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1. Numerical results seen in the lectures suggest that the KdV equation

ut + 6uux + uxxx = 0

has an exact solution of the form

u(x, t) =
2

cosh2(x− vt)

for some constant velocity v. Verify this by direct substitution into the KdV equation
and determine the value of v.

2. (a) Show that if u(x, t) = v(x, t) solves the KdV equation then so does Av(Bx,Ct),
provided that the constants B and C are related to A in a specific way (which you
should determine).

(b) Apply this transformation to the basic KdV solution found in problem 1 to construct
a one-parameter family of one-soliton solutions of the KdV equation.

(c) Find a formula relating the velocities to the heights for solitons in this one-parameter
family. How does the width of a soliton in this family change if its velocity is
rescaled by a factor of 4?

3. Show that if u(x, t) solves the KdV equation and ε is a constant, then v(x, t) := 1
ε
u(x, t)

solves the rescaled KdV equation

vt + 6εvvx + vxxx = 0 ,

while w(x, t) := εu(x, εt) solves the differently-rescaled KdV equation

wt + 6wwx + εwxxx = 0 .

4. Consider a pair of solitons with velocities m and n in the ball and box model, with
m > n and the faster soliton to the left of the slower one, with separation l ≥ n (i.e.
there are l ≥ n empty boxes between the two solitons). Evolve various such initial
conditions forward in time using the ball and box rule, for different values of m, n and
l. start the solitons at least m boxes apart, so that interactions don’t start until after the
first time-step. Prove that the system always evolves into an oppositely-ordered pair of
the same two solitons, and find a general formula for the phase shifts1 of the solitons in
terms of m and n.
[Optional:] What can go wrong if l < n? [Hint: Evolve the system backwards. . . ]

5. In the two-colour (blue and red) ball and box model, we’ll call a row of n consecutive
balls a soliton if it keeps its form over time, so that after each time-step its only change
is a possible (fixed) translation. There’s no need for both colours to be represented, so a
row of n blue balls, or a row of n red balls, is also a potential soliton. How many solitons
of length n are there? What are their speeds?

1The phase shift of a soliton is defined to be the shift of its position, at a time in the far future, relative to
the position it would have had at the same time if the other soliton hadn’t been there.
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6. The ball and box model can be further generalised to the M -colour ball and box model.
The balls now come inM colours, 1, 2, . . . ,M , and the time-evolution rule is generalised
to say that first all balls of colour 1 are moved, then all of colour 2, and so on, with a
single time-step being completed once all balls of all colours have been moved. How
many solitons of length n are there in this model? Again, there is no need for every
colour to be present in a given soliton. You might start by classifying the ‘top-speed’
solitons of length n, that is, those that move at speed n.

7. Investigate the scattering of solitons in the two-colour ball and box model. You should
find that the lengths of top-speed solitons are preserved under collisions, but their forms
can change. Try to formulate a general rule for this behaviour. Can you generalise it to
the M -colour model?

8. (a) Express d’Alembert’s general solution of the wave equation utt−uxx = 0 in terms
of the initial conditions u(x, 0) = p(x) and ut(x, 0) = q(x).

(b) Find a relation between p(x) and q(x) which produces a single wave travelling to
the right.

9. The wave profile

φ(x, t) = cos(k1x− ω(k1)t) + cos(k2x− ω(k2)t)

is a superposition of two plane waves. Rewrite φ as a product of cosines, and use this to
sketch the wave profile when |k1 − k2| � |k1|. Find the velocity at which the envelope
of the wave profile moves (the group velocity), again for k1 ≈ k2; in the limit k1 → k2

verify that this reduces to dω/dk, consistent with the general result obtained in lectures.

10. (a) Completing the square, derive the formula∫ +∞

−∞
dk e−A(k−k̄)2

eikB =

√
π

A
eik̄Be−B

2/(4A) .

(You can quote the result
∫ +∞
−∞dk e

−Ak2
=
√
π/A for A > 0.)

(b) For the Gaussian wavepacket (where Re denotes the real part)

u(x, t) = Re

∫ +∞

−∞
dk e−a

2(k−k̄)2

ei(kx−ω(k)t) ,

expand ω(k) to second order in k − k̄, and then use the result of part (a) to derive
a better approximation for u(x, t) than that obtained in lectures.

(c) Given that a function of the form e−(x−x0)2/C describes a profile centred at x0

with width−2 equal to the real part of C−1, show that the result of part (b) is a
wave profile moving at velocity ω′(k̄), with width2 increasing with time as 4a2 +
ω′′(k̄)2t2/a2. (Hence, for ω′′ 6= 0, the wave disperses.)
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11. Find the dispersion relation and the phase and group velocities for:

(a) ut + ux + αuxxx = 0 ;

(b) utt − α2uxx = β2uttxx .

12. For which values of n does the equation

ut + ux + uxxx +
∂nu

∂xn
= 0

admit “physical” dissipation? (A wave is said to have physical dissipation if the ampli-
tude of plane waves decreases with time.)

13. Find (if possible) real non-singular travelling wave solutions of the following equations,
satisfying the given boundary conditions:

(a) Modified KdV (mKdV) equation:

ut + 6u2ux + uxxx = 0

u→ 0, ux → 0, uxx → 0 as x→ ±∞ .

(b) ‘Wrong sign’ mKdV equation:

ut − 6u2ux + uxxx = 0

u→ 0, ux → 0, uxx → 0 as x→ ±∞ .

(c) φ4 theory:

utt − uxx + 2u(u2 − 1) = 0

ut → 0, ux → 0, u→ −1 as x→ −∞
ut → 0, ux → 0, u→ +1 as x→ +∞ .

(d) φ6 theory:

utt − uxx + u(u2 − 1)(3u2 − 1) = 0

ut → 0, ux → 0, u→ 0 as x→ −∞
ut → 0, ux → 0, u→ 1 as x→ +∞ .

(e) Burgers equation:

ut + uux − uxx = 0

u→ u0, ux → 0 as x→ −∞
u→ u1, ux → 0 as x→ +∞ ,

where u0 and u1 are real constants with u0 > u1 > 0.
[Hint: Start by showing that the boundary conditions relate the velocity v of the
travelling wave to the sum of the constants u0 and u1.]
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14. Using the analogy with the classical mechanics of a point particle moving in one spatial
dimension, determine the qualitative behaviour of travelling wave solutions of the KdV
equation on a circle, for which the integration constants A and B are non-zero.

15. This exercise involves the infinite chain of identical coupled pendulums of section 3.3,
whose equations of motion reduce to the sine-Gordon equation in the continuum limit
a → 0. We will simplify expression by setting g = L = M

a
= 1. Let θn(t) be the angle

to the vertical of the n-th pendulum (n ∈ Z), which is hung at the position x = na along
the chain, at time t. The configuration of the system at time t is then specified by the
collection of angles {θn(t)}n∈Z.

(a) Starting from the force (note: m is a dummy variable)

Fn({θm}) = −a sin θn +
1

a
(θn+1 − θn) +

1

a
(θn−1 − θn)

acting on the n-th pendulum, deduce the potential energy

V ({θm}) =
+∞∑

n=−∞

(· · · )

such that Fn = − ∂V
∂θn

for all n ∈ Z, and fix the integration constant by requiring
that the potential energy be zero when all pendulums point down: V ({0}) = 0.

(b) Show that in the continuum limit a → 0, the potential energy computed above
becomes

V =

∫ +∞

−∞
dx

[
(1− cos θ) +

1

2
θ2
x

]
,

and the kinetic energy

T ({θm}) =
a

2

+∞∑
n=−∞

θ̇2
n

becomes

T =

∫ +∞

−∞
dx

1

2
θ2
t ,

where the function θ(x, t) is the continuum limit of {θn(t)}n∈Z.

[Hint: in the continuum limit, a
+∞∑

n=−∞
→
∫ +∞
−∞ dx.]
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16. A field u(x, t) has kinetic energy T and potential energy V , where

T =

∫ +∞

−∞
dx

1

2
u2
t ,

V =

∫ +∞

−∞
dx

[
1

2
u2
x +

λ

2
(u2 − a2)2

]
,

and a and λ > 0 are (real) constants. (This is a version of the ‘φ4’ theory, so named
because the scalar potential is quartic, and the field u is usually called φ.) The equation
of motion for u is

utt − uxx + 2λu(u2 − a2) = 0 .

(a) If u is to have finite energy, what boundary conditions must be imposed on u, ux
and ut at x = ±∞?

(b) Find the general travelling-wave solutions to the equation of motion, consistent
with the boundary conditions found in part (a). Compute the total energy E =
T + V for these solutions. For which velocity do the solutions have the lowest
energy?

(c) One of the possible boundary conditions for part (a) implies that u is a kink, with
[u(x)]x=+∞

x=−∞ = 2a. Use the Bogomol’nyi argument to show that the total energy
E = T+V of that configuration is bounded from below by C

√
λa3, where C is

a constant that you should determine, and find the solution u which saturates this
bound. Verify that this solution agrees with the lowest-energy solution of part (b).

17. (a) Explain why the Bogomol’nyi argument given in the lectures fails to provide a
useful bound on the energy of a two-kink solution of the sine-Gordon equation (a
two-kink solution is one with topological charge n − m equal to 2). What is the
most that can be said about the energy of a k-kink?

(b) For a sine-Gordon field u, generalise the Bogomol’nyi argument to show that∫ B

A

dx

[
1

2
u2
t +

1

2
u2
x + (1− cosu)

]
≥ ± 4

[
cos

u

2

]B
A
.

(c) ∗ Use this result and the intermediate value theorem (look it up if necessary!) to
show that if the field u has the boundary conditions of a k-kink, then its energy is
at least k times that of a single kink. Can this bound be saturated?
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18. A system on the finite interval −π/2 ≤ x ≤ π/2 is defined by the following expressions
for the kinetic energy T and the potential energy V :

T =

∫ π/2

−π/2
dx

1

2
u2
t , V =

∫ π/2

−π/2
dx

1

2

(
u2
x + 1− u2

)
.

The function u(x, t) satisfies the boundary condition |u(±π/2, t)| = 1 and is required
to satisfy |u(x, t)| ≤ 1 everywhere. Show that with “kink” boundary conditions, the
total energy E is bounded below by a positive constant, and find a solution for which the
bound is saturated.

19. Check explicitly that the energy

E =

∫ +∞

−∞
dx

[
1

2
u2
t +

1

2
u2
x + V(u)

]
and the momentum

P = −
∫ +∞

−∞
dx utux

of a relativistic field u(x, t) in 1 space and 1 time dimensions are conserved when the
equation of motion

utt − uxx = −V′(u)

and the boundary conditions

ut, ux, V(u), V′(u) −→
x→±∞

0 ∀t

are satisfied.

20. (a) Compute the conserved topological charge, energy and momentum of a sine-Gordon
kink moving with velocity v, and check that the results do not depend on time.
[Hint: The integral sheet might be useful. For the scalar potential term in the en-
ergy, write 1− cos(u) = 2 sin2(u/2), plug in the kink solution and manipulate the
result to get something involving cosh−2.]
Confirm that for |v| � 1 the energy and the momentum take the forms

E = M +
1

2
Mv2 +O(v4) , P = Mv +O(v3)

where the ‘mass’ M is the energy of the static kink, which appears in the Bogo-
mol’nyi bound.

(b) ∗ If you are fearless and have time on your hands, try also to compute the conserved
spin 3 charge

Q3 =

∫ +∞

−∞
dx

[
u2

++ −
1

4
u4

+ + u2
+ cosu

]
for the sine-Gordon kink. The integrals are not at all straightforward, but can be
evaluated using appropriate changes of variables. (Did I write fearless?)
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21. Find three conserved charges for the mKdV equation of problem 13 (a), which involve
u, u2 and u4 respectively. The boundary conditions on u(x, t) are u, ux and uxx → 0
as |x| → ∞. Evaluate these quantities for the travelling-wave solution found in that
problem. The definite integrals on the integrals sheet might help.

22. Show that u is a conserved density for Burgers’ equation from problem 13 (e). Why is
this result of no use in analysing the travelling wave solution of that problem?

23. Consider the KdV equation ut + 6uux + uxxx = 0 for the field u(x, t).

(a) Show that ρ1 ≡ u, ρ2 ≡ u2 and ρ∗ ≡ xu− 3tu2 are all conserved densities, so that

Q1 =

∫ +∞

−∞
dx u , Q2 =

∫ +∞

−∞
dx u2 , Q∗ =

∫ +∞

−∞
dx (xu− 3tu2)

are all conserved charges.

(b) Evaluate the conserved charges Q1, Q2 and Q∗ for the one-soliton solution centred
at x0 and moving with velocity v = 4µ2:

uµ, x0(x, t) = 2µ2 sech2
[
µ(x− x0 − 4µ2t)

]
.

(c) According to the KdV equation, the initial condition u(x, 0) = 6 sech2(x) is known
to evolve into the sum of two well-separated solitons with different velocities v1 =
4µ2

1 and v2 = 4µ2
2 at late times. Use the conservation of Q1 and Q2 to determine v1

and v2.

(d) A two-soliton solution separates as t → −∞ into two one-solitons uµ1, x1 and
uµ2, x2 . As t → +∞, two one-solitons are again found, with µ1 and µ2 unchanged
but with x1, x2 replaced by y1, y2. Use the conservation of Q∗ to find a formula
relating the phase shifts y1 − x1 and y2 − x2 of the two solitons.
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24. (a) Show that if u(x, t) satisfies the KdV equation ut + 6uux + uxxx = 0, and u =
λ− v2 − vx where λ is a constant and v(x, t) some other function, then v satisfies

(
2v +

∂

∂x

)(
vt + 6λvx − 6v2vx + vxxx

)
= 0 .

(b) Compute the Gardner transform expansion

w(x, t) =
∞∑
n=0

wn(x, t)εn

up to order ε4. Use the results to find the conserved charges Q̃3 and Q̃4, where

Q̃n =

∫ +∞

−∞
dx wn .

Show that Q̃3 is the integral of a total x-derivative (and hence is zero), while Q̃4 =
αQ3, where

Q3 =

∫ +∞

−∞
dx
(
u3 − 1

2
u2
x

)
is the third KdV conserved charge (the ‘energy’) and α a constant that you should
determine. ∗ If you’re feeling energetic, try to compute Q̃5 and Q̃6 as well.

25. This question is also about the KdV equation ut + 6uux + uxxx = 0.

(a) Evaluate the first three KdV conserved charges

Q1 =

∫ +∞

−∞
dx u , Q2 =

∫ +∞

−∞
dx u2 , Q3 =

∫ +∞

−∞
dx
(
u3 − 1

2
u2
x

)
for the initial state u(x, 0) = A sech2(Bx), where A and B are constants.

(b) The initial state
u(x, 0) = N(N + 1) sech2(x) ,

where N is an integer, is known to evolve at late times into N well-separated soli-
tons, with velocities 4k2, k = 1 . . . N . So for t → +∞, this solution approaches
the sum of N single well-separated solitons

u(x, t) ≈
N∑
k=1

2µ2
k sech2

[
µk(x− xk − 4µ2

kt)
]
,

where µ1, . . . , µN are N different constants. Since Q1, Q2 and Q3 are conserved,
their values at t = 0 and t→ +∞ must be equal. Use this fact to deduce formulae
for the sums of the first N integers, the first N cubes, and the first N fifth powers.

(c) ∗ Use Q4 and Q5 and the method just described to find the sum of the first N
seventh and ninth powers,

∑N
k=1 k

7 and
∑N

k=1 k
9.
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26. (a) Show that the pair of equations

(u− v)+ =
√

2 e(u+v)/2

(u+ v)− =
√

2 e(u−v)/2

provides a Bäcklund transformation linking solutions of v+− = 0 (the wave equa-
tion in light-cone coordinates) to those of u+− = eu (the Liouville equation).

(b) Starting from d’Alembert’s general solution v = f(x+) + g(x−) of the wave equa-
tion, use the Bäcklund transformation from part (a) to obtain the corresponding
solutions of the Liouville equation for u. [Hint: Set u(x+, x−) = 2U(x+, x−) +
f(x+) − g(x−). You might simplify the notation by setting f(x+) = log(F ′(x+))
and g(x−) = − log(G′(x−)), where prime means first derivative.]

27. Consider the Bäcklund transformation

vx +
1

2
uv = 0

vt +
1

2
uxv −

1

4
u2v = 0 .

(a) Show that these equations taken together imply that v satisfies the linear heat equa-
tion vt = vxx , while u satisfies Burgers’ equation ut + uux − uxx = 0.
[Hint: for v, solve the first equation for u and substitute in the second; for u, start
by cross-differentiating.]

(b) Find the general travelling-wave solution for v(x, t) and, via the Bäcklund trans-
formation, re-obtain the travelling-wave for Burgers’ equation found in question
13 (e).

(c) ∗ The linear equation satisfied by v(x, t) allows for the linear superposition of so-
lutions. Use this fact, and your answers to part (b), to construct solutions for v and
then u which describe the interaction of two travelling waves.

(d) ∗ Sketch your solutions functions of x at fixed times both before and after the
interaction, and also draw their trajectories in the (x, t) plane, perhaps starting with
the help of a computer. Are the travelling waves of Burgers’ equation true solitons,
in the sense given in lectures?
[Hints: Examine the asymptotics of the solution viewed from frames moving at
various velocities V (that is, set XV = x− V t and consider t→ ±∞ keeping XV

finite). This should allow you to isolate various travelling waves in these limits,
and to decide whether they preserve their form under interactions. For definiteness,
consider the case c1 > c2 > 0, where c1 and c2 are the velocities of the two separate
travelling waves before they were superimposed. A further hint: as well as the
‘expected’ special values for V , namely c1 and c2, be careful about what happens
when V = c1 + c2.]
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28. (a) Show that the two equations

vx = −u− v2

vt = 2u2 + 2uv2 + uxx − 2uxv

are a Bäcklund transformation relating solutions of the KdV equation

ut + 6uux + uxxx = 0

and the wrong sign modified KdV (mKdV) equation

vt − 6v2vx + vxxx = 0 .

(Note the appearance of the Miura transform in the Bäcklund transformation.)

(b) Taking u = c2, where c is a constant, as a seed solution of the KdV equation, find
the corresponding solution of the wrong sign mKdV equation.

29. The 2-soliton solution of the sine-Gordon equation with Bäcklund parameters a1 and a2

is

u(x, t) = 4 arctan

(
µ
eθ1 − eθ2
1 + eθ1+θ2

)
, θi = εiγi(x− vit− x̄i)

where µ = (a2+a1)/(a2−a1), vi = (a2
i−1)/(a2

i+1), γi = 1/
√

1−v2
i , εi = sign(ai), and

x̄1 and x̄2 are constants, as in the lectures. Rewriting u as a function of XV ≡ x − V t
and t, show that, for V 6= v1, v2 (and v1 6= v2)

lim
t→∞

XV finite

u = 2nπ ,

where n is an integer. If v2 > v1 > 0 and εi = 1, how does the parity of n (whether it is
even or odd) depend on the value of v relative to v1 and v2?
[Hints: First show that |θi| → +∞ as t→ ±∞; then consider each of the four possible
options (θ1, θ2) → (+∞,+∞), (−∞,−∞), (+∞,−∞), (−∞,+∞). Remember that
arctan(0) = mπ and arctan(±∞) = ±π/2+mπ, where the ambiguities ofmπ,m ∈ Z,
encode the multivalued nature of the arctan function.]

30. Find the asymptotics of the 2-soliton sine-Gordon solution defined in problem 29, in the
case a2 > a1 > 0, as t→ ±∞ with Xv2 ≡ x−v2t held finite.

31. Show by direct analysis (as in the lectures) that taking a1 and a2 of opposite signs in
problem 29 results in a two-kink, or two-antikink, solution to the sine-Gordon equation.

32. (a) The argument of the arctangent in the sine-Gordon 2-soliton solution of problem
29 is a continuous function of x for all x ∈ R. In particular, it is never infinite.
What does this imply about the range of u? [Hint: consider the graph of tanu/4.]

(b) By taking the limits of this function as x → ±∞ (with t = x̄1 = x̄2 = 0 for
simplicity), show that the topological charge of this two-soliton solution is 0 if
sign(a1) = sign(a2), and ±2 if sign(a1) = −sign(a2), in units where the topologi-
cal charge of a kink is 1.
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33. Consider the two-soliton solution of the sine-Gordon equation from problem 29 with
complex Bäcklund parameters a1 = a∗2 := a ∈ C and with vanishing integration con-
stants, as is appropriate to find the breather solution. Show that

Re(θ1) = +Re(θ2) = γ(x− vt) cosϕ ,

Im(θ1) = −Im(θ2) = γ(vx− t) sinϕ ,

where ϕ = arg(a) and

v =
|a|2 − 1

|a|2 + 1

γ =
1√

1− v2
=

1 + |a|2

2|a|
.

34. The stationary breather solution of the sine-Gordon equation (that is the breather solu-
tion with v = 0) has the form

tan
u

4
=

cosϕ

sinϕ
· sin(t sinϕ)

cosh(x cosϕ)
.

Show that in the limit ϕ → 0, in which the kink and antikink that form the breather are
very loosely bound, the time period τ of a single oscillation of the breather scales like
τ ∼ |ϕ|−1, and the spatial size xmax of the breather scales like xmax ∼ − logϕ.
[Hint: You could define xmax as the value of x at which tan(u/4) = 1 when the oscilla-
tory factor in the numerator is at its maximum. Focus only on the parametric dependence
on ϕ, ignoring all numerical factors.]

35. We have seen in lectures that the KdV equation ut+6uux+uxxx = 0 for the field u(x, t)
that describes the profile of a wave translates into the following equation for the new
variable w(x, t) =

∫
dx u:

wt + 3w2
x + wxxx = 0 .

Let w = 2 ∂
∂x

log f = 2fx/f where f(x, t) is a nowhere vanishing function of x and t,
so that u = 2 ∂2

∂x2 log f . The aim of this exercise is to rewrite the equation for w as an
equation for f .

(a) Express wt, wx, wxx and wxxx in terms of f and its derivatives.

(b) Show that the equation for wt + 3w2
x + wxxx = 0 can be rewritten as

ffxt − fxft + 3f 2
xx − 4fxfxxx + ffxxxx = 0 ,

which is known as the quadratic form of the KdV equation.
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36. The Hirota bilinear differential operatorDm
t D

n
x is defined for any pair of natural numbers

(m,n) by

Dm
t D

n
x(f · g) =

(
∂

∂t
− ∂

∂t′

)m(
∂

∂x
− ∂

∂x′

)n
f(x, t)g(x′, t′)

∣∣∣∣∣
x′=x
t′=t

and maps a pair of functions (f(x, t), g(x, t)) into a single function.

(a) Prove that the Hirota operators Bm,n := Dm
t D

n
x are bilinear, i.e. for all constants

a1, a2

Bm,n(a1f1 + a2f2 · g) = a1Bm,n(f1 · g) + a2Bm,n(f2 · g) ,

Bm,n(f · a1g1 + a2g2) = a1Bm,n(f · g1) + a2Bm,n(f · g2) .

(b) Prove the symmetry property

Bm,n(f · g) = (−1)m+nBm,n(g · f) .

(c) Compute the Hirota derivatives D2
t (f · g) and D4

x(f · g), and verify that your ex-
pression for the latter is consistent with the result for D4

x(f · f) given in lectures.

37. Define a “not-Hirota” bilinear differential operator D̃m
t D̃

n
x by

D̃m
t D̃

n
x(f · g) =

(
∂

∂t
+

∂

∂t′

)m(
∂

∂x
+

∂

∂x′

)n
f(x, t)g(x′, t′)

∣∣∣∣∣
x′=x
t′=t

(note the plus signs!).

(a) Compute D̃x(f · g) and D̃t(f · g), verifying that in both cases the answer is given
by the corresponding ‘ordinary’ derivative of the product f(x, t)g(x, t).

(b) How does this result generalise for arbitrary not-Hirota differential operators? Prove
your claim.

(c) Compare your answer with the Hirota operators defined above.

38. (a) If θi = aix+ bit+ ci, prove that

DtDx(e
θ1 · eθ2) = (b1 − b2)(a1 − a2)eθ1+θ2 .

(b) Prove the corresponding result for Dm
t D

n
x(eθ1 · eθ2), as quoted in lectures.

39. Prove that
Dm
t D

n
x(f · 1) =

∂m

∂tm
∂n

∂xn
f .
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40. Consider the function f , such that u = 2 ∂2

∂x2 log f is the KdV field, which corresponds
to a 2-soliton solution:

f = 1 + εf1 + ε2f2 = 1 + ε
(
eθ1 + eθ2

)
+ ε2

(
a1 − a2

a1 + a2

)2

eθ1+θ2 ,

where θi = aix − a3
i t + ci, with ai and ci constants. Check that B(f1 · f2) = 0 and

B(f2 · f2) = 0, where B = Dx(Dt + D3
x), and show that this implies that the above

expansion, which is truncated at order ε2, is a solution of the bilinear form of the KdV
equation.

41. Derive the solution of the bilinear form of the KdV equation Dx(Dt + D3
x)(f · f) = 0

which represents the 3-soliton solution, in the form

f = 1 + εf1 + ε2f2 + ε3f3

where f1 =
∑3

i=1 e
θi . [This includes proving that the higher order terms in the ε expan-

sion can be consistently set to zero, as in problem 40.]

42. Show that the Boussinesq equation

utt − uxx − 3(u2)xx − uxxxx = 0

can be written in the bilinear form

(D2
t −D2

x −D4
x)(f · f) = 0

where u = 2 ∂2

∂x2 log f .

43. Show that the following higher-dimensional version of the KdV equation,

(ut + 6uux + uxxx)x + 3σ2uyy = 0

for the field u(x, y, t), also known as the Kadomtsev-Petviashvili (KP) equation, can be
written in the bilinear form

(DtDx +D4
x + 3σ2D2

y)(f · f) = 0

where u(x, y, t) = 2 ∂2

∂x2 log f(x, y, t).

44. It is given that the system of Hirota equations{
(D2

x −D2
t − 1)(f · g) = 0

(D2
x −D2

t )(f · f) = (D2
x −D2

t )(g · g)

yields solutions u = 4 arctan(g/f) of the sine-Gordon equation. Let θi = aix+ bit+ ci,
where ai, bi, ci are constants.

(a) Take
f = 1 , g = εeθ1

and work order by order in powers of ε to find the one-soliton solution of the sine-
Gordon equation.

(b) Taking eθi as in the solution of the previous part, repeat the exercise for

f = 1 + ε2f2 , g = ε(eθ1 + eθ2) ,

and check that the Hirota equations are satisfied to all orders in ε.



Solitons III 2023-24 Problems: page 14

45. Note: In this and subsequent exercises the Fourier transform will be denoted as F[f(x)] =

f̃(k), where F[f(x)] = f̃(k) =
∫∞
−∞ dx e

−ikxf(x) and f(x) = 1
2π

∫∞
−∞ dk e

ikxf̃(k) . You
can use results from the Fourier transform handout such as δ(y) = 1

2π

∫∞
−∞ dz e

iyz with-
out proof.
Some properties of Fourier transforms:

(a) The convolution of f and g is defined as

(f ∗ g)(x) =

∫ ∞
−∞

dz f(z) g(x− z) .

Prove that F[fg] = 1
2π
f̃(k) ∗ g̃(k) and F[f ∗ g] = f̃(k)g̃(k).

(b) The cross-correlation of f and g is defined as

(f ⊗ g)(x) =

∫ ∞
−∞

dz f ∗(z) g(x+ z) .

Prove the Weiner-Kinchin theorem, that F[f ⊗ g] = f̃ ∗(k)g̃(k).

(c) The auto-correlation of f(x) is defined as

a(x) = (f ⊗ f)(x).

Using the answer to part b, verify that F[a] = |f̃(k)|2. This is called the energy
spectrum of f .

(d) Prove the FT version of Parseval’s theorem, which you may have already seen for
Fourier series: ∫ ∞

−∞
dx |f(x)|2 =

∫ ∞
−∞

dk

2π
|f̃(k)|2 .

(Strictly speaking this is Plancherel’s theorem; Parseval allows for two different
functions f and g and turns into Plancherel when f = g.)

The locations of the factors of 2π in these formulae depend on the conventions used
for the Fourier transform and its inverse, so they might look a little different in some
textbooks.
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46. Examples of Fourier transforms:

(a) Show that e−x2/2 is (up to a factor of
√

2π) its own FT.

(b) Find the FT of

f(x) =

{
1/(2ε) |x| ≤ ε

0 |x| > ε

and discuss the ε→ 0 limit.

(c) Find the FT of

f(x) =

{
1− x2 |x| < 1

0 |x| > 1
.

47. Solving the heat equation using Fourier transforms:

(a) Find the general solution of the heat equation ut = uxx in the form

u(x, t) =

∫ +∞

−∞
dk ũ(k, 0)f(k, x, t) ,

where ũ(k, 0) is the Fourier transform of the initial condition u(x, 0) and f(k, x, t)
is a function of k, x and t that you should determine.

(b) Evaluate the previous integral over k in the case where the initial condition is
u(x, 0) = δ(x), to obtain the corresponding solution u(x, t) for t > 0 explicitly.
[Hint: look at the definite integrals on the useful integrals sheet and read the note
below.]

(c) Finally, derive the general solution as in equation (7.2) in the lecture notes.

48. Find the general solution of the linearised KdV equation ut + uxxx = 0. Your answer
should be in the form of an integral involving ũ(k, 0), the Fourier transform of the initial
condition u(x, 0).

49. Try to solve the full (non-linear) KdV equation using the same method, Fourier trans-
form. [Do not try too hard as it is impossible! Just convince yourself that it is impossible
and understand what goes wrong/why the Fourier transform doesn’t work in the non-
linear case.]

50. Show that if u(x, t) satisfies the KdV equation ut+6uux+uxxx = 0, and u = λ−v2−vx
where λ is a constant and v(x, t) some other function, then v satisfies(

2v +
∂

∂x

)(
vt + 6(λ− v2)vx + vxxx

)
= 0 .

(You might recognise this problem from last term!)

51. If λ is an eigenvalue of d2

dx2ψ(x)+u(x)ψ(x) = λψ(x), where we require that
∫∞
−∞ |ψ(x)|2dx <

∞, and u(x) is real, prove that λ must also be real. [Hint: start by multiplying by ψ(x)∗

and integrating.]
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52. The Wronskian W [f, g](x) of two differentiable functions f(x) and g(x) is defined as

W [f, g](x) = f ′(x)g(x)− f(x)g′(x) .

If the functions f and g are linearly dependent, then their Wronskian vanishes identi-
cally: W [f, g](x) = 0. (Equivalently, if W [f, g](x) 6= 0, the functions f and g are
linearly independent.) Conversely, if the Wronskian vanishes identically for two ana-
lytic functions f and g, then f and g are linearly dependent.

(a) Write down the WronskianW [ψ∗1, ψ2](x) of two eigenfunctions ψ1,2(x) of the time-
independent Schrödinger equation with the same potential V (x) and possibly dif-
ferent eigenvalues k2

i :

ψ′′i (x)− V (x)ψi(x) = −k2
iψi(x) (i = 1, 2) . (**)

(This is just preparation for what follows, no computation is needed.)

(b) Show that the Wronskian is constant if the two eigenfunctions correspond to the
same eigenvalue.

(c) Show that two eigenfunctions with different eigenvalues are orthogonal with re-
spect to the (hermitian) inner product

(ψ1, ψ2) :=

∫ +∞

−∞
dx ψ∗1(x)ψ2(x)

if at least one of the two eigenfunctions describes a bound state.

(d) Show that the Wronskian vanishes for two eigenfunctions with the same eigenvalue
in the discrete spectrum. (This implies the linear dependence of the two eigenfunc-
tions, provided that they are analytic.) [Hint: consider the limit x→ ±∞.]

(e) The x→ ±∞ asymptotics of a scattering solution ψ(x) with eigenvalue k2 > 0 is

ψ(x) ≈

{
eikx +R(k) e−ikx , x→ −∞
T (k) eikx , x→ +∞

By evaluating the Wronskian W [ψ∗, ψ] at x → ±∞, show that the reflection and
transmission coefficients R(k) and T (k) satisfy

|R(k)|2 + |T (k)|2 = 1 .
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53. Consider the time independent Schrödinger equation(
− d2

dx2
+ V (x)

)
ψ(x) = k2ψ(x)

with energy E = k2 for the square barrier/well potential

V (x) =


0 , x < 0

V0 , 0 < x < a

0 , x > a

where a > 0 and V0 are constants.

(a) Show that the matching conditions to be imposed at x = 0 and a, where the square
well potential is discontinuous (but finite), are that ψ(x) and ψ′(x) are continuous.

(b) Solve the Schrödinger equation for this potential in the three given regions and
impose the matching conditions to find the scattering solutions associated to energy
eigenvalues k2 > 0 in the continuous spectrum, and determine the reflection and
transmission coefficients R(k) and T (k) in terms of a and l =

√
k2 − V0.

(c) For which values of the wavenumber k is the square well potential transparent, that
is R(k) = 0?

(d) Write down the bound state solutions corresponding to the discrete spectrum k2 =
−µ2 < 0. Find the equations that determine implicitly the allowed values of µ in
terms of a and l (or V0).

(e) Do bound state solutions exist for V0 > 0? And for V0 < 0? In the latter case, use
a graphical argument to show that a new bound state solution appears every time
that
√
−V0 crosses a non-negative integer multiple of π/a.

(f) Show that in the limit a → 0, V0 → +∞ with b = aV0 fixed, the reflection and
transmission coefficients reduce to those of the delta-function potential V (x) =
bδ(x).
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54. Consider the time independent Schrödinger equation

−ψ′′(x) + V (x)ψ(x) = k2ψ(x) ,

where the potential V (x) is the sum of two delta functions:

V (x) = −aδ(x)− bδ(x− r) .

Taking r > 0, the solution ψ(x) can be split into three pieces, ψ1(x), ψ2(x) and ψ3(x),
defined on (−∞, 0), (0, r), and (r,+∞) respectively.

(a) Write down the four matching conditions relating ψ1, ψ2 and ψ3, and their deriva-
tives, at x = 0 and x = r.

(b) For a scattering solution describing waves incident from the left, ψ1 and ψ3 are
given by

ψ1(x) = eikx +R(k) e−ikx, ψ3(x) = T (k) eikx.

Write down the general form of ψ2, and then use the matching conditions found in
part 1 to eliminate the unknowns and determine R(k) and T (k).

(c) Show from the answer to part 2 that, for there to be a bound state pole at k = iµ, µ
must satisfy

e−2µr = (1− 2µ/a)(1− 2µ/b) . (***)

(d) The solutions to (***) can be analysed using a graphical method. Show that:

i. if both a and b are negative, then there are no bound states;
ii. if a and b have opposite signs, then there is at most one bound state, occurring

when a+ b > rab (note: since a and b have opposite signs, rab is negative);
iii. if a and b are positive, then the number of bound states is one if rab ≤ a + b,

and two otherwise.

Sketch on the ab-plane the regions which correspond to zero, one and two bound
states, and indicate the form of ψ(x) for each of the two bound states found when
ab/(a+ b) > r−1.
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55. The time independent Schrödinger equation

−ψ′′(x) + V (x)ψ(x) = k2ψ(x)

is conjectured to have solutions in the form

ψ(x) = eikx(2k + iw(x)) ,

where w(x) is real, non-singular for all x, independent of k, and has finite limits as
x→ ±∞. Substituting in, deduce the equation

w′(x) +
1

2
w2(x) = 2µ2 ,

where µ is an integration constant. [Hint: take real and imaginary parts of an intermedi-
ate equation.] Solve this via the substitution w(x) = 2f ′(x)/f(x), and deduce that V (x)
must have the form

V (x) = −2µ2 sech2(µ(x− x0)) .

Show also that u = −V is a solution of the KdV equation provided that x0 depends on t
in a certain way that you should determine.

56. Using the results of question 55, show that V (x) = −2µ2 sech2(µ(x−x0)) is an example
of a reflectionless potential, for which R(k) = 0. By adjusting the normalisation of the
wavefunction ψ(x) correctly, find out what the transmission coefficient T (k) is for this
potential. Verify that |T (k)|2 = 1, consistent with the idea that for such a potential an
incident particle must certainly be transmitted.

57. Show by induction or otherwise that the general solution to the differential equation

ψ′′n(x) = (−k2 − n(n+ 1) sech2 x)ψn(x) (n = 0, 1, 2, . . . )

is given by ψn(x) = OnOn−1 . . .O1ψ0(x), where

ψ0(x) = A(k)eikx +B(k)e−ikx ,

A(k) and B(k) are constants (with respect to x), and Ol is the differential operator

Ol =
d

dx
− l tanhx .

Find the asymptotic behaviour of this solution as x→ ±∞ and hence find the eigenval-
ues k2 for the bound states of the potential V (x) = −n(n+ 1) sech2 x.
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58. Let D = d/dx and let g(x) be a general function of x.

(a) Show that, as differential operators,

Dg = gx + gD , D2g = gxx + 2gxD + gD2 .

(b) Show more generally that

Dng =
n∑

m=0

(
n

m

)
dmg

dxm
Dn−m .

[Hint: to show that two differential operators are equal, you just have to show that they
have the same effect on any function f(x). For part (b), either try induction or think
about the formula for the differentiation of a product.]

59. Let D = ∂/∂x, and

L(u) = D2 + u(x, t) , M(u) = −(4D3 + 6uD + 3ux) .

Check that
L(u)t + [L(u),M(u)] = ut + 6uux + uxxx .

60. Let L(u) = D2 + u(x, t) and M(u) = αD for some constant α.

(a) Check that
L(u)t = [M(u), L(u)] ⇐⇒ ut = αux .

(b) Let ψ(x, 0) be an eigenfunction of L(u) at t = 0 with eigenvalue λ, so that

(D2 + u(x, 0))ψ(x, 0) = λψ(x, 0) .

If u(x, t) evolves according to the equation of part 1, find an eigenfunction ψ(x, t)
for each later time t, with the same eigenvalue λ, so that

(D2 + u(x, t))ψ(x, t) = λψ(x, t) .

Verify that ψ(x, t) can be arranged to satisfy ψt = M(u)ψ. (You can assume
that the eigenfunction is non-degenerate, namely that there is a single eigenfunc-
tion with that eigenvalue. This is the case both for bound state solutions and for
scattering solutions.)
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61. (a) Show that the differential operator D = ∂/∂x is anti-symmetric with respect to the
inner product

〈ψ1, ψ2〉 :=

∫ +∞

−∞
dx ψ1(x)∗ψ2(x)

on the space L2(R) of square integrable functions, that is 〈ψ1, Dψ2〉 = −〈Dψ1, ψ2〉
for all ψ1, ψ2 ∈ L2(R).

(b) Show that L(u) = D2 + u(x, t) is self-adjoint, given that u is real.

(c) Given a Lax pair L(u), M(u), show that the symmetric part of M(u) commutes
with L(u) and therefore drops out of the Lax equation L(u)t = [M(u), L(u)].

(d) Now assume that M(u) is anti-symmetric. Show that 〈ψ1, ψ2〉 is independent of
time t if ψi(x; t) evolves according to the equation (ψi)t = M(u)ψi.

62. (a) Show that the differential operator of order 2m− 1

M(u) =
m∑
j=1

(
βj(x)D2j−1 +D2j−1βj(x)

)
is anti-symmetric if the functions βj(x) are real.

(b) If L(u) = D2 + u(x, t), compute the leading term of [L(u),M(u)] in the form
γ(x)D2m. If [L(u),M(u)] is to be purely multiplicative (forcing γ(x) to be zero),
deduce that βm(x) must be a constant.

63. Consider them = 2 case of the equation from Ex 62 (a). Given the result of that question,
you can assume that β2 is a constant. Fix a normalization by imposing β2 = 1/2, and
find the most general form of β1 which allows [L(u),M(u)] to be multiplicative. Show
that the Lax equation L(u)t+[L(u),M(u)] = 0 is equivalent to the following alternative
version of the KdV equation

ut =
1

4
uxxx +

3

2
uux + 2kux , (*)

where k is an integration constant. Finally, check that the redefined field

ũ(x, t) = u(x+ 8kt,−4t)

solves the standard KdV equation ũt + 6ũũx + ũxxx = 0.

64. Consider the m = 3 case of the equation from problem 62 (a). Given the result of
that question, you can assume that L(u)t + [L(u),M(u)] = 0 forces β3 to be a con-
stant. Complete the calculation to find the most general form of β2 and β1 which allow
[L(u),M(u)] to be multiplicative. Deduce from a special case of your result that a func-
tion u(x, t) evolving according to the fifth-order KdV equation

ut + 30u2ux + 20uxuxx + 10uuxxx + uxxxxx = 0

leaves the eigenvalues of L(u) = D2 + u invariant.
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65. Let ψ(x, y) be a two-dimensional column vector of smooth functions of x and y, and

A =

(
f 0
−h −f

)
, B =

(
g h
0 −g

)
where f, g, h are smooth functions of x and y. Find the consistency conditions for the
pair of equations

∂ψ

∂x
+ Aψ = 0 ,

∂ψ

∂y
+Bψ = 0 .

Eliminate f and g from this consistency condition, to leave an equation for h only.

66. Two differential operators are given as

L = ∂y − ∂2
x − u

M = ∂t + 4∂3
x + 6u∂x + 3ux + w

where u = u(t, x, y) and w = w(t, x, y). Show that if [M,L]ψ = 0 for any smooth ψ,
then

wy = −ut − uxxx − 6uux

wx = 3uy .

Show that there exists a solution for u,w of the form

u =
A

cosh2(z)
, w =

B

cosh2(z)

where z = αt + βx + γy and α, β, γ, A,B are constants satisfying A = 2β2, B = 6βγ
and αβ + 4β4 + 3γ2 = 0.

67. The Lax Pair L,M is defined by the expressions

L = (1− c) ∂x + au+ bv

M = ∂2
x +

1

2
(u2 + v2)− avx + bux

where where u, v are real valued functions and a, b, c are constant unit quaternions, that
you may take to be defined by their (non-commutative) multiplication rules:

a2 = b2 = c2 = −1 , ab = c , bc = a , ca = b .

Note that a, b, c do not commute (e.g. ab 6= ba). Find the differential equations sat-
isfied by u and v which are a sufficient condition for the eigenvalue of L to be time-
independent.

[Hint: Equations involving quaternions are a generalization of complex equations in the
sense that one can equate coefficients of 1, a, b, c.]
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68. The functional derivative δF/δu of F [u] is defined by the equation

F [u+ δu] = F [u] +

∫ +∞

−∞
dx

δF [u]

δu(x)
δu(x) +O((δu)2) ,

where the infinitesimal variation δu(x) is small everywhere and goes to zero at the
boundaries of the integration range (the same applies to its derivatives δux, δuxx, . . . ).
If

F [u] =

∫ +∞

−∞
dx f(u, ux, uxx, uxxx, . . . ) ,

show that
δF [u]

δu
=
∂f

∂u
− ∂

∂x

∂f

∂ux
+

∂2

∂x2

∂f

∂uxx
− ∂3

∂x3

∂f

∂uxxx
+ . . .

69. (a) Find a function f(u, ux, uxx) and a functional

F [u] =

∫ +∞

−∞
dx f(u, ux, uxx)

such that the equation

ut =
∂

∂x

δF

δu

is the same as the fifth-order KdV equation from question 64.

(b) Show that your F [u] is a conserved quantity if u evolves according to the standard
third order KdV equation.

(c) Show that
∫ +∞
−∞ dx u is a conserved quantity if u evolves according to the fifth-order

KdV equation.
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70. Consider the scattering data

S = {R(k), {µn, cn}Nn=1 }

for the potential V (x) = aδ(x) derived in the lectures. For each sign of a:

(a) Calculate

F (ξ) =

∫ ∞
−∞

dk

2π
R(k) e−ikξ +

N∑
n=1

c2
n e

µnξ .

[Hint: close the integration contour of the k integral by adding an infinite arc in the
upper or lower half of the complex plane for k, and use Cauchy’s residue theorem.]

(b) Solve the Marchenko equation

K(x, z) + F (x+z) +

∫ x

−∞
dy K(x, y)F (y+z) = 0

to determine the unknown function K(x, z) for all z ≤ x (and set K(x, z) = 0 for
x < z).

(c) Show that

V (x) = 2
d

dx
lim
z→x−

K(x, z) .

71. Consider the scattering data

S = {R(k), {µn, cn}Nn=1 }

for the square barrier/well potential studied in problem 53. For each sign of V0:

(a) Calculate

F (ξ) =

∫ ∞
−∞

dk

2π
R(k) e−ikξ +

N∑
n=1

c2
n e

µnξ .

(b) Solve the Marchenko equation

K(x, z) + F (x+z) +

∫ x

−∞
dy K(x, y)F (y+z) = 0

to determine the unknown function K(x, z) for all z ≤ x (and set K(x, z) = 0 for
x < z).

(c) Show that

V (x) = 2
d

dx
lim
z→x−

K(x, z) .



Solitons III 2023-24 Problems: page 25

72. Show that the Poisson bracket {, } has the following properties for any three smooth
functions f , g and h on phase space:
• antisymmetry:

{f, g} = −{g, f}

• bilinearity:

{af + bg, h} = a{f, h}+ b{g, h} , {f, ag + bh} = a{f, g}+ b{f, h} , a, b ∈ R

• Leibniz’s rule:
{fg, h} = {f, h}g + f{g, h}

• The Jacobi identity:

{f, {g, h}}+ {g, {h, f}}+ {h, {f, g}} = 0

73. Let Q1(p, q) and Q2(p, q) be two smooth functions on phase space in involution, that is
{Q1, Q2} = 0. Q1 and Q2 generate the evolution of the Hamiltonian system under two
different ‘time’ coordinates t1 and t2 respectively, according to the equations

∂pi
∂ta

= −∂Qa

∂qi
∂qi
∂ta

= +
∂Qa

∂pi

where a = 1, 2.

(a) Show that the evolution of a smooth function X(p, q) by an infinitesimal time dta
generated by Qa is given by

X 7→ X + {Qa, X}dta +
1

2
{Qa, {Qa, X}}dt2a +O(dt3a) ,

to second order in the infinitesimal time increment dta.

(b) Evolve X first by an infinitesimal time dt1 using Q1, and then by an infinitesimal
time dt2 using Q2, working to second order in dt1 and dt2.
[Note: you’ll need to keep terms proportional to dt21, to dt22 and to dt1dt2.]

(c) Repeat the time evolutions in the opposite order: first by dt2 using Q2, and then by
dt1 using Q1.

(d) Show that the results of parts (b) and (c) coincide.
[Hint: use the Jacobi identity for the Poisson bracket.]
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74. If

L(t) =

(
x(t) y(t)
y(t) −x(t)

)
,

find an antisymmetric matrix M(t) such that the Lax equation L̇+ [L,M ] = 0 is equiv-
alent to the system of ODE’s {

ẋ = gy

ẏ = −gx

where g(x, y, t) is some function of x, y and t, and dots denote time derivatives. Using
only the symmetry properties of L, together with the Lax equation, show that the eigen-
values of L do not depend on t. Deduce the (otherwise fairly obvious) fact that if x(t)
and y(t) evolve according to the above system of ODE, then the value of x(t)2 + y(t)2

remains constant.

75. Consider a classical Hamiltonian system with n = 3 coordinates qi and momenta pi. A
Lax pair of matrices L and M is given by

L =

 p1 b1 b3

b1 p2 b2

b3 b2 p3

 , M =

 0 b1 −b3

−b1 0 b2

b3 −b2 0

 ,

where pi = q̇i and bi = exp[c(qi − qi+1)] for some constant c (with qi+3 = qi and
pi+3 = pi). Use the Lax equation L̇ + [L,M ] = 0 to find the constant c and to obtain
equations of motion in the form q̈i = fi(q), for some functions fi(q) that you should
determine.
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A Useful integrals
You can freely quote the following formulae, although deriving them may be instructive:

• Indefinite integrals: [Note: the integration constant is in principle complex]∫
dx

x
√

1− x
= −2arcsech(

√
x) (1)∫

dx

x
√

1− x2
= −arcsech(x) (2)∫

dx

x
√

1 + x2
= −arccosech(x) (3)∫

dx

sin(x/2)
= 2 log tan(x/4) (4)∫

dx

cosh(x)
= 2 arctan(ex) (5)∫

dx

1− x2
= arctanh(x) (6)∫

dx
√

1− x2 =
1

2

[
x
√

1− x2 + arcsin(x)
]

(7)∫
dx

cos2(x)
= tan(x) (8)∫

dx

cosh2(x)
= tanh(x) (9)

• Definite integrals: ∫ +∞

−∞
dx e−Ax

2

=

√
π

A
(A > 0) (10)∫ +∞

−∞
dx sech2n(x) =

22n−1((n− 1)!)2

(2n− 1)!
(11)

Note: the result of the Gaussian integral (10) does not change if the integration vari-
able x is shifted by a finite imaginary amount c, namely if you replace x→ x+ ic.


