label {BL} \end {split} 

     

  

 

(10.16) 

when u evolves by KdV (we’ll find M later). 

Here, r M , L s : “ M L ´ LM is called the commutator of the two operators M and L . Since 

M and L can both involve x derivatives, M L ‰ LM is possible – see later for examples. 

Now let λ and ψ be an eigenvalue and eigenfunction of L , so that Lψ “ λψ . Taking B{B t of 

this equation,

  L_t\psi + L\psi _t=\lambda _t\psi + \lambda \psi _t\,. 



   

 



 

Rearranging,

 \label {10.17} \begin {split} \lambda _t\psi &= \lambda _t\psi + L\psi _t - \lambda \psi _t \\ &= (ML-LM)\psi + (L-\lambda )\psi _t \qquad \mbox {(using (\ref {BL}))} \\ &= (M\lambda -LM)\psi + (L-\lambda )\psi _t \qquad \mbox {(using $L\psi =\lambda \psi $)} \\ &= (L-\lambda )\bigl (\psi _t-M\psi \bigr )~. \end {split} 



 

   

       



       

  

  


 





 

(10.17) 

Now consider the inner product on square integrable (complex) functions of x :

 \label {inner_product} \boxed { \langle \psi _1, \psi _2 \rangle := \intinf dx ~\overline {\psi _1(x)} \psi _2(x) } ~, \qquad \psi _1,\psi _2 \in L^2(\mathbb {R})~. 



 















  


 

(10.18) 

Lemma:

 

L is self-adjoint , i.e.

 \label {L_selfadjoint} \boxed {\langle \psi _1, L \psi _2 \rangle = \langle L \psi _1, \psi _2 \rangle }\qquad \forall \psi _1,\psi _2 \in L^2(\mathbb {R})~. 



  







  


 

(10.19) 

Proof

 

of the lemma: integrate by parts to find

  \begin {split} \langle \psi _1, L \psi _2 \rangle &=\intinf dx~\overline {\psi _1(x)} \left (\frac {\partial ^2}{\partial x^2}+u(x,t) \right ) \psi _2(x)\\ &= \intinf dx ~\overline {\left [\left (\frac {\partial ^2}{\partial x^2}+u(x,t) \right )\psi _1(x)\right ]}~ \psi _2(x) = \langle L \psi _1, \psi _2 \rangle ~. \end {split} 



 



















 























 







 

 



 

CHAPTER 10. TIME EVOLUTION OF THE SCATTERING DATA 125 

where we used that the boundary terms vanish because ψ1 

, ψ1 

1 

Ñ 0 as x Ñ ˘8 , and that 

u P R .

 

Using this lemma and the fact that the eigenvalues λ of a self-adjoint operator (like L ) are real 

(proof left as an exercise), (10.17) implies

  \begin {split} \lambda _t \langle \psi , \psi \rangle &= \langle \psi , (L-\lambda )(\psi _t-M\psi )\rangle \\ &= \langle (L-\lambda )\psi ,(\psi _t-M\psi )\rangle = 0~, \end {split} 

       

        

 

where in the last equality we used that Lψ “ λψ . Since 0 ă x ψ , ψ y ă 8 , we deduce that

  \boxed {\lambda _t=0}~, 

 





 

(10.20) 

which is result (i).1

 

For result (ii), we need to show that p L ´ λ q ψ “ 0 continues to be true if ψ changes according 

to ψt “ M ψ . Calculating,

  \begin {split} \frac {\partial }{\partial t}\bigl ( (L-\lambda )\psi \bigr ) &= L_t\psi + L\psi _t - \lambda _t\psi - \lambda \psi _t \\ &= L_t\psi + L\psi _t - \lambda \psi _t \qquad \mbox {(since we already know $\lambda _t=0$)}\\[3pt] &= L_t\psi + LM\psi - \lambda M\psi \qquad \mbox {(using $\psi _t=M\psi $) }\\[3pt] &= L_t\psi + LM\psi - M\lambda \psi \qquad \mbox {(since $\lambda $ is a number) }\\[3pt] &= L_t\psi + LM\psi - ML \psi \qquad \mbox {(using $L\psi =\lambda \psi $) }\\[3pt] &= \bigl ( L_t - [M,L]\bigr )\psi \\[3pt] &= 0 \qquad \mbox {(using (\ref {BL})\,)} \end {split} 









 





   

 



   

     



       



        



       





  




   

 

(10.21) 

This shows that if ψt 

“ M ψ and ψ starts off as an eigenfunction at t “ 0 , then it stays that 

way:

  (L-\lambda )\psi = (\mathrm {constant~with~respect~to~}t) = (L-\lambda )\psi \big |_{t=0} = 0~. 

           






 

 

(10.22) 

This is result (ii).2

 

L and M are called a Lax pair . All that remains now is to find a suitable M p u q .

 

1Note that this derivation holds for the discrete spectrum, so that the inner product is finite. But we already 

know that the continuous spectrum consists of all λ ď 0 for all t , so that part is trivially constant. 

2We may also start from (10.17), which tells us that λt “ 0 (part (i) of the theorem) implies 

p L ´ λ qp ψt ´ M ψ q “ 0 . 

Hence ψt ´ M ψ is in the kernel of the operator L ´ λ (at any given time t ). If λ belongs to the discrete spectrum 

of L , there is a unique bound state ψ , which means that ker p L ´ λ q “ R ψ is one-dimensional and is generated 

by ψ . Therefore 

ψt ´ M ψ “ Aψ 

for a constant A , or equivalently eAtpBt 

´ M qp e´ At ψ q “ 0 . If A “ 0 , (ii) follows for ψ p t q . If A ‰ 0 , the 

statement does not follow for ψ p t q , but we can construct ψ̃ p t q : “ e´ At ψ p t q , which is an eigenfunction of L with
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10.3.1 The Lax pair for KdV 

We’ve already decided that L p u q “ 

B2

 

B x2 

` u p x, t q , where u evolves according to the KdV 

equation. We want to find M p u q such that

  u_t=N(u)\equiv -6uu_x-u_{xxx}=0 ~~ \Longleftrightarrow ~~ L(u)_t = [M(u),L(u)]~. 

               

 

(10.23) 

Here L p u qt 

denotes the time derivative of the operator L p u q “ 

B2

 

B x2 ` u . Since the operator 

B2

 

B x2 

does not depend on time, we have L p u qt “ ut. Hence we need

 \label {10.24} [M(u),L(u)] = N(u) \equiv - 6uu_x- u_{xxx}~. 

        



 

(10.24) 

For now we’ll just make an inspired guess for M p u q , and check that it works; in the next 

chapter a more systematic approach will be explained. The guess is to set

  \boxed {M(u)=-\left ( 4 D^3 + 6uD + 3u_x\right )} 

  




  



 

(10.25) 

where to save ink the notation D ” 

B

 

B x
, D2 ” 

B2

 

B x2 , etc. has been adopted. 

Notice that operators like D act on everything to their right, and that differential operators are 

defined by their actions on functions. So for example r D , u s is defined by how it would act on 

any (say smooth) function f p x q . Calculating,

 [D,u]f &= \left (Du f-u D\right )f \\[3pt] &= D(uf)-u(Df) = (Du)f+u(Df)-u(Df) = u_x f~.

     

              



 

Thus the effect of r D , u s on f p x q is to multiply it by uxp x q . Since this is true for all functions 

f p x q we have that

  [D,u]=u_x 

  

 

(10.26) 

as an identity between differential operators. Perhaps more usefully, this can be rephrased as 

D u “ uD ` ux 

which shows how to “shuffle” D s past other functions. This can be used to rewrite expressions 

in a form where all D s are on the right in all terms, making cancellations easier to spot. More 

generally (see problem 58)

  \boxed { [D^n,u] = \sum _{m=0}^{n-1} \binom {n}{m} u_{\underbrace {x\dots x}_{n-m~\text {times}}} D^m}~. 



 














   












 

(10.27)

 

eigenvalue λ for all t , coincides with ψ at t “ 0 , and satisfies the time evolution equation ψ̃t “ M ψ̃ . This proves 

(ii) for ψ̃ . For the continuous part of the spectrum there are two linearly independent eigenfunctions for any 

eigenvalue λ “ ´ k2 ă 0 , but only one satisfies the boundary condition of a scattering solution with unit flux of 

right-moving plane waves coming in from x “ ´8 , hence the same argument applies.
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We will also need r D 

n , D 

ms “ 0 for all n, m , and r g p x q , h p x qs “ 0 for all functions g and h . 

Finally, for all operators A, B , C we have

  \begin {split} [A,BC] &= ABC-BCA \\ &= ABC-BAC+BAC-BCA\\ &=[A,B]C+B[A,C]~, \end {split} 

     

      

      

 

(10.28) 

and similarly

  [AB,C]=A[B,C]+[A,C]B~. 

          

 

(10.29) 

Now just calculate! We have

  L=D^2+u\,,\quad M=-(4D^3+6uD+3u_x) 

 
    

  

 

so

  \begin {split} -[M(u),L(u)] &= [4D^3+6uD+3u_x,D^2+u] \\ &= 4[D^3,u]+6[uD,D^2]+6[uD,u]+3[u_x,D^2] \\ &=4[D^3,u]+6[u,D^2]D+6u[D,u]+3[u_x,D^2]\\ &=4(u_{xxx}+3u_xxD+3u_x D^2)-6(u_{xx}+2u_x D)D\\ &+6uu_x-3(u_{xxx}+2u_{xx}D)\\ &=u_{xxx}+6uu_x~, \end {split} 

   
  




    
    




    
    




  

 


   



    



  



 

(10.30) 

and somewhat surprisingly all of the D s have gone, reproducing (10.24) as promised. This 

completes the proof that

  \boxed {\text {KdV for $u$}} ~~\Longleftrightarrow ~~ \boxed {L_t=[M,L]} 

 



   

 

with the Lax pair

  \boxed {\begin {split} L&=D^2+u\\ M&=-(4D^3+6uD+3u_x) \end {split}} 

 


 
  

 

(10.31) 

Notes: 

1. L and M were both differential operators, since they involved D “ 

d

 

dx
, but in some 

senses r L, M s wasn’t: r L, M s acting on some function f p x q doesn’t do any differenti- 

ating, but just multiplies f pointwise by p uxxx 

` 6 uuxq . For this reason the operator 

r L, M s is called multiplicative . 

2. The equation for the time evolution of ψ , ψt “ M p u q ψ , is linear (good news!), but since 

M depends on u p x, t q , the thing we’re trying to find, it’s not yet clear we have made too 

much progress on step (b) (bad news). We will fix this later, once we have developed a 

better understanding of the scattering data.
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10.4 Time evolution of the scattering data 

We have seen that if u evolves by the KdV equation, then: 

1. the eigenvalues λ of L p u q “ D2 ` u remain constant in t ; 

2. the eigenfunctions ψ evolve by ψt “ M p u q ψ . 

Question:

 

how does the scattering data associated to V “ ´ u evolve in time? 

Answer:

 

We need to look at the asymptotics of the time-evolution equation ψt 

“ M p u q ψ as 

x Ñ ˘8 . Recall that for KdV

  M(u)=-(4D^3+6uD+3u_x) 

  
  

 

and so, since u , ux Ñ 0 as x Ñ ˘8 for all t , as follows from the boundary conditions on u ,

  \boxed {\, M(u)\sim -4D^3\quad \mbox {as}~ x\to \pm \infty \,} 

      

 

(10.32) 

and is independent of u p x, t q . This is the key point : we can evolve the scattering data 

forward in t without knowing in advance what u evolves to! 

[You might worry about the bound state normalisation condition p ψm 

, ψmq “ 1 : is this pre- 

served under time evolution? It turns out that the answer is yes: this follows, with a little 

work, from the antisymmetry of B , that is M p u q: “ ´ M p u q . See problem 61.] 

Next, we need to work out explicitly the t evolution of the asymptotics of the scattering and 

bound state solutions. 

(a) The continuous spectrum

 

( ́  λ “ k2 ą 0 ) 

Start with an un-normalised scattering solution:

  \boxed { \,\psi _k(x;t)\approx \begin {cases} A(k;t)\,e^{ikx}+B(k;t)\,e^{-ikx}~, & x\to -\infty \\[3pt] C(k;t)\,e^{ikx}~, & x\to +\infty \end {cases}\, } 

 



         

      

 

(10.33) 

Imposing 

B

 

B t 

ψkp x ; t q “ M p u q ψkp x ; t q „ ´ 4 D3 ψkp x ; t q 

as x Ñ ˘8 , we have

 A_t(k;t)\,e^{ikx}+B_t(k;t)\,e^{-ikx} & =4ik^3\left [ A(k;t)\,e^{ikx}-B(k;t)\,e^{-ikx} \right ] \\[3pt] C_t(k;t)\,e^{ikx} & = 4ik^3C(k;t)\,e^{ikx}

 
  





 
  



 
   





       

 

and, hence, equating coefficients of e˘ ik x,

A_t(k;t)&=~~~4ik^3A(k;t) \nn \\ B_t(k;t)&=-4ik^3B(k;t) \\ C_t(k;t)&=~~~4ik^3C(k;t) \nn

   

    

    

 

Solving,

A(k;t)&=A(k;0)\,e^{4ik^3t} \nn \\ B(k;t)&=B(k;0)\,e^{-4ik^3t} \\ C(k;t)&=C(k;0)\,e^{4ik^3t} ~.\nn

    

     

       

 

Dividing the un-normalised solution at time t through by A p k ; t q so that it continues to be 

correctly normalised with unit incoming flux, R p k ; t q and T p k ; t q can be read off as follows:

R(k;t)&=R(k;0)\,e^{-8ik^3t}\\ T(k;t)&=T(k;0)\,. \nn

     

      

 

This can be summed up in the asymptotics of the normalised scattering solution:

  \boxed { \,\psi _k(x;t)\approx \begin {cases} e^{ikx}+R(k;0)\,e^{-ik(x+8k^2t)} & x\to -\infty \\[3pt] T(k;0)\,e^{ikx} & x\to +\infty \end {cases}\, } 

 



      

     

 

(10.37) 

As we will see later, the reflected waves for ψk, encoded in R p k ; t q , translate into a dispersive 

component of u p x, t q , moving to the left as t increases. 

(b) The discrete spectrum

 

( ́  λ “ ´ µ2 

n ă 0 ) 

The nth bound state wave function has asymptotics

  \psi _n(x;t)\approx \begin {cases} c_n(t)\,e^{\mu _n x}~, & x\to -\infty \\[3pt] d_n(t)\,e^{-\mu _n x}~, & x\to +\infty \end {cases} 

 





   



   

 

(10.38) 

Imposing 

B

 

B t 

ψnp x ; t q “ M p u q ψkp x ; t q « ´ 4 D3 ψnp x ; t q 

as x Ñ ˘8 , we have

  \begin {split} \frac {\partial }{\partial t}\, c_n(t) = -4\mu _n^3\,c_n(t)\\[3pt] \frac {\partial }{\partial t}\, d_n(t) &= +4\mu _n^3\,d_n(t) \end {split} 
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and, solving,

  \boxed { \begin {split} c_n(t)&=c_n(0)\,e^{-4\mu _n^3t} \\ d_n(t)&=d_n(0)\,e^{+4\mu _n^3t} \end {split}} 

  




  




 

(10.39) 

Again, this can be summarised as

  \psi _n(x;t)\approx \begin {cases} c_n(0)\,e^{\mu _n (x-4\mu _n^2t)}~, & x\to -\infty \\[3pt] d_n(0)\,e^{-\mu _n (x-4\mu _n^2t)}~, & x\to +\infty \end {cases} 

 






   




   

 

(10.40) 

This will translate into a soliton for u p x, t q , moving to the right with velocity 4 µ2 

n 

. 

These results describe the time evolution of the scattering data, completing step (b) of the 

inverse scattering method.



 

Chapter 11 

Interlude: the KdV hierarchy and 

conservation laws 

11.1 Deriving the KdV equation (and generalising it) 

It’s natural to ask whether there are any other evolution equations for u p x, t q such that the 

eigenvalues of 

L p u q “ 

B2

 

B x2 

` u p x, t q 

(acting on bounded functions of x ) are constant in t . In more fancy language, we’re looking for 

equations such that the L p u q ’s at different times are isospectral ; these are called isospectral 

flows . 

The answer is yes, there are more such equations, and the Lax pair idea allows us to find them. 

Key point

 

: the proof in section 10.3 only used the equivalence

  \boxed {u_t = N(u)} ~~\Longleftrightarrow ~~\boxed {L(u)_t=[M(u),L(u)]}~. 

  



    





 

(11.1) 

No other details of M were needed, so some other M p u q should work just as well (leading to 

other functions N p u q of u, ux 

, uxx 

, . . . in the KdV-like equation on the left). However, M p u q 

is not completely arbitrary: since Lt 

“ ut, and is a multiplicative operator, r M , L s must also 

be multiplicative. This means all the D ’s must cancel out when computing the commutator. 

If they do cancel, what’s left in r M , L s will be a polynomial in u , ux, uxx 

etc, and setting this 

equal to ut 

will give us the desired evolution equation. 

Which other conditions, if any, should M p u q satisfy? To answer that, let’s remind ourselves 

131
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of some technology. 

(i) (Hermitian) inner product 

For two functions ϕ p x q and χ p x q , we define

  \langle \phi ,\chi \rangle =\intinf dx~\overline {\phi (x)}\chi (x)\,dx\,. 

 









 

 

(The complex conjugation on the first term ensures p ϕ, ϕ q ą 0 for ϕ ‰ 0 even when ϕ is 

complex.) 

In this notation, the key property of L “ D2 ` u used in the Lax proof was that

  \langle \phi ,L\chi \rangle = \langle L\phi ,\chi \rangle 

   

 

for all ϕ and χ . 

(ii) The adjoint of an operator 

If A is a differential operator, define A: (“ A dagger”) to be the operator such that

  \langle \phi ,A\chi \rangle =\langle A^{\dagger }\phi ,\chi \rangle 

   

 

(11.2) 

for all ϕ and χ . A: is called the adjoint of A ; it’s a bit like a matrix transpose and, like the 

matrix transpose, satisfies

  (A^{\dagger })^{\dagger }=A~,\quad (AB)^{\dagger }=B^{\dagger }A^{\dagger }~, \quad [A,B]^{\dagger }=[B^{\dagger },A^{\dagger }] 





  


   


 



 

(exercise: check!). The key property of L p u q (acting on the space L2 of square integrable 

functions) was

  \boxed { L(u)^{\dagger }=L(u) } 






 

(11.3) 

and such operators are called self-adjoint ( /symmetric/hermitian ). Other important oper- 

ators have

  A^{\dagger }=-A 




 

and are called skew-adjoint ( /antisymmetric/antihermitian ). 

Now if A is just multiplication by a real function, then A: “ A . (Exercise: why?) This must 

be true of r L, M s as it is supposed to be a (real) multiplicative operator, so M must be such 

that that r L, M s: “ r L, M s .
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What can we deduce about M from this? r L, M s “ r L, M s: and L “ L: imply that

  \begin {split} [L,M] &= [L,M]^\dagger \\ &=[M^\dagger , L^\dagger ]\\ &=[M^\dagger ,L]\\ &=-[L,M^\dagger ]\\ \Rightarrow ~~ &\boxed {[L, M+M^\dagger ]=0} \end {split} 

     


  


  

  


    
 

 

(11.4) 

Otherwise stated, the symmetric/hermitian part of M must commute with L . (As with matri- 

ces, any M can be written as

  M=\frac {1}{2}(M+M^{\dagger }) +\frac {1}{2}(M-M^{\dagger }) 








  








  



 

where the first term is the symmetric (/hermitian) part of M , and the second the antisymmetric 

(/antihermitian) part.) 

Since it’s only the bit of M which doesn’t commute with L that makes a difference to the equa- 

tion Lt`r L, M s “ 0 , this means that M can be assumed to be antisymmetric (/antihermitian)

 

:

  \boxed { M(u)^\dagger =M(u)}~. 




 





 

(11.5) 

Note: this guarantees that x ψ , ψ y is constant under time evolution ψt “ M p u q ψ (problem 61). 

In summary, we need an M p u q such that: 

1. M p u q: “ M p u q , i.e. M is antisymmetric; 

2. r M p u q , L p u qs is multiplicative. 

How to write such an M ? Being a differential operator in x , we can write M

  M=\sum _{j=0}^m\alpha _j(x)D^j~ 












 

(11.6) 

where αjp x q are functions of x (and in principle of t , but we’ll suppress that dependence in 

our notation). we’ll choose a different basis by writing

  M=\sum _{j=0}^m(\beta _j(x)D^j+D^j\beta _j(x))~. 















 

(It can be checked that this is always possible.)
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Now if α p x q is real, α p x q: “ α p x q , and also

  D^{\dagger }=-D 




 

(11.7) 

(this is proved by integration by parts), which implies

  \begin {split} (D^{2j})^{\dagger }&=D^{2j}\qquad ~~~\quad \mbox {(self-adjoint)}\\ (D^{2j-1})^{\dagger }&=-D^{2j-1}\qquad \mbox {(skew-adjoint)}~. \end {split} 





 





  

 

(11.8) 

Replacing M by its antisymmetric part 

1

 

2
p M ´ M :q , it becomes

 \label {Bguess} M=\sum _{0<2j-1\le m} (\beta _{2j-1}(x)D^{2j-1}+D^{2j-1}\beta _{2j-1}(x))\,. 








 

 

(11.9) 

It can also be checked that r L, M s being multiplicative forces the coefficient of the leading 

term in D to be a constant, so the general guess is

 \label {Bguess2} M_n(u)=D^{2n-3} + \sum _{j=1}^{n-2} (\beta _{j}(x)D^{2j-1}+D^{2j-1}\beta _{j}(x))\,. 

 








 

 

(11.10) 

where βjp x q are real functions. 

Notes: 

• the degree 2 n ´ 3 of the leading term was picked for later convenience; 

• the βj’s have been relabelled going from (11.9) to (11.10); 

• setting the coefficient of the leading term to 1 in (11.10) does not lose any generality, 

since an overall rescaling of M p u q can be “undone” in Lt 

` r L, M s “ 0 by rescaling 

time. 

There’s now no alternative but to calculate. When the dust settles, Nnp u q ” r Mn 

, L s will be 

a polynomial in u , ux, uxx 

etc, and setting Lt ` r L, Mns “ 0 , that is ut 

“ Nnp u q , will give a 

KdV-like equation with x derivatives up to order 2 n ´ 3 . 

The first few cases: 

n=1

 

We have M p u q “ 0 , therefore r M p u q , L p u qs “ 0 “ N1p u q . The PDE ofor u is then

  \boxed {u_t=0}~, 

 





 

(11.11) 

which makes L p u q “ D2 ` u isospectral at different t , but trivially: the whole operator 

L p u q does not depend on t , not just its eigenvalues.
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n=2

 

We have M p u q “ D , therefore

  [M(u),L(u)]=[D,D^2+u]=u_x \equiv N_2(u)~. 

    
     

 

(11.12) 

The PDE for u is then the advection equation

  \boxed {u_t=u_x}~. 

 





 

(11.13) 

Its general solution is

  u(x,t)=u(x+t,0)~, 

      

 

a travelling wave moving at constant velocity ´ 1 (we could change the velocity by 

changing the coefficient of the leading term in M2p u q ). Again L p u q “ D2 ` u is isospec- 

tral at different t , but still quite trivially: the profile of u translates rigidly at a fixed speed, 

and the same applies to its eigenfunctions, hence the eigenvalues remain the same. 

n=3

 

We have M p u q “ D3 ` β1 

D ` D β1, therefore

  \begin {split} [M(u),L(u)]&=[D^3+\beta _1 D+ D\beta _1,D^2+u] = [D^3+2\beta _1 D+\beta _{1,x},D^2+u]\\ &= [D^3,u]-2[D^2,\beta _1]D+2\beta _1[D,u]-[D^2, \beta _{1,x}]\\ &=(3u_x D^2+3u_{xx}D+u_{xxx}) - 2(2\beta _{1,x}D+\beta _{1,xx})D \\ &+ 2\beta _1 u_x -(2\beta _{1,xx}D+\beta _{1,xxx})\\ &=(3u_x-4\beta _{1,x})D^2+(3u_{xx}-4\beta _{1,xx})D+(u_{xxx}+2\beta _1 u_x-\beta _{1,xxx})~. \end {split} 

   


 


  



 




          






   

 



 

 

  
      

  

 

(11.14) 

If we require that this operator be multiplicative, the (left) coefficients of D2 and D must 

vanish. Setting to zero the D2 term we find that 

3 ux ´ 4 β1 ,x “ 0 ùñ β1 “ 

3

 

4 

u ` k 

for a constant k .1 The D term then vanishes too, and the multiplicative D0 term becomes 

uxxx ´ β1 ,xxx ` 2 β1 

ux “ 

1

 

4 

uxxx ` 

3

 

2 

uux ` 2 k ux ” N3p u q . 

The PDE for u is then

 \label {resc_KdV} \boxed {u_t=\frac {1}{4}u_{xxx}+\frac {3}{2}uu_x+2ku_x }~. 

















 





 

(11.15) 

Rescaling t ÞÑ ´ 4 t and taking k “ 0 , this becomes nothing but the KdV equation. 

Alternatively, it’s easy to check that if u p x, t q satisfies (11.15), then

  \boxed {\widetilde u(x,t) :=u(x+8kt,-4t)} 

     

 

(11.16) 

satisfies the KdV equation.

 

1To be precise, k need only be constant with respect to x . However, any t -dependence can be absorbed by a 

redefinition of t, x, u , so we can take k to be a constant without loss of generality.
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This shows that the KdV equation is the third member of a hierarchy of partial differential 

equations ut “ Nnp u q “ r Mnp u q , L p u qs :

 \label {KdV hierarchy} \boxed { \begin {split} &n=1\,:\quad u_t=0 \\ &n=2\,:\quad u_t+u_x=0 \\ &n=3\,:\quad u_t+6uu_x+u_{xxx}=0 \\ &n=4\,:\quad u_t+30u^2u_x+20u_xu_{xx}+10uu_{xxx}+u_{xxxxx}=0 \end {split} } 

     

       

         

       

     

 

(11.17) 

These are the first equations of the KdV hierarchy , and in each case, they evolve u p x, t q 

forward in time in such a way as to leave the spectrum of L p u q “ D2 ` u unchanged. 

We normalized the n -th member of the KdV hierarchy (11.17) in such a way that the ux...x 

term 

with 2 n ´ 3 derivatives has coefficient 1 . The corresponding Mnp u q operators are

  \begin {split} &n=1\,:\quad M_1(u)=0 \\ &n=2\,:\quad M_2(u)=-D \\ &n=3\,:\quad M_3(u)=-4D^3-(3uD+Du) \\ &n=4\,:\quad M_4(u)=-16D^5-20(uD^3+D^3u)-5\left ((3u^2-u_{xx})D+D(3u^2-u_{xx}) \right ) ~. \end {split} 

     

     

     
  

     


  



     




 

11.2 Connection with conservation laws 

Recall from last term that the KdV equation has an infinite sequence of conserved charges:

  \boxed {Q_n=\intinf dx~\rho _n} 









 

(11.18) 

where the conservation of Qn, 

dQn

 

dt 

“ 0 , is proved by showing that

  \boxed {\frac {\partial }{\partial t}\rho _n+ \frac {\partial }{\partial xj_n}=0} 

















 

(11.19) 

when the KdV equation holds, for some current density jn 

with

  \boxed {[j_n]_{-\infty }^{\infty }=0}~. 




 





 

(11.20) 

Normalising the charge densities ρn’s as

  \boxed { \rho _n=u^n+\dots }~. 

     





 

(11.21)
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the first few examples are

  \begin {split} \rho _1 & = u \\ \rho _2 & = u^2 \\ \rho _3 & = u^3-\fract {1}{2}u_x^2 \\ \rho _4 & = u^4-2uu_x^2+\fract {1}{5}u_{xx}^2 \\ \rho _5 & = u^5-\fract {105}{21}u^2u_x^2+uu_{xx}^2-\fract {1}{21}u_{xxx}^2\\ & ~~\vdots \end {split} 

 

 

  











   













  









 















 

(11.22) 

So we now have two

 

infinite sequences: 

• For the KdV equation itself, the sequence Q1, Q2, Q3,. . . of conserved charges; 

• Going beyond KdV, an infinite sequence N1, N2, N3,. . . of polynomials in u and its x 

derivatives such that setting ut “ Nnp u q leaves the eigenvalues of D2` u p x, t q constant. 

How do these two sequences tie together, if at all? 

The most boring possibility: each evolution equation ut 

“ Knp u q has its “own” set of Qn’s, 

conserved charges for that equation alone. In fact the answer, found by Gardner, is more 

clever. To explain it, a new concept is needed. 

11.2.1 The functional derivative 

(Also known as the variational, or Fréchet, derivative.) 

Suppose f is some function of u and its x derivatives. Then

 \label {Fdef} \boxed {F[u]=\intinf dx f(u,u_x,u_{xx}\dots ) } 

 





 



  

 

(11.23) 

is an example of a functional of u : it takes a function u p x q and yields a number F r u s . In 

practice u might also depend on the time t , in which case the formula should be taken at fixed 

t , which is not

 

integrated over. Since t is a spectator for most of the following considerations, 

for now we won’t write it explicitly in formulae. 

Now consider a small variation δ u p x q of u p x q , such that u p x q Ñ u p x q` δ u p x q , with δ u p x q Ñ 0 

as x Ñ ˘8 . We demand similarly that δ ux 

” p δ u qx 

, δ uxx 

” p δ u qxx 

, ¨ ¨ ¨ Ñ 0 as x Ñ ˘8 .
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This changes F r u s to

  \begin {split} F[u+\delta u] &= \intinf dx f(u+\delta u, (u+\delta u)_x,(u+\delta u)_{xx},\dots ) \\[3pt] &= \intinf dx f(u+\delta u, u_x+\delta u_x,u_{xx}+\delta u_{xx},\dots ) \\[3pt] &= \intinf dx \left ( f(u, u_x,u_{xx},\dots ) +\frac {\partial f}{\partial u}\,\delta u +\frac {\partial f}{\partial u_x}\,\delta u_x +\frac {\partial f}{\partial u_{xx}}\,\delta u_{xx} +\dots \right ) \\[2pt] & \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \mbox {(Taylor expanding)} \\[5pt] &= F[u] + \intinf dx \left ( \frac {\partial f}{\partial u}\,\delta u +\frac {\partial f}{\partial u_x}\,\delta u_x +\frac {\partial f}{\partial u_{xx}}\,\delta u_{xx} +\dots \right ) + O((\delta u)^2)\\[7pt] &= F[u] + \intinf dx \left ( \frac {\partial f}{\partial u} -\frac {\partial }{\partial x}\frac {\partial f}{\partial u_x} +\frac {\partial ^2}{\partial x^2}\frac {\partial f}{\partial u_{xx}} +\dots \right ) \delta u + O((\delta u)^2)\\[2pt] & \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \mbox {(integrating by parts)} \end {split} 

   





     

  

   







     

  

   











 



    






















   





  































   







  











































  



 



 

 

(11.24) 

and the term multiplying δ u p x q in the last line is called the functional derivative of F r u s , 

written as 

δ F r u s

 

δ u 

. More precisely, 

δ F r u s

 

δ u 

is defined by

 \boxed { F[u+\delta u] = F[u] + \underbrace {\intinf dx\,\frac {\delta F[u]}{\delta u}\,\delta u}_{=: ~\delta F[u]} +O(\delta u^2) } 

      

















 



 

(11.25) 

which is like f p x ` δ x q “ f p x q ` 

df

 

dx 

δ x ` O pp δ x q2q for ordinary functions. 

For functionals defined as in (11.23) the calculation just completed shows that

  \boxed { \frac {\delta F[u]}{\delta u} = \frac {\partial f}{\partial u} -\frac {\partial }{\partial x} \frac {\partial f}{\partial u_x} +\frac {\partial ^2}{\partial x^2}\frac {\partial f}{\partial u_{xx}} +\dots } 











































  

 

(11.26) 

Aside:

 

The concept of functional derivative is central in the modern understanding of clas- 

sical physics, including classical field theory as we are studying here. One can obtain the 

equations of motion (or ‘Euler-Lagrange equations’) for a classical field u p x, t q by requiring 

that the action 

S r u s “ 

ż 

dx dt L p u, ut 

, ux 

, . . . q 

is stationary under all infinitesimal variations δ u of the field consistent with the boundary 

conditions.
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Examples 

(a) f “ u ñ 

δ F r u s

 

δ u 

“ 1 

(b) f “ u3 ñ 

δ F r u s

 

δ u 

“ 3 u2 

(c) f “ u2 

x 

ñ 

δ F r u s

 

δ u 

“ ´ 2 uxx 

(Exercise: check these results.) 

The conserved quantities Qn 

“ 

ş 

dxρn 

are examples of functionals of u , and so we can also 

calculate their functional derivatives:

  \begin {split} \frac {\delta Q_1}{\delta u} &= \frac {\delta }{\delta u}\intinf dx~ u = 1 \\ \frac {\delta Q_2}{\delta u} &= \frac {\delta }{\delta u}\intinf dx~ u^2 = 2u \\ \frac {\delta Q_3}{\delta u} &= \frac {\delta }{\delta u}\intinf dx~ (u^3-\frac {1}{2}u_x^2) = 3u^2+u_{xx} \\ \frac {\delta Q_4}{\delta u} &= \frac {\delta }{\delta u}\intinf dx~ (u^4-2uu_x^2+\frac {1}{5}u_{xx}^2) \\ &=4u^3+4u_x^2+4u u_{xx}-2u_x^2+\frac {2}{5}u_{xxxx}\\ &\vdots \end {split} 



















  



















  



















 









   



















  













  

   













 

(11.27) 

Taking 

B

 

B x 

of each of these,

  \frac {\partial (1)}{\partial x} = 0~,\qquad \frac {\partial (2u)}{\partial x} = 2u_x~,\qquad \frac {\partial (3u^2+u_{xx})}{\partial x} = 6uu_x+u_{xxx} 







 











 





  

 

and these match, up to an overall scale, the first three equations of the KdV hierarchy:

  u_t = 0~,\qquad u_t = -u_x~,\qquad u_t = -6uu_x-u_{xxx}~. 

     

    



 

The normalisations of the charges, or else the scale of t , can be adjusted to make these matches 

precise. They are the first three examples of Gardner’s general result:

  \boxed {u_t=\frac {\partial }{\partial x}\left (\frac {\delta Q_n}{\delta u}\right )} \quad \longleftrightarrow \quad \boxed {u_t=N_n(u)} 





















  

 

(11.28) 

connecting the nth KdV conservation law with the nth equation of the KdV hierarchy. Thus 

the two sequences are the same! 

Furthermore:
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1. If ump x, t q evolves by the mth equation in the KdV hierarchy, all the Qn’s are conserved 

densities for it; 

2. Imagine we have one “time” for each equation in the hierarchy, so that instead of ump x, t q 

with 

B

 

B t 

um “ Nmp u q we have u p x, t1 

, t2 

, t3 

. . . q with

  \boxed { \frac {\partial }{\partial t_m}u_m=N_m(u) \equiv \frac {\partial }{\partial x} \frac {\delta Q_m}{\delta u}} \quad \forall m=1,2,\dots 







  















     

 

(11.29) 

Then if we evolve (or ‘flow’) u p x, t1 

, t2 

, t3 

. . . q for a while in ti, then for a while in tj , we 

end up with the same

 

function of x as if we’d evolved in tj 

first followed by ti 

. This is 

the idea of commuting flows : it’s very important in “modern” soliton theory.



 

Chapter 12 

Inverse scattering (or “reassembly”) 

To conclude the inverse scattering method, we need to reassemble the KdV field u p x, t q , or 

equivalently the Schrödinger potential V p x ; t q “ ´ u p x, t q , from the time-evolved scattering 

data. This is step (c) : “reassembly / inverse scattering”. 

This touches on a general question: if all you were allowed to do was sit at infinity and chuck 

particles at your potential, and measure how they come back, could you deduce the form of 

V p x q ? 

This question is of practical importance, for example when looking for oil using seismic re- 

flection, or in medicine (one example there being deducing the shape of the inner ear from 

reflected sound waves). It belongs to the category of “inverse problems”: deducing the form 

of an operator (here D2 ` u ) from information about its spectrum ( µi, cn 

and so on): “can you 

hear the shape of a drum?” 

For this one-dimensional (Schrödinger) case, the result was already known, found by Marchenko 

(following earlier work by Gelfand and Levitan), some years before GGKM. 

In fact you don’t need to know T p k q , just R p k q for real k , together with the N discrete eigen- 

values ´ µ2 

j , j “ 1 , . . . N , and the normalising coefficients cj , j “ 1 , . . . N . The full set
! 

R p k q , t µn 

, cnu
N 

n “ 1 

) 

is precisely the scattering data that we evolved forward in time in the 

chapter before last. 
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There are two important special cases: 

1. N “ 0 : V p x q has no bound states; 

2. R p k q “ 0 @ k : V p x q is reflectionless, but there is still information about V p x q hidden in 

the bound state eigenvalues and normalisation coefficients. 

It turns out that: 

1. ñ initial data contains no solitons; 

2. ñ initial data contains only solitons. 

12.1 The recipe for inverse scattering: the Marchenko equa- 

tion 

We want to solve the inverse scattering problem for given scattering data at x “ ´8 to 

determine the potential V p x q , and hence the KdV field u p x q “ ´ V p x q , at any fixed KdV 

time t . 

The derivation is long and we’ll skip it here – see for example section 3.3 of Drazin and Johnson 

[Drazin and Johnson, 1989]. But a warning: everything in Drazin and Johnson is phrased in 

terms of scattering solutions with waves arriving from `8 , and asymptotics also at `8 , while 

we do the opposite:

 

Once the not inconsiderable quantity of dust has settled, the upshot is the following recipe:
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1. Construct the function

 \boxed {\, F(\xi )= \intinf \frac {dk}{2\pi }\,R(k)\,e^{-ik\xi } +\sum _{n=1}^Nc_n^2\,e^{\mu _n\xi } \,} 

 



























 

(12.1) 

from the scattering data

 \boxed {\, S=\left \{ R(k)\,,~~\left \{\mu _n,c_n\right \}_{n=1}^N\, \right \}\, } 





 








 

(12.2) 

2. Solve the Marchenko equation

 \label {march} \boxed {\, K(x,z)+F(x{+}z) + \int _{-\infty }^xdy\,K(x,y)\,F(y{+}z)=0\, } 

     





      

 

(12.3) 

to determine the unknown function K p x, z q for all z ď x (and set K p x, z q “ 0 for 

x ă z ). 

3. Finally determine the Schrödinger potential from

 \boxed {\, V(x)=2\frac {d}{dx}K(x,x)\,} 

  







 

 

(12.4) 

The KdV field is then given by u “ ´ V . 

Note: K p x, x q is defined by demanding one-sided continuity of K p x, z q , as the left-sided 

limit of K p x, z q at z “ x : 

K p x, x q : “ lim 

z Ñ x´ 

K p x, z q . 

This all applies at one fixed KdV time t . But using the results of the last section of the last 

chapter, we know that

  \begin {split} R(k;t)&=R(k;0)\,e^{-8ik^3t}\\ c_n(t)&=c_n(0)\,e^{-4\mu _n^3t} \end {split} 

    

  




 

(12.5) 

while k2 and µ2 

n 

are independent of time. 

So to find the field at time t , we just apply the above recipe starting from

  \begin {split} F(\xi ;t) &= \intinf \frac {dk}{2\pi }\,R(k;t)\,e^{-ik\xi } +\sum _{n=1}^Nc_n(t)^2\,e^{\mu _n\xi } \\ &= \intinf \frac {dk}{2\pi }\,R(k;0)\,e^{-ik(\xi +8k^2t)} +\sum _{n=1}^Nc_n(0)^2\,e^{\mu _n(\xi -8\mu _n^2t)} \end {split} 

  











 
























 














 

(12.6)
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At least in principle, this solves the problem! In practice the term involving R in the definition 

of F , with the integral over k , makes the calculation of F hard when t ą 0 . But for reflec- 

tionless potentials this term is absent, and F p ξ , t q can be read off at any time t . This turns out 

to yield the ‘pure’ multisoliton solutions that can also be found via Bäcklund or Hirota. Even 

when R is nonzero, it can be shown that the term involving R goes to zero as t Ñ 8 . All of 

which leads to the following ‘big picture’: 

(A) t µn 

, cnuN 

n “ 1 Ø N right-moving solitons hidden inside the initial data:

 

(B) R p k q Ø a superposition of dispersive left-moving waves hidden inside the initial data:

 

The net result is a sort of “nonlinear Fourier analysis” (which reduces to the usual Fourier 

solution in the limit of small-amplitude waves). 

12.2 Example 1: the single KdV soliton 

Consider a reflectionless potential, so R p k q “ 0 , with just one bound state encoded in t µ1 

, c1u ” 

t µ, c u . Then (at fixed t )

 \boxed {F(\xi )=c^2e^{\mu \xi }} 

  

 

(12.7) 

and the Marchenko equation (12.3) reads

 \boxed {\, K(x,z)+ c^2e^{\mu (x+z)}+ \int _{-\infty }^xdy\,K(x,y)\,c^2e^{\mu (y{+}z)}=0\, } 

   






   


 

(12.8) 

This needs to be solved for z ď x . As a first step, factorise eµz from the last two terms:

 \label {keq} K(x,z)+ e^{\mu z}\left (c^2e^{\mu x}+ \int _{-\infty }^xdy\,K(x,y)\,c^2e^{\mu y}\right )=0\,, 

   









   



 

 

(12.9) 

and note that the terms in brackets are independent of z , meaning that

 \boxed {\, K(x,z) = h(x)\,e^{\mu z} \,} 

    

 

(12.10)
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for some h p x q . Substituting back into (12.9) and dividing through by eµz , h p x q must satisfy

  0 =h(x)+c^2e^{\mu x}+c^2\int _{-\infty }^xdy\,h(x)\,e^{2\mu y} =h(x)\left (1+ c^2\int _{-\infty }^xdy\,e^{2\mu y}\right ) +c^2e^{\mu x} 

     





 





 











 

and hence

 h(x)=-\frac {c^2e^{\mu x}}{1+\frac {c^2}{2\mu }e^{2\mu x}}\,. 

 

















 

(12.11) 

If we set

 c^2=2\mu \,e^{-2\mu x_0} 

  

 

(12.12) 

(thereby trading c for x0) we obtain

 h(x)=-2\mu \,\frac {e^{\mu (x-2x_0)}}{1+e^{2\mu (x-x_0)}} 

 





 

 

(12.13) 

and so (for z ď x )

 K(x,z) =-2\mu \,\frac {e^{\mu (x+z-2x_0)}}{1+e^{2\mu (x-x_0)}}\,. 

   





 



 

(12.14) 

Hence

 \boxed {\, V(x)=2\frac {d}{dx}K(x,x)=-2\mu ^2\sech ^2(\mu (x-x_0)) \,} 

  







   
 

 

(12.15) 

and u “ ´ V is indeed a snapshot of a single KdV soliton, at a time (say t “ 0 ) when its centre 

is at x “ x0. 

Time evolution is easily included using

 c(t)^2=c^2(0)\,e^{-8\mu ^3t}=2\mu \,e^{-2\mu (x_0-4\mu ^2t)} 




 
 

 

(12.16) 

which has the effect of translating the centre of the soliton as

 x_0\to x_0+4\mu ^2t 

   

 

(12.17) 

and the KdV field at time t is

 \boxed {\, u(x,t)= -V(x,t)=2\mu ^2\sech ^2(\mu (x-x_0-4\mu ^2t)) \,} 

      
   

 

(12.18) 

which is a single moving soliton just as found earlier in the course:
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12.3 Example 2: the N -soliton solution 

NOTE: this section was not taught in 2023-24. It’s nice stuff which you are welcome 

to read, but it won’t be examined. 

Now let’s consider a situation with R p k q “ 0 but with N bound states, encoded in t µn 

, cnuN 

n “ 1 

. 

Then

 F(\xi )=\sum _{n=1}^Nc_n^2\,e^{\mu _n\xi }\,. 

 














 

(12.19) 

Since

  F(x{+}z)=\sum _{n=1}^Nc_n^2\, e^{\mu _nx} e^{\mu _nz} 

 
















 

is a sum of factorised terms, we will look for a solution where K p x, z q is also a sum of factorised 

terms. This is best encoded using a vector and matrix notation, setting

 E(x)= \begin {pmatrix} e^{\mu _1x}\\ \vdots \\ e^{\mu _Nx} \end {pmatrix}~,\quad L(x)= \begin {pmatrix} c_1^2e^{\mu _1x}\\ \vdots \\ c_N^2e^{\mu _Nx} \end {pmatrix}~,\quad H(x)= \begin {pmatrix} h_1(x) \\ \vdots \\ h_N(x) \end {pmatrix}~, 

























 































  





















 

(12.20) 

where H p x q is yet to be determined. With this notation set up, we have

 F(x{+}z)=E^T(x)L(z) 

  




 

(12.21) 

(where the T superscript denotes a transpose) and we’ll look for a K p x, z q of the form

 K(x,z)=H^T(x)L(z)\,. 

   




 

(12.22) 

Substituting into the Marchenko equation, we find

  \begin {split} 0 &= K(x,z)+F(x{+}z)+\int _{-\infty }^xdy\,K(x,y)\,F(y{+}z)\\ &= H^T(x)L(z)+E^T(x)L(z) +H^T(x)\int _{-\infty }^xdy\,L(y)E^T(y)L(z)\\ &=\Bigl (H(x)+E(x)+\int _{-\infty }^xdy\,E(y)L^T(y)H(x)\Bigr )^TL(z)\,. \end {split} 

       





    




 


 

















   












 

(12.23) 

If the term in brackets on the last line can be made to vanish, we’ll have a solution. In turn 

this will be true if

 \label {gam} \Gamma (x)\,H(x)=-E(x) 

   

 

(12.24) 

where Γ p x q is not the gamma function seen earlier, but rather the N ˆ N matrix

 \Gamma (x)=\unit _{N\times N}+\int _{-\infty }^xdy\,E(y)L^T(y) 

  










 

(12.25)
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with matrix elements

  \begin {split} \Gamma (x)_{mn} &=\delta _{mn}+\int _{-\infty }^xdy\,e^{\mu _my}c_n^2e^{\mu _ny}\\ &=\delta _{mn}+c_n^2\frac {e^{(\mu _m+\mu _n)y}}{\mu _m+\mu _n}\,. \end {split} 

  















  







 



 

(12.26) 

Note also we have

 \frac {d}{dx}\Gamma (x)=E(x)L^T(x)\,, 






 



 

(12.27) 

a formula that will be useful shortly. 

From (12.24) we have

 H(x)=-\Gamma (x)^{-1}E(x) 

  


 

(12.28) 

and so

  \begin {split} K(x,z) &=L^T(z)H(x)=-L^T(z)\Gamma (x)^{-1}E(x)\\ &=-\operatorname {tr}\bigl (\Gamma (x)^{-1}E(x)L^T(z)\bigr )\,. \end {split} 

   
  




 










 

(12.29) 

Therefore

  \begin {split} K(x,x) &=-\operatorname {tr}\bigl (\Gamma (x)^{-1}E(x)L^T(x)\bigr )\\ &=-\operatorname {tr}\bigl (\Gamma (x)^{-1}\frac {d}{dx}\Gamma (x)\bigr )\\ &=-\operatorname {tr}\bigl (\frac {d}{dx}\log \Gamma (x)\bigr )\\ &=-\frac {d}{dx}\operatorname {tr}\bigl (\log \Gamma (x)\bigr )\\ &=-\frac {d}{dx}\log \bigl (\det \,\Gamma (x)\bigr ) \end {split} 

    








 














 






































 

(12.30) 

using the matrix identities

 \frac {d}{dx}\log \Gamma = \Gamma ^{-1}\frac {d}{dx}\Gamma ~,\quad \operatorname {tr}(\log \Gamma )=\log (\det \,\Gamma )\,. 







  






      

 

(12.31) 

This implies that the KdV field is

 u=-2\frac {d}{dx}K(x,x) =2\frac {d^2}{dx^2}\log (\det \,\Gamma (x)) 

 







   









 

(12.32) 

or, putting back the t -dependence hidden in Γ (through the cn),

 u(x,t)=2\frac {\partial ^2}{\partial x^2}\log (\det \,\Gamma (x;t)) 

  







 

 

(12.33) 

with

 \Gamma (x;t)_{mn}= \delta _{mn}+c_n^2(t)\frac {e^{(\mu _m+\mu _n)x}}{\mu _m+\mu _n}\,. 

    







 



 

(12.34)
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These formulae are very similar to the N -soliton KdV solutions found by Hirota. To see that 

they are in fact exactly the same, we can use Sylvester’s determinant theorem, which states 

that

 \det (\unit _{N\times N}+AB)= \det (\unit _{N\times N}+BA) 



   



 

(12.35) 

for any pair of N ˆ N matrices A , B . 

Taking

  A_{mn}=e^{\mu _mx}\delta _{mn}~,\quad B_{mn}=\frac {c_n^2e^{\mu _nx}}{\mu _m+\mu _n} 

 



 











 

 

we have

  (AB)_{mn}=\frac {c_n^2e^{(\mu _m+\mu _n)x}}{\mu _m+\mu _n}~,\quad (BA)_{mn}=\frac {c_n^2e^{2\mu _nx}}{\mu _m+\mu _n}~, 











 

 











 



 

and so we can equivalently write

 \boxed {\, u(x,t)=2\frac {\partial ^2}{\partial x^2}\log (\det S(x;t)) \,} 

  







 

 

(12.36) 

with

  \begin {split} &~S(x;t)_{mn}=\delta _{mn}+\frac {1}{\mu _m+\mu _n}\,c_n^2(t)\,e^{2\mu _nx}\\ \Longrightarrow ~~ &\boxed {S(x;t)_{mn} =\delta _{mn}+\frac {2\mu _n}{\mu _m+\mu _n}\,e^{2\mu _n(x-x_{0,n}-4\mu _n^2t)}} \end {split} 

   





 







    





 






 

(12.37) 

where, just as done above for the one-soliton solution, we traded cnp 0 q for x0 ,n 

by setting

 c_n(0)^2=2\mu _ne^{-2\mu _nx_{0,n}}\,. 










 

(12.38) 

These equations give the general form of the N -soliton solution of the KdV equation.



 

Chapter 13 

Integrable systems in classical 

mechanics 

So far, we’ve (secretly) been looking at infinite-dimensional systems: classical field theories 

in one space and one time dimension, though these can often be thought of as the continuum 

limits (see last term) of systems with discrete sets of degrees of freedom. 

Many of the methods we’ve seen, in particular the idea of a Lax pair, can also apply to finite- 

dimensional systems, and more precisely to finite-dimensional classical integrable Hamil- 

tonian systems . To understand what these words mean, some definitions are needed. 

A finite-dimensional Hamiltonian system is defined by: 

1. A set of (generalised) coordinates qi “ 1 ...n 

and momenta pi “ 1 ...n, which completely specify 

the configuration of the system at time t (the 2 n -dimensional space parametrised by 

these so-called canonical coordinates q , p is called the phase space of the system); 

2. A function H p q , p q defined on phase space called the Hamiltonian . (The Hamiltonian 

may depend explicitly on time, in which case we write H “ H p q , p, t q , but this won’t 

be needed for our purposes.) 

149
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3. The time evolution equations are then Hamilton’s equations .

 \label {ham} \boxed {~~~ \begin {aligned} \dot {q}_i&=~\frac {\partial H}{\partial p_i}\\[4pt] \dot {p}_i&=-\frac {\partial H}{\partial q_i} \end {aligned} ~~~} 









 






 

(13.1) 

with the dots denoting time derivatives. 

Note:

 

we can take n Ñ 8 without taking a continuum limit, and get an infinite-dimensional 

discrete Hamiltonian system . Most (if not all) of what we’ll see in the following applies to 

that case as well (with some extra care about limits and convergence). 

Example:

 

for n point particles with masses mi 

moving in one dimension under conservative forces as- 

sociated with a potential energy V p q1 

, . . . qnq , the Hamiltonian is

 H(q,p)=\sum _{i=1}^n\frac {p_i^2}{2m_i} +V(q_1,\dots q_n) 

  














 

   

 

(13.2) 

and Hamilton’s equations are

 \dot {q}_i=\frac {p_i}{m_i}~,\quad \dot {p}_i=-\frac {\partial V(q_1,\dots q_n)}{\partial q_i}~. 









  


   







 

(13.3) 

These are the same as Newton’s equations,

 m_i\ddot {q}_i=-\frac {\partial V(q_1,\dots q_n)}{\partial q_i}~, 

 


   







 

(13.4) 

put into a first-order form. 

One can associate to a Hamiltonian system a Poisson bracket t , u , a bilinear antisymmetric 

form on the space of differentiable functions of q and p :

 \boxed {\, \{f,g\}:= \sum _{i=1}^n\left ( \frac {\partial f}{\partial p_i}\frac {\partial g}{\partial q_i} - \frac {\partial f}{\partial q_i}\frac {\partial g}{\partial p_i} \right ) \,} 

 




































 

(13.5) 

Clearly t f , g u “ ´t g , f u and t f , f u “ 0 . 

Hamilton’s equations (13.1) imply that any f p q , p q which does not depend explicitly on time, 

but only implicitly via q p t q and p p t q , evolves as

 \frac {d}{dt} f(q(t),p(t)) &=\sum _{i=1}^n\left (\dot {q}_i\frac {\partial f}{\partial q_i} + \dot {p}_i\frac {\partial f}{\partial p_i}\right )\\[4pt] &=\sum _{i=1}^n\left ( \frac {\partial H}{\partial p_i}\frac {\partial f}{\partial q_i} - \frac {\partial H}{\partial q_i}\frac {\partial f}{\partial p_i}\right )







  
































































      

 

That is,

 \boxed {\, \frac {d}{dt}f(q,p) = \{H(q,p),f(q,p)\}\,} 







        

 

(13.6) 

(If f also depends explicitly on t , so f “ f p q p t q , p p t q , t q , then 

d

 

dt 

f p q , p, t q “ 

B

 

B t 

f p q , p, t q ` t H p q , p q , f p q , p, t qu , 

by the chain rule and Hamilton’s equations.) 

Functions F p q , p q which don’t depend explicitly on time and have vanishing Poisson bracket 

with the Hamilton H p q , p q are conserved

 

:

 \boxed {\, \frac {d}{dt}F(q(t),p(t)) = \{H(q,p),F(q,p)\}=0\,} 







          

 

(13.7) 

In particular, the antisymmetry of the Poisson bracket means that the Hamiltonian is con- 

served, as long as it doesn’t depend explicitly on time (which we always assume):

 \frac {d}{dt}H(q(t),p(t)) = \{H(q(t),p(t)),H(q(t),p(t))\}=0\,. 







           

 

(13.8) 

Hence

 \boxed {\, H(q(t),p(t))=E=\mbox {constant}\,} 

     

 

(13.9) 

which is nothing but the conservation of energy. 

Note:

 

If t F , H u “ 0 , then not only is F p q , p q conserved under the time evolution (13.1), but 

also H p q , p q is conserved under a different time evolution with a different time, s say, and 

Hamiltonian F p q , p q :

 \left \{ \begin {aligned} \frac {d}{ds}q_i&=~\frac {\partial F}{\partial p_i}\\ \frac {d}{ds}p_i&=-\frac {\partial F}{\partial q_i} \end {aligned} \right \} ~~\Rightarrow ~~ \frac {d}{ds}H(q,p) = \{F(q,p),H(q,p)\}=0\,. 



































 




























           

 

(13.10) 

It also means (via the Jacobi identity for the Poisson bracket) that we can evolve along the two 

times, along t and then s , or vice versa, and we will end up at the same point in phase space:
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In fancy language, F and H such that t F , H u “ 0 are said to be in involution and they 

generate commuting flows , where one flow is t -evolution with Hamiltonian H , and the 

other flow is s -evolution with Hamiltonian F . We saw this idea earlier when discussing the 

KdV hierarchy. (The Poisson bracket was not introduced there, but it is possible to do so.) 

Definition:

 

A finite-dimensional Hamiltonian system t qi “ 1 ...n 

, pi “ 1 ...n 

, H p qi 

, piq u is called com- 

pletely integrable if it has n independent conserved quantities Qip q , p q satisfying t Qi 

, H u “ 

0 , which are mutually in involution , that is

 \boxed {\, \{Q_i,Q_j\}=0\quad \forall i,j=1\dots n\,} 



          

 

(13.11) 

One of these conserved quantities is always the original Hamiltonian H . 

For such systems it is possible to find a new set of coordinates φi 

and momenta Qi 

on phase 

space such that the Hamiltonian only depends of the Qi 

and not on the φi:

 H=H(Q)~~~\Rightarrow ~~~ \left \{ \begin {aligned} ~\dot {\varphi }&=~\frac {\partial H}{\partial Q_i}\\[3pt] ~\dot {Q}&=-\frac {\partial H}{\partial \varphi _i}=0 \end {aligned} \right . 

   























 








 

(13.12) 

These are called action-angle variables ( φi: angle variables; Qi: action variables). The name 

is because if the surfaces of constant H are compact, then the φi 

parametrise periodic orbits 

and can therefore be thought of as angular variables. 

The n conserved quantities Qi 

are the finite-dimensional analogues of the infinitely-many 

conserved charges of the KdV hierarchy discussed in section 11.2. 

What is interesting for us here is that the integrability of such classical systems can be estab- 

lished by constructing a Lax pair L , M , satisfying

 \label {finlax} \boxed {\, \dot {L}=[M,L]\,} 

  

 

(13.13) 

This is as we saw for KdV, but now L and M will be n ˆ n matrices instead of differential 

operators. We’ll see that the n conserved quantities are the eigenvalues λi “ 1 ...n 

of the Lax 

matrix L (though as we’ll also see, it may be more convenient sometimes to use some functions 

of those eigenvalues instead, such as the sums of their powers). 

(To show that the conservation laws are in involution is a bit more tricky, and won’t be dis- 

cussed here.) 

In general, if there are n q ’s, qi “ 1 ...n, L and M will be n ˆ n matrices and the n conserved 

quantities will be coded up in the n eigenvalues λ1. . . λn 

of the Lax matrix L .
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The Lax equation (13.13), with L and M functions of time, can be solved formally by

 \label {fsol} \boxed {\, L(t) = U(t)L(0)U(t)^{-1}\,} 

   


 

(13.14) 

where the time evolution operator U p t q is the unique solution of the following (matrix) ordi- 

nary differential equation:

 \label {mateq} \boxed {\, \begin {aligned} \dot {U}(t)&=M(t)U(t)\\[3pt] U(0)&=\unit \end {aligned} \,} 

    

  

 

(13.15) 

This can be proved as follows:

  \begin {split} \dot {L} &=\frac {d}{dt}\left (U L(0)U^{-1}\right ) \\ &=\dot {U}L(0)U^{-1} +UL(0)\dot {(U^{-1})} \\ &=\dot {U}L(0)U^{-1} -UL(0)U^{-1}\dot {U}U^{-1} \\ &=\dot {U}U^{-1}UL(0)U^{-1} -UL(0)U^{-1}\dot {U}U^{-1} \\ &=ML-ML \\ &=[M,L] \end {split} 

























 




 

  

 

 

(13.16) 

where the result 

9p U´ 1q “ ´ U´ 1 9U U´ 1 used in going from the second line to the third can be 

proved by differentiating U U´ 1 “ 1 , and we used M “ 

9U U´ 1 in the penultimate equality. 

Note that the time evolution operator U is unitary (that is, U : “ U´ 1) if M is anti-hermitian 

(that is, M : “ ´ M ). 

The formal solution (13.14) can be used to prove that the eigenvalues of the Lax matrix L do 

not depend on time, just as was the case for KdV in infinitely-many dimensions. To see this, 

consider the characteristic polynomial of L :

 \boxed {\, P_L(\lambda ) = \det (\lambda \unit -L) \,} 

   

 

(13.17) 

This is a degree n monic polynomial (“monic”: λn ` . . . ) whose roots are the n eigenvalues 

λi “ 1 ...n 

of L . Now L is going to be a Hermitian – often real – matrix which can be diagonalised 

by conjugating it with some unitary matrix V :

 L=V\Lambda V^{-1}\,,\quad \Lambda = \begin {pmatrix} \lambda _{1} & & &\\ & \lambda _2 & &\\ & & \ddots & \\ & & & \lambda _{n} \end {pmatrix} 

      















 













 

(13.18)
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Thus (in a sequence of equalities that you might have seen before)

  \begin {split} P_L(\lambda ) &=\det (\lambda \unit -L) \\ &=\det (\lambda \unit -V\Lambda V^{-1}) \\ &=\det (\lambda VV^{-1}-V\Lambda V^{-1}) \\ &=\det (V(\lambda \unit -\Lambda )V^{-1}) \\ &=\det (V)\det (\lambda \unit -\Lambda )\det (V^{-1}) \\ &=\det (\lambda \unit -\Lambda ) \\ &=\prod _{i=1}^n(\lambda -\lambda _i) \\ &=\lambda ^n-c_1\lambda ^{n-1}+c_2\lambda ^{n-2}-\dots +(-1)^n\prod _{i=1}^n\lambda _i\,. \end {split} 

   

    


  
  



    


      


  








 

  





    












 

(13.19) 

(The signs of the coefficients on the last line are chosen for later convenience.) 

Since time evolution is also given by conjugation (this time by U p t q instead of V ), the same 

argument shows that

  \begin {split} P_{L(t)}(\lambda ) &=\det (\lambda \unit -U(t)L(0)U(t)^{-1}) \\ &=\det (\lambda \unit -L(0)) \\ &=P_{L(0)}(\lambda ) \end {split} 

     




  



 

(13.20) 

which implies that the eigenvalues λi 

of L p t q are independent of time, as claimed. 

Equivalently, we can take the n conserved quantities to be the coefficients ck 

of the character- 

istic polynomial, also known as elementary symmetric polynomials,

 c_k=\sum _{1\le i_1<i_2\dots <i_k\le n}\! \lambda _{i_1}\lambda _{i_2}\dots \lambda _{i_k}\,, \quad k=1\dots n\,, 













  

       

 

(13.21) 

or equivalently as the so-called power sum symmetric polynomials

 s_k=\sum _{i=1}^n\lambda _i^k=\operatorname {tr}(L^k)\,, \quad k=1\dots n\, 















       

 

(13.22) 

The two sets of symmetric polynomials are related by the Girard-Newton identities 

k ck 

“ 

k
ÿ 

i “ 1 

p´ 1 q
i ́  1 ck ´ i 

si 

. 

Note that the conservation of sk 

can be proved directly, taking d { dt of tr p Lkq , expanding out, 

and using the Lax pair and then the cyclic property of the trace.
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As a final remark about the general formalism, note that the eigenvalue equation for L p t q , 

namely

 L(t)\psi (t)=\lambda \psi (t) 

 

 

(13.23) 

is solved formally by

 \psi (t)=U(t)\psi (0) 

  

 

(13.24) 

where ψ p 0 q is an eigenfunction at t “ 0 :

  \begin {split} L(t)\psi (t) &= U(t)L(0)U(t)^{-1}U(t)\psi (0) \\ &= U(t)L(0)\psi (0) \\ &= U(t)\lambda \psi (0) \\ &= \lambda U(t)\psi (0) \\ &= \lambda \psi (t)\,. \end {split} 

   


 

 

 

 

 

(13.25) 

13.1 The Lax pair for the simple harmonic oscillator 

The Hamiltonian for the simple harmonic oscillator (S.H.O.), which has n “ 1 , is

 H(q,p)=\frac {p^2}{2m} + \frac {1}{2}\,m\omega ^2 q^2\,. 

  
















 

(13.26) 

Hamilton’s equations are then

 \label {shoeq} \boxed {\, \dot {q}=\frac {p}{m}~,\quad \dot {p}=-m\omega ^2q\,. \,} 









   

 

(13.27) 

These equations are equivalent to a Lax equation of the form (13.13) with

 L= \begin {pmatrix} p & m\omega q\\ m\omega q& -p \end {pmatrix} ~,\quad M=\frac {\omega }{2} \begin {pmatrix} 0 & -1\\ 1 & 0 \end {pmatrix}\,. 











 

















 

(13.28) 

Indeed

 \dot {L}= \begin {pmatrix} \dot {p} & m\omega \dot {q}\\ m\omega \dot {q}& -\dot {p} \end {pmatrix} ~,\quad [M,L]= \begin {pmatrix} -m\omega ^2q & \omega p\\ \omega p & m\omega ^2q \end {pmatrix} 





 

  



  









 

(13.29) 

and so 

9L “ r M , L s Ø (13.27). 

Since in this case M is independent of t , the time evolution operator defined by (13.15) is 

simply

 \boxed {\, U(t) = e^{Mt} \,} 

  

 

(13.30) 

where the exponential of the matrix M t is defined by its Taylor expansion:

 e^{Mt}=\sum _{n=0}^{\infty }\frac {t^n}{n!}\,M^n\,. \label {exptaylor} 



















 

(13.31)
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This can be calculated explicitly, noting that

  M^2=-\left (\frac {\omega }{2}\right )^2\,\unit 














 

and so

 M^{2k}=(-1)^k\left (\frac {\omega }{2}\right )^{2k}\,\unit ~,\quad M^{2k+1}=(-1)^k\left (\frac {\omega }{2}\right )^{2k}\,M= (-1)^k\left (\frac {\omega }{2}\right )^{2k+1} \begin {pmatrix} 0 & -1\\ 1 & 0~, \end {pmatrix} 














 












 














 



 

(13.32) 

and so

  \begin {split} U(t) &= \sum _{k=0}^{\infty }\frac {t^{2k}}{(2k)!}\,M^{2k}+ \sum _{k=0}^{\infty }\frac {t^{2k+1}}{(2k+1)!}\,M^{2k+1}\\ &= \begin {pmatrix} 1 & 0 \\ 0 & 1 \end {pmatrix} \sum _{k=0}^{\infty }\frac {(-1)^k}{(2k)!}\left (\frac {\omega t}{2} \right )^{2k} + \begin {pmatrix} 0 & -1 \\ 1 & 0 \end {pmatrix} \sum _{k=0}^{\infty }\frac {(-1)^k}{(2k+1)!}\left (\frac {\omega t}{2} \right )^{2k+1} \\ &= \cos \left ( \frac {\omega t}{2}\right ) \begin {pmatrix} 1 & 0 \\ 0 & 1 \end {pmatrix}+\sin \left ( \frac {\omega t}{2}\right ) \begin {pmatrix} 0 & -1 \\ 1 & 0 \end {pmatrix}\\ &= \begin {pmatrix} \cos (\omega t/2) & -\sin (\omega t/2) \\ \sin (\omega t/2) & \cos (\omega t/2) \end {pmatrix}\, \end {split} 

 
























 

















































 



















































 





 

(13.33) 

where we used the Taylor series for sine and cosine in the third equality. Note that the time 

evolution operator is nothing by a rotation matrix by the angle ω t { 2 . 

Hence

  \begin {split} L(t) &= \begin {pmatrix} p(t) & m\omega q(t)\\ m\omega q(t)& -p(t) \end {pmatrix} = U(t)L(0)U(t)^{-1} \\ &= \begin {pmatrix} \cos (\omega t/2) & -\sin (\omega t/2) \\ \sin (\omega t/2) & \cos (\omega t/2) \end {pmatrix} \begin {pmatrix} p(0) & m\omega q(0)\\ m\omega q(0)& -p(0) \end {pmatrix} \begin {pmatrix} \cos (\omega t/2) & \sin (\omega t/2) \\ -\sin (\omega t/2) & \cos (\omega t/2) \end {pmatrix} \\ &= \dots \\ &= \begin {pmatrix} p(0)\cos (\omega t)-m\omega q(0)\sin (\omega t) & p(0)\sin (\omega t)+m\omega q(0)\cos (\omega t) \\ p(0)\sin (\omega t)+m\omega q(0)\cos (\omega t) & -p(0)\cos (\omega t)+m\omega q(0)\sin (\omega t) \\ \end {pmatrix} \end {split} 











  






 













 



  





        

        



 

(13.34) 

and hence

 \begin {split} q(t)&=q(0)\cos (\omega t)+\frac {p(0)}{m\omega }\,\sin (\omega t)\\[3pt] p(t)&=p(0)\cos (\omega t)-m\omega \,q(0)\,\sin (\omega t) \end {split} 

   









      

 

(13.35) 

This shows that, up to a scaling of the axes, the time evolution is a uniform rotation in the 

S.H.O. phase space:



 

CHAPTER 13. INTEGRABLE SYSTEMS IN CLASSICAL MECHANICS 157 

In this case n “ 1 , and there is just one nontrivial conserved quantity, which should be the 

Hamiltonian. Indeed tr p L q “ 0 (so this is trivially conserved) while

 \operatorname {tr}(L^2)= \operatorname {tr} \begin {pmatrix} p^2+m^2\omega ^2q^2 & 0 \\ 0 & p^2+m^2\omega ^2q^2 \end {pmatrix} =2(p^2+m^2\omega ^2q^2)=4m\,H(q,p) 


 



  

  



       

 

(13.36) 

is the only independent conserved quantity. While this case is a bit easy, it does illustrate the 

general point that it’s simpler to work with traces of powers of the Lax matrix, rather than 

with the individual eigenvalues themselves. 

13.2 The Lax pair for the Toda lattice 

The last example was a bit trivial. Much less trivial, and still the subject of research, is the 

finite Toda lattice which describes n particles on a line, each one interacting with its nearest 

neighbours through an exponential potential. Let’s take the particles to have equal masses, 

mi “ 1 . Toda’s Hamiltonian is

 \label {todaham} H(p,q)=\sum _{i=1}^n\left (\frac {p_i^2}{2}+e^{-(q_i-q_{i-1})}\right ) 

  




















 

(13.37) 

where, at least at t “ 0 ,

  q_0\equiv -\infty <q_1<q_2 \dots <q_n<q_{n+1}\equiv +\infty \,. 

               

 

Hamilton’s equations for this system are:1

 \label {todahameq} \boxed {\, \begin {aligned} \dot {q}_i &= p_i \\ \dot {p}_i &= e^{-(q_i-q_{i-1})} - e^{-(q_{i+1}-q_i)} \end {aligned} \,} 

 

 


 

(13.38) 

which is a system of coupled differential equations.

 

1We can avoid formally setting q0 ” ´8 and qn ̀  1 ” `8 if we write 

H p p, q q “ 

n
ÿ 

i “ 1 

p2 

i

 

2 

` 

n ́  1
ÿ 

i “ 1 

e´p qi ̀  1´ qiq . 

Then Hamilton’s equations are 9 qi “ pi 

for all i and

  \dot {p}_1 = - e^{-(q_2-q_1)}~, ~~ \dot {p}_2 = e^{-(q_2-q_1)} - e^{-(q_3-q_2)}~, ~\dots , ~~ \dot {p}_{n-1} = e^{-(q_{n-1}-q_{n-2})} - e^{-(q_n-q_{n-1})}~, ~~ \dot {p}_n = e^{-(q_n-q_{n-1})}~. 

                  

 

This agrees with (13.38) if we set q0 ” ´8 and qn ̀  1 ” `8 in the latter, thus removing the positive term in the 

first equation and the negative term in the last equation.
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Note

 

that it follows from these equations that 

d

 

dt 

řn 

i “ 1 

pi 

“ 0 , so P : “ 

řn 

i “ 1 

pi 

“ constant, 

say, and 

d

 

dt 

řn 

i “ 1 

qi “ P . This in turn implies that Q : “ 

řn 

i “ 1 

qi “ P t ` Q p 0 q , thus solving the 

time evolution for the centre of mass Q of the system. 

The Lax pair is most simply formulated in terms of Flaschka’s variables :

 \boxed {\, a_i=\fract {1}{2}\,e^{-(q_{i+1}-q_i)/2}\,,\quad b_i=-\fract {1}{2}\,p_i \,} 









   







 

(13.39) 

which satisfy

 \label {eqtoda} \begin {aligned} \dot {a}_i &= \fract {1}{4}\,e^{-(q_{i+1}-q_i)/2}(p_{i+1}-p_i) =a_i(b_{i+1}-b_i) \\[2pt] \dot {b}_i &= -\fract {1}{2}\,( e^{-(q_i-q_{i-1})} - e^{-(q_{i+1}-q_i)}) =2(a_i^2-a_{i-1}^2) \end {aligned} 










     

 






  







 

(13.40) 

(It might be objected that Flaschka’s variables only encode the differences of the qis, but given 

the note

 

above, we already know their overall sum, so the differences are all that we need.) 

Then the Lax pair is

 \begin {aligned} L&= \begin {pmatrix} b_1 & a_1 & & & && \\ a_1 & b_2 & a_2 & & && \\ & a_2 & b_3 & a_3 & && \\ & & \ddots & \ddots &\ddots && \\ & & & a_{n-2} & b_{n-1} & a_{n-1} \\ & & & & a_{n-1} & b_n \end {pmatrix} \\[3pt] M&= \begin {pmatrix} 0 & a_1 & & & && \\ -a_1 & 0 & a_2 & & && \\ & -a_2 & 0 & a_3 & && \\ & & \ddots & \ddots &\ddots && \\ & & & -a_{n-2} & 0 & a_{n-1} \\ & & & & -a_{n-1} & 0 \end {pmatrix} \end {aligned} 





































 

 

 



























































 

 

 



























 

(13.41) 

(Exercise: check for yourself that 

9L “ r M , L s ñ (13.40).) 

This implies that the eigenvalues of L , or equivalently the traces of the powers of L , are all 

conserved! This gives us n conserved quantities,

 \boxed {\, Q_k=\operatorname {tr}(L^k)\,,\quad k=1\dots n\,. \,} 




        

 

(13.42)
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The first few are

 \begin {aligned} Q_1 &= \operatorname {tr}(L) \\[1pt] &= \sum _{i=1}^nb_i = -\fract {1}{2}\sum _{i=1}^np_i \qquad \mbox {(total momentum)} \\[3pt] Q_2 &= \operatorname {tr}(L^2) \\[1pt] &= \sum _{i=1}^nb_i^2+2\sum _{i=1}^{n-1}a_i^2 \\[3pt] &=\fract {1}{2}\left ( \fract {1}{2}\sum _{i=1}^np_i^2+\sum _{i=1}^{n-1}e^{-(q_{i+1}-q_i)} \right ) \qquad \mbox {(the Hamiltonian, or total energy)} \\[3pt] Q_3 &= \operatorname {tr}(L^3) \\[1pt] &= \sum _{i=1}^nb_i^3+3\sum _{i=1}^{n-1}a_i^2(b_i+b_{i+1}) \\[3pt] &=\fract {1}{8}\left ( \sum _{i=1}^np_i^3-3\sum _{i=1}^{n-1}e^{-(q_{i+1}-q_i)}(p_i+p_{i+1}) \right ) \end {aligned} 

 








 














 




























































   

 






















  



























 



 

(13.43) 

Interestingly, the limit n Ñ 8 yields the infinite Toda lattice , which describes an infinite 

number of particles on a line, and this system has solitons. 

The index i P Z for the infinite Toda lattice is analogous to x P R for KdV, while qip t q P R 

corresponds to u p x, t q P R . Thus space has been discretised, while time remains continuous, 

as does the field value. (In the ball and box model the process of discretisation goes two steps 

further, with both time and the field values also becoming discrete.) 

The solitons of the infinite Toda lattice can be derived in a number of ways, including inverse 

scattering. The following turns out to be a solution, for any γ , k ą 0 :

 \label {todaonesol} \boxed {\, q_l(t)=q_0 - \log \frac {1+\gamma \,e^{-2kl\pm 2\sinh (k)t}}{1+\gamma \,e^{-2k(l{-}1)\pm 2\sinh (k)t}} \,} 

   

   



   

 

(13.44) 

This is a single soliton moving through Z with

 \begin {aligned} \mbox {velocity} &= \pm \sinh (k)/k\,, \\[3pt] \mbox {width} &\sim 1/k\,. \end {aligned} 

   

  

 

(13.45) 

As for KdV, the faster a soliton is moving, the narrower it becomes.



 

Here’s a plot comparing three of these solitons at t “ 0 , taking the ‘+’ option with q0 

“ 0 in 

(13.44), with p k , γ q “ p 0 . 2 , 0 . 2 q (red), p k , γ q “ p 0 . 25 , 1 q (blue) and p k , γ q “ p 0 . 3 , 5 q (green) :

 

Note that the horizontal axis here is the index l , while in the sketch between equations (13.37) 

and (13.38) it was the ‘field value’ ql. 

It is also possible to find N -soliton solutions, which turn out to have a form similar to those 

we found earlier for the KdV equation:

 \label {todaNsol} \boxed {\, q_l(t)=q_0 - \log \frac {\det (\unit _{N\times N}+C_l(t))}{\det (\unit _{N\times N}+C_{l-1}(t))} \,} 

   











 

(13.46) 

where 1N ˆ N 

is the N ˆ N identity matrix, and t Clp t qu is a family of N ˆ N matrices which 

depend on the space coordinate l and the time coordinate t as follows:

 \boxed {\, (C_l(t))_{ij} =\frac {\sqrt {\gamma _i\gamma _j}}{1-e^{-(k_i+k_j)}}\, e^{-(k_i+k_j)l-( \sigma _i\sinh (k_i)+ \sigma _j\sinh (k_j))t}\, \,} 















 







 

(13.47) 

with ki 

, γi ą 0 and σi “ ˘ 1 .

  \vcenter {\hbox {\rule {2in}{1pt}}}~~~\mbox {The end}~~~\vcenter {\hbox {\rule {2in}{1pt}}} 
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