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1. Numerical results seen in the lectures suggest that the KdV equation

ut + 6uux + uxxx = 0

has an exact solution of the form

u(x, t) =
2

cosh2(x− vt)

for some constant velocity v. Verify this by direct substitution into the KdV equation
and determine the value of v.

Solution Direct substitution should confirm that the KdV equation is solved by the
function given in the question if (and only if) v = 4.

2. (a) Show that if u(x, t) = v(x, t) solves the KdV equation then so does Av(Bx,Ct),
provided that the constants B and C are related to A in a specific way (which you
should determine).

(b) Apply this transformation to the basic KdV solution found in problem 1 to construct
a one-parameter family of one-soliton solutions of the KdV equation.

(c) Find a formula relating the velocities to the heights for solitons in this one-parameter
family. How does the width of a soliton in this family change if its velocity is
rescaled by a factor of 4?

Solution

(a) Let u(x, t) = Av(X,T ), where X = Bx and T = Ct. By the chain rule

ut(x, t) = ACvT (X,T ) , ux(x, t) = ABvX(X,T ) , uxxx(x, t) = AB3vXXX(X,T ) ,

so the left-hand side of the KdV equation for u(x, t) = Av(Bx,Ct) becomes

ut + 6uux + uxxx = ACvT (X,T ) + 6A2Bv(X,T )vX(X,T ) + AB3vXXX(X,T )

= AC

[
vT (X,T ) +

AB

C
· 6v(X,T )vX(X,T ) +

B3

C
· vXXX(X,T )

]
.

If AB/C = B3/C = 1, this becomes

= AC [vT (X,T ) + 6v(X,T )vX(X,T ) + vXXX(X,T )] ,

which vanishes because v(X,T ) solves the KdV equation vT + 6vvX + vXXX = 0
in its variables X and T by assumption. The two algebraic equations among the
parameters are solved by A = B2 and C = B3. So

u(x, t) = v(x, t) solves KdV =⇒ u(x, t) = B2v(Bx,B3t) solves KdV ∀B ∈ R .

(b) Here our initial solution is v(x, t) = 2 sech2(x− 4t). By the above logic,

u(x, t) = 2B2 · sech2
(
B(x− 4B2t)

)
is a family of solutions of the KdV equation labelled by a single real parameter B,
which we can take to be positive wlog since sech2 is an even function.
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(c) The height is the maximum of u, and the velocity v is read off from the dependence
on x, t through the single linear combination x − vt. We find that height = 2B2

and velocity = 4B2, so velocity = 2× height.
The width is a measure of how much the lump is concentrated in space. Since
the dependence on the spatial coordinate x is only through Bx, we deduce that
width ∼ 1/B.1 The precise proportionality factor depends on the precise definition
of width that you might choose, but regardless of that choice

velocity 7→ 4×velocity ≡ B2×velocity =⇒ width 7→ 1

B
×width =

1

2
×width .

3. Show that if u(x, t) solves the KdV equation and ε is a constant, then v(x, t) := 1
ε
u(x, t)

solves the rescaled KdV equation

vt + 6εvvx + vxxx = 0 ,

while w(x, t) := εu(x, εt) solves the differently-rescaled KdV equation

wt + 6wwx + εwxxx = 0 .

Solution This works much as the last question. Note that taking the limits ε→ 0 in the
two equations shows that the dispersive and dispersionless KdV equations discussed in
the first lecture are somehow ‘hidden’ inside the usual KdV equation. However (espe-
cially in the second case) the limit is quite subtle. . .

4. Consider a pair of solitons with velocities m and n in the ball and box model, with
m > n and the faster soliton to the left of the slower one, with separation l ≥ n (i.e.
there are l ≥ n empty boxes between the two solitons). Evolve various such initial
conditions forward in time using the ball and box rule, for different values of m, n and
l. start the solitons at least m boxes apart, so that interactions don’t start until after the
first time-step. Prove that the system always evolves into an oppositely-ordered pair of
the same two solitons, and find a general formula for the phase shifts2 of the solitons in
terms of m and n.
[Optional:] What can go wrong if l < n? [Hint: Evolve the system backwards. . . ]

Solution Rather than discussing examples, I will give a proof and calculate the phase
shifts in full generality, but you will get credit for providing examples as long as they are
correct.
The velocity m soliton has length m and (by definition) moves by m boxes in one unit
of time when it is far away from other solitons. Likewise, the length n soliton moves by
n boxes in one unit of time when it is far away from other solitons. Therefore, when the
faster length m soliton is far enough behind the slower length n soliton, the separation

1If you thought that width ∼ B rather than 1/B, pick your favourite localised function f(x), plot f(x) and
f(2x) and compare: is the width of f(2x) double or half the width of f(x)?

2The phase shift of a soliton is defined to be the shift of its position, at a time in the far future, relative to
the position it would have had at the same time if the other soliton hadn’t been there.
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decreases as follows in one unit of time (the subscript denotes the value of the discrete
time coordinate):

lt = l 7→ lt+1 = l −m+ n .

We can iterate this process until the separation l reaches the range

n ≤ l < m ,

at a time that I will label as t = 0 in the following (this can be achieved by a shift of
the time coordinate). Let’s now evolve the system forward from t = 0, using the above
inequality and taking into account that boxes which are full at time t are empty at time
t+ 1:

At t = 2 the slower length n soliton is more than n boxes behind the faster length m
soliton, so the collision is over and we don’t need to evolve the system any further to
calculate the phase shifts. At t = 2 the faster length m soliton has moved by m+ l+n+
(m+ n− l) = 2(m+ n) boxes compared to where it was at t = 0. In the absence of the
slower soliton, it would have moved by 2m boxes. The slower length n soliton has not
moved at t = 2 compared to where it was at t = 0. In the absence of the faster soliton,
it would have moved by 2n boxes. The differences between the positions of the solitons
after the collision and the positions the solitons would have had before the collision are
the phase shifts

(phase shift)faster = 2(m+ n)− 2m = 2n ,

(phase shift)slower = 0− 2n = −2n .

5. In the two-colour (blue and red) ball and box model, we’ll call a row of n consecutive
balls a soliton if it keeps its form over time, so that after each time-step its only change
is a possible (fixed) translation. There’s no need for both colours to be represented, so a
row of n blue balls, or a row of n red balls, is also a potential soliton. How many solitons
of length n are there? What are their speeds?

Solution A first thing to notice is that a sequence of any number a ≥ 0 of blue balls,
followed by any number b ≥ 0 red balls, will be a soliton: the blue balls move first,
taking up positions to the right of the red ones, and then the red balls move and reproduce
the same pattern as before, a + b places to the right. If the length, a + b, is n, this gives
n + 1 possibilities (since a can be equal to 0, 1, . . .n, with b then equal to n − a). All
of these move with speed n. If n is even then there is one further possibility: consider
a configuration where the first n/2 balls are red, followed by n/2 blue balls. In one
time-step, first the blue balls all move n/2 places to the right, leaving a gap of length
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n/2 into which the red balls move. This soliton has speed n/2. This suggests that the
full answer is that the number of solitons is equal to n+ 1 when n is odd (all with speed
n), and n+ 2 when n is even (n+ 1 of them with speed n, and 1 with speed n/2).

This turns out to be correct, though to prove it needs a little thought. Consider first a
possible soliton that starts with a > 0 blue balls on the far left. To be something new it
must continue with some number b > 0 of red balls, and then c > 0 blue ones. After
one time step, the blue balls will have moved away to the right, and a red ball will have
moved into the space previously occupied by the leftmost of the block of c blue balls.
This is now the leftmost ball; so after one time step the leftmost ball has changed from
blue to red, and so this is not a soliton. Next, suppose we start with a > 0 red balls and
then b > 0 blue balls. If b > a then after the blue balls have moved there will not be
enough red balls to fill the space created and so the configuration after one time-step will
have a gap; similarly there will be a gap after one time-step if b < a. Hence b = a and
again considering that no gaps can form after one time-step, there can be no further red
balls after these two blocks. This suffices to show that there are no solitons beyond those
already listed in the previous paragraph.

6. The ball and box model can be further generalised to the M -colour ball and box model.
The balls now come inM colours, 1, 2, . . . ,M , and the time-evolution rule is generalised
to say that first all balls of colour 1 are moved, then all of colour 2, and so on, with a
single time-step being completed once all balls of all colours have been moved. How
many solitons of length n are there in this model? Again, there is no need for every
colour to be present in a given soliton. You might start by classifying the ‘top-speed’
solitons of length n, that is, those that move at speed n.

Solution This is harder! We can discuss it further informally, but the answer for speed
n at least is relatively simple - a soliton must start with some (possibly-zero) number
n1 ≥ 0 of balls of colour 1, then n2 ≥ 0 of colour 2, up to nn ≥ 0 of colour M , with
n1 + n2 + . . . nn = n. It’s easy to see that this is a soliton, and a little harder to see that
all speed-n solitons have this form. After that it is a problem in combinatorics to count
the number of such solitons; the answer you should find is

(
n+M−1
M−1

)
.

7. Investigate the scattering of solitons in the two-colour ball and box model. You should
find that the lengths of top-speed solitons are preserved under collisions, but their forms
can change. Try to formulate a general rule for this behaviour. Can you generalise it to
the M -colour model?

Solution Left for the enthusiastic student!

8. (a) Express d’Alembert’s general solution of the wave equation utt−uxx = 0 in terms
of the initial conditions u(x, 0) = p(x) and ut(x, 0) = q(x).

(b) Find a relation between p(x) and q(x) which produces a single wave travelling to
the right.
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Solution

(a) D’Alembert’s general solution is

u(x, t) = f(x− t) + g(x+ t)

for arbitrary functions f and g. To match the initial conditions we need

(A) u(x, 0) = f(x) + g(x) = p(x) , (B) ut(x, 0) = −f ′(x) + g′(x) = q(x) .

Equation (B) implies

−f(x) + g(x) =

∫ x

x0

q(s) ds

for some constant x0. Hence g(x) = f(x) +
∫ x
x0
q(s) ds and substituting into (A),

2f(x) +

∫ x

x0

q(s) ds = p(x) ⇒ f(x) = 1
2
p(x)− 1

2

∫ x

x0

q(s) ds

and likewise g(x) = 1
2
p(x) + 1

2

∫ x
x0
q(s) ds. Adding up,

u(x, t) = f(x− t) + g(x+ t)

= 1
2
(p(x− t) + p(x+ t))− 1

2

∫ x−t

x0

q(s) ds+ 1
2

∫ x+t

x0

q(s) ds

= 1
2
(p(x− t) + p(x+ t)) + 1

2

∫ x+t

x−t
q(s) ds .

Note that u(x, t) only depends on the initial data via p(x − t), p(x + t), and the
values of q(s) for x− t ≤ s ≤ x+ t. The interval [x− t, x+ t] is sometimes called
the domain of dependence of u at (x, t).

(b) For there to be a single wave travelling to the right, we need g to be a constant.
Differentiating the formula found above for g, this requires p′+ q = 0. (As a check
on this formula, it is easy to see it holds at t = 0 for u(x, t) = f(x− t).)

9. The wave profile

φ(x, t) = cos(k1x− ω(k1)t) + cos(k2x− ω(k2)t)

is a superposition of two plane waves. Rewrite φ as a product of cosines, and use this to
sketch the wave profile when |k1 − k2| � |k1|. Find the velocity at which the envelope
of the wave profile moves (the group velocity), again for k1 ≈ k2; in the limit k1 → k2

verify that this reduces to dω/dk, consistent with the general result obtained in lectures.

Solution This question gives an alternative insight into the formula for group velocity.
Taking things bit-by-bit, Using cos a+cos b = 2 cos 1

2
(a+b) cos 1

2
(a−b), the expression

for φ(x, t) can be rewritten as

φ(x, t) = 2 cos
(
k1+k2

2
x− ω1(k1)+ω2(k2)

2
t
)

cos
(
k1−k2

2
x− ω1(k1)−ω2(k2)

2
t
)

For k1 ≈ k2, the factor involving k1+k2

2
has a much higher wavenumber, and hence

shorter wavelength, than the one involving k1−k2

2
. The first one corresponds to the carrier

wave, and the second to the envelope. Taken separately, say at t = 0, they look like



Solitons III 2023-24 Solutions: page 6

Short wavelength carrier wave
at t=0, cos

(
k1+k2

2 x
) Long wavelength envelope at

t=0, 2 cos
(
k1−k2

2 x
)

and their product is

The full wave

The envelope function at time t is 2 cos(kenvelopex− ωenvelopet) where kenvelope = k1−k2

2

and ωenvelope = ω(k1)−ω(k2)
2

. Its velocity is venvelope =
ωenvelope

kenvelope
= ω(k1)−ω(k2)

k1−k2
. For k1 →

k2 , venvelope → limk1→k2

(
ωenvelope

kenvelope

)
= ω′(k1) = ω′(k2), which, as expected, is equal to

the group velocity.

10. (a) Completing the square, derive the formula∫ +∞

−∞
dk e−A(k−k̄)2

eikB =

√
π

A
eik̄Be−B

2/(4A) .

(You can quote the result
∫ +∞
−∞dk e

−Ak2
=
√
π/A for A > 0.)

(b) For the Gaussian wavepacket (where Re denotes the real part)

u(x, t) = Re

∫ +∞

−∞
dk e−a

2(k−k̄)2

ei(kx−ω(k)t) ,

expand ω(k) to second order in k − k̄, and then use the result of part (a) to derive
a better approximation for u(x, t) than that obtained in lectures.



Solitons III 2023-24 Solutions: page 7

(c) Given that a function of the form e−(x−x0)2/C describes a profile centred at x0

with width−2 equal to the real part of C−1, show that the result of part (b) is a
wave profile moving at velocity ω′(k̄), with width2 increasing with time as 4a2 +
ω′′(k̄)2t2/a2. (Hence, for ω′′ 6= 0, the wave disperses.)

Solution Here we will approximate the time-dependence of the Gaussian wavepacket
to one higher order than was done in lectures, to show that, so long as the dispersion
relation is nontrivial, the wavepacket does disperse, or spread out, as time goes by. This
means that it can’t be a soliton – it fails property (2) from section 1.1!

(a) ∫ +∞

−∞
e−A

2(k−k̄)2

eikBdk = eik̄B
∫ +∞

−∞
e−A

2(k−k̄)2

eiB(k−k̄)dk

= eik̄B
∫ +∞

−∞
e−A

2k2

eiBkdk

= eik̄B
∫ +∞

−∞
e−A

2(k− iB
2A2 )2− B2

4A2 dk

=

√
π

A
eik̄Be−

B2

4A2

(b)

u(x, t) =

∫ +∞

−∞
e−a

2(k−k̄)2

ei(kx−ω(k)t)dk

For k ≈ k̄,

ω(k) = ω(k̄) + (k − k̄)ω′(k̄) +
(k − k̄)2

2
ω′′(k̄) + . . .

We’ll only keep these terms – given the damped nature of e−a2(k−k̄)2 away from
k = k̄, this will be a reasonable approximation. Thus the improved approximation
is

u(x, t) ≈
∫ +∞

−∞
e−a

2(k−k̄)2

ei(kx−ω(k̄)t−(k−k̄)ω′(k̄)t+
(k−k̄)2

2
ω′′(k̄))tdk

= eiω(k̄)t+ik̄ω′(k̄)t

∫ ∞
−∞

e−(a2+
iω′′(k̄)t

2
)(k−k̄)2

eik(x−ω′(k̄)t)dk

= eiω(k̄)t+ik̄ω′(k̄)t eik̄(x−ω′(k̄)t)

√
π√

(a2 + iω′(k̄)t
2

)
e
− (x−ω′(k̄)t)2

4(a2+
iω′′(k̄)t

2 )

=

√
2π

2a2 + iω′′(k̄)t
ei(k̄x−ω(k̄)t) e

− (x−ω′(k̄)t)2

4(a2+
iω′′(k̄)t

2 ) .

(c) The wave envelope found in (b) is of the form e−(x−x0)2/C with
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i. x0 = ω′(k̄)t and

ii. C−1 = 4−1(a2 + iω′′(k̄)t
2

)−1 =
4−1(a2− iω

′′t
2

)

a4+(ω
′′t
2

)2

Hence the velocity of the envelope is dx0(t)
dt

= ω′(k̄) and the width squared is
1

Re(C−1)
= 4a2 + ω′′(k̄)2t2

a2 . So for large t the width grows at a rate which is propor-
tional to |d2ω(k̄)/dk2|.

11. Find the dispersion relation and the phase and group velocities for:

(a) ut + ux + αuxxx = 0 ;

(b) utt − α2uxx = β2uttxx .

Solution

(a) Substitute in a plane wave u(x, t) = ei(kx−ωt) to get the algebraic equation −iω +
ik − iαk3 = 0. So the dispersion relation is

ω = ω(k) = k − αk3 = k(1− αk2) ,

and the phase and group velocities are

Phase velocity : c(k) =
ω(k)

k
= 1− αk2

Group velocity : cg(k) = ω′(k) = 1− 3αk2 .

(b) Substitute in a plane wave u(x, t) = ei(kx−ωt) to get the algebraic equation −ω2 +
α2k2 = β2k2ω2. So the dispersion relation is3

ω = ω(k) = ± αk

(1 + β2k2)1/2
,

and the phase and group velocities are

Phase velocity : c(k) =
ω(k)

k
= ± α

(1 + β2k2)1/2

Group velocity : cg(k) = ω′(k) = ±α
[

1

(1 + β2k2)1/2
− k

2

2β2k

(1 + β2k2)3/2

]
= ± α

(1 + β2k2)3/2
.

3We might restrict to the positive solution for the dispersion relation as in the lecture notes, since the
negative solution is obtained by taking the complex conjugate of the plane wave and reversing the sign of k. I
won’t do it in this solution, but your marks will not be affected by the sign you picked whether you wrote +
or ±.
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12. For which values of n does the equation

ut + ux + uxxx +
∂nu

∂xn
= 0

admit “physical” dissipation? (A wave is said to have physical dissipation if the ampli-
tude of plane waves decreases with time.)

Solution Substituting in, ω(k) must satisfy

−iω + ik + (ik)3 + (ik)n = 0

⇒ ω = k − k3 + in−1kn

So the solution is u = ei(kx−(k−k3)t)e−i
nknt. There are dissipative solutions if and only if

in is real, that is if and only if n is even. These have physical dissipation if and only if
in = 1, so the condition is n = 0 modulo 4.

13. Find (if possible) real non-singular travelling wave solutions of the following equations,
satisfying the given boundary conditions:

(a) Modified KdV (mKdV) equation:

ut + 6u2ux + uxxx = 0

u→ 0, ux → 0, uxx → 0 as x→ ±∞ .

(b) ‘Wrong sign’ mKdV equation:

ut − 6u2ux + uxxx = 0

u→ 0, ux → 0, uxx → 0 as x→ ±∞ .

(c) φ4 theory:

utt − uxx + 2u(u2 − 1) = 0

ut → 0, ux → 0, u→ −1 as x→ −∞
ut → 0, ux → 0, u→ +1 as x→ +∞ .

(d) φ6 theory:

utt − uxx + u(u2 − 1)(3u2 − 1) = 0

ut → 0, ux → 0, u→ 0 as x→ −∞
ut → 0, ux → 0, u→ 1 as x→ +∞ .

(e) Burgers equation:

ut + uux − uxx = 0

u→ u0, ux → 0 as x→ −∞
u→ u1, ux → 0 as x→ +∞ ,

where u0 and u1 are real constants with u0 > u1 > 0.
[Hint: Start by showing that the boundary conditions relate the velocity v of the
travelling wave to the sum of the constants u0 and u1.]
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Solution

(a) The equation is:
ut + 6u2ux + uxxx = 0

We look for u(x, t) = f(x− vt). Integrating once,

−vf + 2f 3 + f ′′ = A ;

using the given boundary conditions, A = 0.
Multiply by f ′ and integrate again:

−vf
2

2
+
f 4

2
+

1

2
f ′2 = B .

Using boundary conditions again, B = 0. Hence

f ′ = ±
√
vf 2 − f 4

⇒ x− vt = ±
∫

df

f
√
v − f 2

= ± 1√
v

sech−1 f√
v

+ x0

⇒ u(x, t) = ±
√
v sech(

√
v(x− x0 − vt))

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

-20 -15 -10 -5  0  5  10  15  20

f(x)

A travelling wave for the mKdV equation

(b) If the sign in the non-linear term is changed, the equation turns into the ‘alternative’
mKdV equation

ut − 6u2ux + uxxx = 0

and so

x− vt = ±
∫

df

f
√
v + f 2

⇒ u(x, t) = ±
√
v csch(

√
v(x− x0 − vt))

The solution is singular at x = x0 + vt, and so the alternative mKdV equation has
no nonsingular solitary wave solutions of this type (that is, with u(±∞) = 0).
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(c) As before, we assume that the solution is of the form

u(x, t) = f(x− vt)

for some real v. The equation of motion becomes

2f(f 2 − 1)− (1− v2)f
′′

= 0 .

Multiplying by f ′ and integrating yields

1

2
(1−v2)(f ′)2 =

1

2
f 4 − f 2 + A

where A is a constant. Taking the boundary conditions into account, remembering
that the limiting value of f at±∞ is±1, we have A = 1

2
and so the right-hand side

is equal to 1
2
(f 2 − 1)2. Hence, with γ = 1√

1−v2 ,

f ′ = ±γ(f 2 − 1)

Integrating this equation,

arctanh(f) = ±γ(x− x0 − vt)

where x0 is the constant of integration. So travelling wave is

u(x, t) = ± tanh(γ(x− x0 − vt)) .

If the sign is positive, we have a kink; if negative, an anti-kink. To match with the
boundary conditions given in the question, the positive sign should be chosen.

A φ4 kink at t = 0, with v = 0.25 and x0 = 1

(d) The φ6 theory: this is left as an exercise for the keen student! (It’s good practice.)

(e) Burger’s equation is ut + uux − uxx = 0, so

u(x, t) = f(x− vt) ⇒ −vf ′ + ff ′ − f ′′ = 0

⇒ −vf + 1
2
f 2 − f ′ = A

for some constantA. The boundary conditions at x = −∞ implyA = −vu0+ 1
2
u2

0 ,
while at x = +∞ they imply −vu1 + 1

2
u2

1 = A. Equating the two expressions for
A,

−vu0 + 1
2
u2

0 = −vu1 + 1
2
u2

1 .



Solitons III 2023-24 Solutions: page 12

Solving for v,
v = 1

2
(u0 + u1)

as suggested by the hint in the question.
The ODE to be solved is therefore

f ′ = 1
2

(
f 2 − (u0 + u1)f + u0u1

)
= 1

2
(f − u0)(f − u1)

This is separable, and so (with x0 the constant of integration)

1
2
(x− x0 − vt) =

∫
df

(f − u0)(f − u1)

Next use partial fractions, taking care that we expect the nonsingular solution to
interpolate continuously between f = u0 and f = u1:∫

df

(f − u0)(f − u1)
=

∫
df

(u0 − u1)

(
−1

(u0 − f)
− 1

(f − u1)

)
=

1

(u0 − u1)
(log(u0 − f)− log(f − u1)) .

Hence

1
2
(u0 − u1)(x− x0 − vt) = log

(
u0 − f
f − u1

)
⇒ u0 − f

f − u1

= e
1
2

(u0−u1)(x−x0−vt)

There’s a tricky point here: it’s important to choose the right branches of the logs,
so that for the range of f of interest we are always taking logs of positive numbers.
Solving for f and using u(x, t) = f(x− vt) we finally get to

u(x, t) = f(x− vt) =
u0 + u1e

1
2

(u0−u1)(x−x0−vt)

1 + e
1
2

(u0−u1)(x−x0−vt)

with v = 1
2
(u0 + u1). An example solution for u1 = 0 is plotted below. A ‘wrong’

choice for the branches of the log would have given 1 − e 1
2

(u0−u1)(x−x0−vt) in the
denominator, and the solution would have been singular at the point x = x0 + vt.
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A travelling wave for Burger’s equation
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14. Using the analogy with the classical mechanics of a point particle moving in one spatial
dimension, determine the qualitative behaviour of travelling wave solutions of the KdV
equation on a circle, for which the integration constants A and B are non-zero.

Solution This is left for you to think about, but as a start, you might consider the two
possible ways a ball rolling in a corrigated landscape can behave, depending on whether
it has enough energy to get over the ridges or not.

15. This exercise involves the infinite chain of identical coupled pendulums of section 3.3,
whose equations of motion reduce to the sine-Gordon equation in the continuum limit
a → 0. We will simplify expression by setting g = L = M

a
= 1. Let θn(t) be the angle

to the vertical of the n-th pendulum (n ∈ Z), which is hung at the position x = na along
the chain, at time t. The configuration of the system at time t is then specified by the
collection of angles {θn(t)}n∈Z.

(a) Starting from the force (note: m is a dummy variable)

Fn({θm}) = −a sin θn +
1

a
(θn+1 − θn) +

1

a
(θn−1 − θn)

acting on the n-th pendulum, deduce the potential energy

V ({θm}) =
+∞∑

n=−∞

(· · · )

such that Fn = − ∂V
∂θn

for all n ∈ Z, and fix the integration constant by requiring
that the potential energy be zero when all pendulums point down: V ({0}) = 0.

(b) Show that in the continuum limit a → 0, the potential energy computed above
becomes

V =

∫ +∞

−∞
dx

[
(1− cos θ) +

1

2
θ2
x

]
,

and the kinetic energy

T ({θm}) =
a

2

+∞∑
n=−∞

θ̇2
n

becomes

T =

∫ +∞

−∞
dx

1

2
θ2
t ,

where the function θ(x, t) is the continuum limit of {θn(t)}n∈Z.

[Hint: in the continuum limit, a
+∞∑

n=−∞
→
∫ +∞
−∞ dx.]
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Solution

(a) We can write Fn({θm}) = F grav
n + F twist

n , where F grav
n = −a sin θn and F twist

n =
1
a
(θn+1 − θn) + 1

a
(θn−1 − θn). Imposing the relations

F grav
n = − ∂

∂θn
V grav , F twist

n = − ∂

∂θn
V twist

and integrating gives us

V grav({θm}) = a
+∞∑

m=−∞

(1− cos θm) , V twist({θm}) =
1

2a

+∞∑
m=−∞

(θm+1 − θm)2 ,

where the constants of integration were chosen so that V grav = 0 when all the
pendulums are pointing down. (You should check that this works!) Hence

V ({θm}) = a
+∞∑

m=−∞

(1− cos θm) +
1

2a

+∞∑
m=−∞

(θm+1 − θm)2 .

(b) In the continuum limit the set of functions {θn(t)} approximates a continuous func-
tion θ(x, t) such that

θn(t) = θ(x=na, t) .

By the definition of the derivative as a limit we have

lim
a→0

(
θn+1(t)− θn(t)

a

)
= θx(x=na, t) ,

and by the definition of the integral as the limit of a sum,

lim
a→0

∞∑
n=−∞

af(θn(t)) =

∫ ∞
−∞

f(θ(x, t)) dx .

In this case

V =
+∞∑

m=−∞

a

[
(1− cos θm) +

1

2

(
θm+1 − θm

a

)2
]

→
∫ ∞
−∞

[
(1− cos θ(x, t)) + 1

2
θx(x, t)

2
]
dx

Likewise

T =
+∞∑

m=−∞

a
1

2
θ̇2
m

→
∫ ∞
−∞

1
2
θt(x, t)

2dx

as required.
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16. A field u(x, t) has kinetic energy T and potential energy V , where

T =

∫ +∞

−∞
dx

1

2
u2
t ,

V =

∫ +∞

−∞
dx

[
1

2
u2
x +

λ

2
(u2 − a2)2

]
,

and a and λ > 0 are (real) constants. (This is a version of the ‘φ4’ theory, so named
because the scalar potential is quartic, and the field u is usually called φ.) The equation
of motion for u is

utt − uxx + 2λu(u2 − a2) = 0 .

(a) If u is to have finite energy, what boundary conditions must be imposed on u, ux
and ut at x = ±∞?

(b) Find the general travelling-wave solutions to the equation of motion, consistent
with the boundary conditions found in part (a). Compute the total energy E =
T + V for these solutions. For which velocity do the solutions have the lowest
energy?

(c) One of the possible boundary conditions for part (a) implies that u is a kink, with
[u(x)]x=+∞

x=−∞ = 2a. Use the Bogomol’nyi argument to show that the total energy
E = T+V of that configuration is bounded from below by C

√
λa3, where C is

a constant that you should determine, and find the solution u which saturates this
bound. Verify that this solution agrees with the lowest-energy solution of part (b).

Solution

(a) Since all terms in T and V are positive, in order to have a finite energy they must
all tend to zero as |x| → +∞, so

(ut)
2 → 0 =⇒ ut → 0

(ux)
2 → 0 =⇒ ux → 0

(u2 − a2)2 → 0 =⇒ u→ a or −a (independently at −∞ and +∞)

(Strictly speaking they must also tend to their limiting values fast enough that all
the integrals converge, but we won’t need such a level of detail here.)

(b) The two options for boundary conditions leading to nontrivial travelling waves are

u(−∞, t) = −a, u(+∞, t) = +a → u(x, t) = a tanh
[
a
√
λγ(x−x0−vt)

]
u(−∞, t) = +a, u(+∞, t) = −a → u(x, t) = −a tanh

[
a
√
λγ(x−x0−vt)

]
where γ = 1/

√
1−v2.

The working is as in problem 13 (c), taking into account the fact that a, λ 6= 1.
(Either re-do from scratch, or else rescale (u, x, t) → (au, a

√
λx, a

√
λt).)
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For these solutions, and using d
dx

tanh(x) = sech2(x) and tanh2(x)−1 = − sech2(x),

(ut)
2 = a4λγ2v2 sech4

[
a
√
λγ(x−x0−vt)

]
(ux)

2 = a4λγ2 sech4
[
a
√
λγ(x−x0−vt)

]
λ(u2 − a2)2 = a4λ sech4

[
a
√
λγ(x−x0−vt)

]
.

Hence

E =
1

2

(
a4λγ2v2 + a4λγ2 + a4λ

) ∫ ∞
−∞

sech4
[
a
√
λγ(x−x0−vt)

]
dx

=
a4λ

2

(
γ2(1 + v2) + 1

) 1

a
√
λγ

∫ ∞
−∞

sech4(y)dy

=
a3
√
λ

2

2γ

1− v2

4

3
=

4

3
a3
√
λ γ .

Since γ = 1/
√

1− v2 the lowest-energy solutions are those with v = 0, and for
them, E = 4

3
a3
√
λ .

There are also the options to take u(−∞, t) = u(∞, t) = −a or u(−∞, t) =
u(∞, t) = a which lead to the constant solutions u(x, t) = −a and u(x, t) = a,
which have zero energy, but I wouldn’t insist on these being mentioned in your
answers.

(c) For the total energy of a general configuration (not necessarily a travelling wave),
we have:

E =

∫ +∞

−∞

(
1
2
(ut)

2 + 1
2
(ux)

2 + λ
2
(u2 − a2)2

)
dx

≥
∫ +∞

−∞

(
1
2
(ux)

2 + λ
2
(u2 − a2)2

)
dx

=

∫ +∞

−∞

1
2

(
ux ±

√
λ(u2 − a2)

)2

∓
√
λ(u2 − a2)ux dx

=

∫ +∞

−∞

1
2

(
ux ±

√
λ(u2 − a2)

)2

dx∓
√
λ
[

1
3
u3 − a2u

]∞
−∞

where we used (u2−a2)ux = d
dx

(
1
3
u3 − a2u

)
to get to the last line. Given the kink

boundary conditions −u(−∞) = u(+∞) = a , this is

E ≥
∫ +∞

−∞

1
2

(
ux ±

√
λ(u2 − a2)

)2

dx± 4
3

√
λa3

which is actually two equations, one with the plus signs and one with the minus
signs. If we take the version with the plus signs, using the fact that the integrand is
non-negative, we immediately deduce that

E ≥ 4

3

√
λa3
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which is of the desired form, with C = 4
3
. If we’d taken the minus signs we’d have

gotten a true fact – namely that E ≥ −4
3

√
λa3 – but since we already knew that

E ≥ 0, this wouldn’t have told us anything new.
In order to saturate the bound, the integrand in the last inequality must vanish for
all points x. So ux and u need to satisfy ux +

√
λ(u2 − a2) = 0, which implies∫ √

λdx =

∫
du

(a2 − u2)
=

1

a
arctanh

(u
a

)
.

This implies u = a tanh
[
a
√
λ(x− x0)

]
where x0 is a constant of integration,

which indeed matches the solution with lowest energy found above.

17. (a) Explain why the Bogomol’nyi argument given in the lectures fails to provide a
useful bound on the energy of a two-kink solution of the sine-Gordon equation (a
two-kink solution is one with topological charge n − m equal to 2). What is the
most that can be said about the energy of a k-kink?

(b) For a sine-Gordon field u, generalise the Bogomol’nyi argument to show that∫ B

A

dx

[
1

2
u2
t +

1

2
u2
x + (1− cosu)

]
≥ ± 4

[
cos

u

2

]B
A
.

(c) ∗ Use this result and the intermediate value theorem (look it up if necessary!) to
show that if the field u has the boundary conditions of a k-kink, then its energy is
at least k times that of a single kink. Can this bound be saturated?

Solution

(a) The end result of the Bogomolnyi argument for sine-Gordon was the following
inequality for the total energy E = T + V of a field configuration u:

E ≥ ±4
[
cos
(

1
2
u
)]∞
−∞ , (∗)

with equality if and only if ut = 0 and∫ ∞
−∞

1
2

(
ux ± 2 sin

(
1
2
u
))2

dx = 0 .

If u has the boundary conditions of a two-kink, then u|x=+∞ = u|x=−∞ + 4π, and
since

[
cos
(

1
2
u
)]∞
−∞ = 0, no matter what sign is taken in (∗), we can’t deduce any

more from it than E ≥ 0, which we knew already. On the other hand, if u was a
3-kink, then u|x=+∞ = u|x=−∞+6π and we would have

[
cos
(

1
2
u
)]∞
−∞ = ±2 (just

as for the one-kink) and so for one or other choice of sign we would have E ≥ 8,
the energy of a one-kink. In general, if n is odd, we can deduce E ≥ 8, while if n
is even the situation is the same as for the 2-kink – we can’t say anything.
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(b) To prove the new inequality, just repeat the arguments in lectures, but with all
integrals from A to B instead of from −∞ to +∞:∫ B

A

(
1

2
(ut)

2 +
1

2
(ux)

2 + (1− cosu)

)
dx

≥
∫ B

A

1

2
(ux)

2 + (1− cosu) dx

=

∫ B

A

1

2
(ux)

2 + 2 sin2(
1

2
u) dx

=

∫ B

A

1

2

(
ux ± 2 sin

(
1

2
u

))2

∓ 2 sin

(
1

2
u

)
ux dx

=

∫ B

A

1

2

(
ux ± 2 sin

(
1

2
u

))2

dx± 4

[
cos

(
1

2
u

)]B
A

Since the thing being integrated in the last line is non-negative (it’s a perfect square)
the required inequality now follows.

(c) Suppose we have n-kink boundary conditions, with u(x, t)|x=−∞ = 0 and u(x, t)|x=+∞ =
2nπ. By the intermediate value theorem, the value of u(x, t) must pass through all
values between 0 and 2nπ as x varies from −∞ to +∞. In particular, u must
take the values 2π, 4π, . . . 2(n−1)π, say at the points x1, x2, . . . xn−1 , so that
u(xk) = 2kπ. Setting x0 = −∞ and xn = +∞, the integral giving the total energy
of a configuration with n-kink boundary conditions can be split into n pieces:

E =

∫ +∞

−∞
E dx =

∫ x1

x0

E dx+

∫ x2

x1

E dx+· · ·
∫ xn

xn−1

E dx

where E = 1
2
(ut)

2 + 1
2
(ux)

2 + (1− cosu) is the energy density. Now each of the
n integrals on the RHS has 1-kink boundary conditions, and 4[cos

(
1
2
u
)
]
xk+1
xk = ±8

for each k. Using the result from part (b), for one or other sign, each of these sub-
integrals must therefore be larger than or equal to 8, and so the sum of n of them
must be larger than or equal to 8n, which is n times the energy of a single kink.
To saturate the bound, we’d need ut = 0 (which is OK) and also ux±2 sin

(
1
2
u
)

= 0
on each subinterval [xk, xk+1]. This is the Bogomolnyi equation, which was solved
in lectures – where it was found that the only places where the solution attained a
value which was an integer multiple of 2π were x = −∞ and x = +∞. However
on the subinterval [xk, xk+1] we must have u(xk) = 2kπ and u(xk+1) = 2(k+1)π,
so u must depart somewhere from the solution of the Bogomolnyi equation, and
hence the bound cannot be saturated. In fact the bounding value ofE is approached
in the limit where the 1-kinks making up the solution become infinitely far apart –
which is a sign that single sine-Gordon kinks repel each other.

18. A system on the finite interval −π/2 ≤ x ≤ π/2 is defined by the following expressions
for the kinetic energy T and the potential energy V :

T =

∫ π/2

−π/2
dx

1

2
u2
t , V =

∫ π/2

−π/2
dx

1

2

(
u2
x + 1− u2

)
.
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The function u(x, t) satisfies the boundary condition |u(±π/2, t)| = 1 and is required
to satisfy |u(x, t)| ≤ 1 everywhere. Show that with “kink” boundary conditions, the
total energy E is bounded below by a positive constant, and find a solution for which the
bound is saturated.

Solution This is left for you to try!

19. Check explicitly that the energy

E =

∫ +∞

−∞
dx

[
1

2
u2
t +

1

2
u2
x + V(u)

]
and the momentum

P = −
∫ +∞

−∞
dx utux

of a relativistic field u(x, t) in 1 space and 1 time dimensions are conserved when the
equation of motion

utt − uxx = −V′(u)

and the boundary conditions

ut, ux, V(u), V′(u) −→
x→±∞

0 ∀t

are satisfied.

Solution Defining E = 1
2
u2
t + 1

2
u2
x + V(u) we have

∂E
∂t

= ututt + uxuxt + V′(u) · ut

= ut(utt + V′(u)) + uxuxt

=
EoM

utuxx + uxuxt =
∂

∂x
(utux) ≡

∂

∂x
(−j) ,

where j ≡ −utux. Since with the given boundary conditions j has the same (zero) limit
at ±∞, this shows that E is conserved.

Next set P = −utux. Then

∂P
∂t

= −uttux − utuxt

=
EoM

(V′(u)− uxx)ux − utuxt

=
∂

∂x

(
V(u)− 1

2
u2
x −

1

2
u2
t

)
.

The quantity in brackets on the last line vanishes at ±∞, and so, by the standard argu-
ment, P is also conserved.
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20. (a) Compute the conserved topological charge, energy and momentum of a sine-Gordon
kink moving with velocity v, and check that the results do not depend on time.
[Hint: The integral sheet might be useful. For the scalar potential term in the en-
ergy, write 1− cos(u) = 2 sin2(u/2), plug in the kink solution and manipulate the
result to get something involving cosh−2.]
Confirm that for |v| � 1 the energy and the momentum take the forms

E = M +
1

2
Mv2 +O(v4) , P = Mv +O(v3)

where the ‘mass’ M is the energy of the static kink, which appears in the Bogo-
mol’nyi bound.

(b) ∗ If you are fearless and have time on your hands, try also to compute the conserved
spin 3 charge

Q3 =

∫ +∞

−∞
dx

[
u2

++ −
1

4
u4

+ + u2
+ cosu

]
for the sine-Gordon kink. The integrals are not at all straightforward, but can be
evaluated using appropriate changes of variables. (Did I write fearless?)

Solution The sine-Gordon kink moving with velocity v is

u(x, t) = 4 arctan
(
eγ(x−x0−vt)

)
.

Its topological charge is

Q0 =
1

2π
[u]+∞−∞ =

2π − 0

2π
= 1 .

(This is normalised so that kinks/antikinks have topological charge ±1.)

The energy is

E =

∫ ∞
−∞

1
2
u2
t + 1

2
u2
x + (1− cosu) dx =

∫ ∞
−∞

1
2
u2
t + 1

2
u2
x + 2 sin2 u/2 dx

=

∫ ∞
−∞

2(1+v2)γ2 sech2(γ(x− x0 − vt)) + 2 sin2(2 arctan
(
eγ(x−x0−vt)

)
) dx

=
1

γ

∫ ∞
−∞

2
1+v2

1−v2
sech2(y) + 2 sin2(2 arctan (ey)) dx .

Let θ ≡ arctan(ey). Then the last term, 2 sin2(2θ), is equal to

8 sin2 θ cos2 θ = 8 tan2 θ cos4 θ =
8 tan2 θ

(tan2 θ + 1)2
=

8

(tan θ + tan−1 θ)2
= 2 sech2 y .

Hence

E =
1

γ

∫ ∞
−∞

2

(
1+v2

1−v2
+ 1

)
sech2(y) dx = 4γ

∫ ∞
−∞

sech2(y) dx = 8γ =
8√

1− v2
.
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The momentum is an easier calculation:

P = −
∫ ∞
−∞

utux dx = v

∫ ∞
−∞

u2
x dx

= 4vγ2

∫ ∞
−∞

sech2(γ(x− x0 − vt)) dx

= 4γv

∫ ∞
−∞

sech2(y) dx = 8γv .

All three (topological charge, energy and momentum) are clearly independent of time,
as indeed had to be the case. Finally, since the energy M of a static kink is equal to 8,
the Taylor expansion

γ(v) =
1√

1− v2
= 1 +

1

2
v2 + . . .

is enough to derive the claimed formule for E and P for |v| � 1.

21. Find three conserved charges for the mKdV equation of problem 13 (a), which involve
u, u2 and u4 respectively. The boundary conditions on u(x, t) are u, ux and uxx → 0
as |x| → ∞. Evaluate these quantities for the travelling-wave solution found in that
problem. The definite integrals on the integrals sheet might help.

Solution

• The mKdV equation can be written as a continuity equation

ut + (2u3 + uxx)x = 0 ,

where we identify the charge density ρ1 = u and the current density j1 = 2u3+uxx.
The BC’s imply that j → 0 as x→ ±∞, so the charge

Q1 =

∫ ∞
−∞

dx u

is conserved.

• Now we try ρ2 = u2. To see if it satisfies a continuity equation (ρ2)t + (j2)x = 0
with a suitable current j2, let’s calculate

(u2)t = 2uut =
mKdV

−12u3ux − 2uuxxx = (−3u4 − 2uuxx)x + 2uxuxx

= −(3u4 + 2uuxx − u2
x)x .

We identify j2 = 3u4 + 2uuxx − u2
x, which has the same limit (equal to zero) as

x → ±∞. [NOTE: It is fine to drop x-derivatives of functions which have the
same limits at±∞ as I did in lectures. Here I keep track of the current even though
we only care that it has the same limits at ±∞.]
Therefore the charge

Q2 =

∫ ∞
−∞

dx u2

is conserved.
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• Now we try ρ4 = u4, and calculate

(u4)t = 4u3ut =
mKdV

−24u5ux − 4u3uxxx = (−4u6 − 4u3uxx)x + 12u2uxuxx

=
mKdV

−(4u6 + 4u3uxx)x − 2(ut + uxxx)uxx

= −(4u6 + 4u3uxx + 2utux + u2
xx)x + 2utxux

= −(4u6 + 4u3uxx + 2utux + u2
xx)x + (u2

x)t .

The right-hand side is not an x-derivative, but we can bring the time derivative to
the left-hand side to write this as a continuity equation

(u4 − u2
x︸ ︷︷ ︸

=ρ4

)t + (4u6 + 4u3uxx + 2utux + u2
xx︸ ︷︷ ︸

=j4

)x = 0.

The BC’s imply that j4 → 0 as x→ ±∞, so the charge

Q4 =

∫ ∞
−∞

dx
(
u4 − u2

x

)
is conserved.

To evaluate these charges for the travelling wave solutions, note that the integration
variable can be shifted x 7→ x+ x0 + vt to get rid of the integration constant x0 and the
time t in the charges. (Since the charges are conserved, they shouldn’t depend on time
anyway – but here we see this fact directly.) So we can simply take

u(x) = ±v1/2 sech
(
v1/2x

)
in the following. We will also use the integrals

I1 =

∫ ∞
−∞

dy sech(y) = π , I2 =

∫ ∞
−∞

dy sech2(y) = 2 , I4 =

∫ ∞
−∞

dy sech4(y) =
4

3
,

which can be extracted from the table of integrals.

We easily calculate

Q1 = ±v1/2

∫ ∞
−∞

dx sech
(
v1/2x

)
= ±

∫ ∞
−∞

dy sech(y) = ±π ,

Q2 = v

∫ ∞
−∞

dx sech2(v1/2x) = v1/2

∫ ∞
−∞

dy sech2(y) = 2v1/2 ,

where the second equality in both lines follows from setting y = v1/2x. Note that the
measure changes: dx = v−1/2dy. This is a common source of errors.

For Q4, we first calculate

ux = ∓v sinh
(
v1/2x

)
· sech2(v1/2x) ,
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then

Q4 = v2

∫ ∞
−∞

dx sech4(v1/2x) · (1− sinh2(v1/2x))

= v3/2

∫ ∞
−∞

dy sech4(y) · (2− cosh2(y))

= v3/2

∫ ∞
−∞

dy (2 sech4(y)− sech2(y))

= v3/2(2I4 − I2) = v3/2

(
8

3
− 2

)
=

2

3
v3/2 .

22. Show that u is a conserved density for Burgers’ equation from problem 13 (e). Why is
this result of no use in analysing the travelling wave solution of that problem?

Solution The equation itself can be rewritten to show that u is a conserved density:

ut + uux − uxx = 0 ⇔ ut + (1
2
u2 − ux)x = 0 .

However the ‘j’ for this would-be conservation law has different limits at ±∞ for the
boundary conditions given in the problem, so we can’t deduce that the correspondng
charge is conserved (an in fact it is formally infinite for the travelling wave solution).

23. Consider the KdV equation ut + 6uux + uxxx = 0 for the field u(x, t).

(a) Show that ρ1 ≡ u, ρ2 ≡ u2 and ρ∗ ≡ xu− 3tu2 are all conserved densities, so that

Q1 =

∫ +∞

−∞
dx u , Q2 =

∫ +∞

−∞
dx u2 , Q∗ =

∫ +∞

−∞
dx (xu− 3tu2)

are all conserved charges.

(b) Evaluate the conserved charges Q1, Q2 and Q∗ for the one-soliton solution centred
at x0 and moving with velocity v = 4µ2:

uµ, x0(x, t) = 2µ2 sech2
[
µ(x− x0 − 4µ2t)

]
.

(c) According to the KdV equation, the initial condition u(x, 0) = 6 sech2(x) is known
to evolve into the sum of two well-separated solitons with different velocities v1 =
4µ2

1 and v2 = 4µ2
2 at late times. Use the conservation of Q1 and Q2 to determine v1

and v2.

(d) A two-soliton solution separates as t → −∞ into two one-solitons uµ1, x1 and
uµ2, x2 . As t → +∞, two one-solitons are again found, with µ1 and µ2 unchanged
but with x1, x2 replaced by y1, y2. Use the conservation of Q∗ to find a formula
relating the phase shifts y1 − x1 and y2 − x2 of the two solitons.
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Solution

(a) The calculations showing that u and u2 are conserved densities were done in lec-
tures. For Q∗ =

∫ +∞
−∞dx (xu−3tu2) dx , consider(

xu−3tu2
)
t

= xut − 3u2 − 6tuut

= −x(6uux + uxxx)− 3u2 + 6tu(6uux + uxxx) ,

using the KdV equation. Collecting some total x derivatives, we have:

6xuux = (3xu2)x − 3u2

xuxx = (xux)x − ux
36tu2ux = (12tu3)x

6tuuxxx = (6tuuxx)x − (3tu2
x)x,

and so

(
xu−3tu2

)
t

= −

3xu2 + xuxx − ux − 12tu3 − 6tuuxx + 3tu2
x︸ ︷︷ ︸

X(t,x,u,ux,uxx)


x

.

(b) We have

Q1[uµ,x0 ] =

∫ +∞

−∞
dx uµ,x0(x, t) dx

= 2µ2

∫ +∞

−∞
dx sech2(µ(x− x0 − 4µ2t)) dx

= 2µ2

∫ +∞

−∞
dx sech2(µx) dx

= 2µ

∫ +∞

−∞
dx sech2(x) dx = 4µ

using one of the integrals from earlier for the final equality. Similarly,

Q2[uµ,x0 ] =

∫ +∞

−∞
dx uµ,x0(x, t)2 dx

= 4µ4

∫ +∞

−∞
dx sech4(µ(x− x0 − 4µ2t)) dx

= 4µ4

∫ +∞

−∞
dx sech4(µx) dx

= 4µ3

∫ +∞

−∞
dx sech4(x) dx =

16

3
µ3.

The third charge is related to Q2 via

Q∗[uµ,x0 ] =

∫ +∞

−∞
dx xuµ,x0(x, t) dx− 3tQ2[uµ,x0 ]

=

∫ +∞

−∞
dx 2µ2x sech2(µ(x−x0−4µ2t)) dx− 3tQ2[uµ,x0 ] .
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Substituting y = x− x0 − 4µ2t in the integral on the RHS,∫ +∞

−∞
dx 2µ2x sech2(µ(x−x0−4µ2t)) dx

=

∫ +∞

−∞
dx 2µ2y sech2(µy) dy + (x0+4µ2t)

∫ +∞

−∞
dx µ2 sech2(µy) dy.

The first integral vanishes, since it is the (convergent) integral of an odd function
over an interval symmetric with respect to 0. (Please check you understand why
the integral converges!) The second one is just (x0 + 4µ2t)Q1[uµ,x0 ], and so:

Q∗[uµ,x0 ] = (x0 + 4µ2t)Q1[uµ,x0 ]− 3tQ2[uµ,x0 ]

= (x0 + 4µ2t)(4µ)− 3t(
16

3
µ3)

= 4µx0.

(c) Doing the same calculation as in part (b) for u(x, t=0) = 6 sech2(x), you should
find Q1 = 12 and Q2 = 48. Since Q1 and Q2 are conserved, they must also
have these values later, when u looks like a pair of well-separated solitons with
parameters µ1 and µ2. But for the well-separated solitons the values of Q1 and
Q2 must just be the sum of the one-soliton values for µ1 and µ2. Indeed, a charge
Q associated to a two-soliton solution is given by the integral of the two-soliton
density T (2), which can be be split into two contributions:

Q =

∫ A(t)

−∞
T (2) dx+

∫ +∞

A(t)

T (2) dx

If the point A(t) sits between the two solitons (moving faster than the first soliton,
but slower than the second), then as t→∞, the field in the two integration regions
simplifies to:

u(x, t) =

{
u1(x, t) : x ≤ A(t)
u2(x, t) : x ≥ A(t)

where u1 and u2 are the one-soliton solutions.

A

v1

v2

The charges become additive as t→∞.

The charge Q is then simply the sum of two one-soliton contributions T (1):

Q =

∫ A(t)

−∞
T

(1)
1 dx+

∫ +∞

A(t)

T
(1)
2 dx.

But u1 ≈ 0 (resp. u2 ≈ 0) for x ≥ A (resp. x ≤ A), and therefore each each
integral in the previous equation can be extended to the whole line:

Q =

∫ +∞

−∞
dx T

(1)
1 dx+

∫ +∞

−∞
dx T

(1)
2 dx,
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which shows that Q is indeed the sum of the two asymptotic one-soliton charges.
[Technical remark: the fact that Q is exactly conserved means that we can wait arbi-
trarily long before evaluating the one-soliton charges, meaning that the errors caused by
the approximations used above can be made arbitrarily small – in other words, the ad-
dititive property holds exactly.] In this case, the conservation of Q1 implies that
Q1

∣∣
t→+∞ = Q1

∣∣
t=0

, or in other words

4µ1 + 4µ2 = 12

while the conservation of Q2 similarly implies

16

3
µ3

1 +
16

3
µ3

2 = 48 .

Hence µ1 + µ2 = 3 and µ3
1 + µ3

2 = 9. Rewriting the second equation, (µ1 +
µ2)(µ2

1−µ1µ2 +µ2
2) = 9 or, using the first equation, µ2

1−µ1µ2 +µ2
2 = 3. The first

equation also implies µ2 = 3 − µ1 and solving you should find µ1 equals either 1
or 2, and hence µ2 = 2 or 1. Hence the final velocities are 4 and 16. (Note that this
is consistent with the statement of exercise 25.)

(d) Using the additivity of Q3 at t→ ±∞ ,

Q3[uµ1,x1 ] + [uµ2,x2 ] = Q3[uµ1,y1 ] +Q3[uµ2,y2 ],

and we obtain the following constraint:

µ1x1 + µ2x2 = µ1y1 + µ2y2.

This turns out to be consistent with the exact formula for the phase shift induced
by the interaction of two KdV solitons, but since we didn’t cover multi-soliton
solutions of KdV in lectures, you’ll have to look in the book by Drazin and Johnson
(for example) for that.

24. (a) Show that if u(x, t) satisfies the KdV equation ut + 6uux + uxxx = 0, and u =
λ− v2 − vx where λ is a constant and v(x, t) some other function, then v satisfies

(
2v +

∂

∂x

)(
vt + 6λvx − 6v2vx + vxxx

)
= 0 .

(b) Compute the Gardner transform expansion

w(x, t) =
∞∑
n=0

wn(x, t)εn

up to order ε4. Use the results to find the conserved charges Q̃3 and Q̃4, where

Q̃n =

∫ +∞

−∞
dx wn .



Solitons III 2023-24 Solutions: page 27

Show that Q̃3 is the integral of a total x-derivative (and hence is zero), while Q̃4 =
αQ3, where

Q3 =

∫ +∞

−∞
dx
(
u3 − 1

2
u2
x

)
is the third KdV conserved charge (the ‘energy’) and α a constant that you should
determine. ∗ If you’re feeling energetic, try to compute Q̃5 and Q̃6 as well.

Solution

(a) Differentiating u = λ− v2 − vx yields:

ut = −2vvt − vtx
ux = −2vvx − vxx
uxx = −2v2

x − 2vvxx − vxxx
uxxx = −6vxvxx − 2vvxxx − vxxxx .

Substituting into the KdV equation, and noting that (v2vx)x = v2vxx + 2vv2
x , we

find

−2v
[
vt + 6λvx + 6v2vx + vxxx

]
− ∂

∂x

[
vt + 6λvx + 6v2vx + vxxx

]
= 0,

and thus (
2v +

∂

∂x

)(
vt + 6λvx + 6v2vx + vxxx

)
= 0 .

(b) The Gardner transform defines w implicitly in terms of u as follows:

u = −w − εwx − ε2w2

To solve for w, we write it as a (formal) power series in ε, w =
∑∞

n=0wnε
n, and

equate both sides order by order in ε. At order ε0 this gives w0 = −u; after that,
since the LHS is independent of ε, the terms on the RHS depending on εn must
sum to zero for any n > 0. Let us do this energetically up to order 6. We have
(notice where truncations are made):

εwx =
5∑

n=0

wnx ε
n+1 +O(ε7),

and

ε2w2 = ε2 (
4∑

n=0

wnε
n)2 +O(ε7)

= ε2w2
0 + 2w0w1ε

3 + (w2
1 + 2w0w2)ε4 + 2(w0w3 + w1w2)ε5

+ (w2
2 + 2w0w4 + 2w1w3)ε6 +O(ε7) .
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It follows that:

w0 = −u
w1 = −w0x

w2 = −w1x − w2
0

w3 = −w2x − 2w0w1

w4 = −w3x − w2
1 − 2w0w2

w5 = −w4x − 2w0w3 − 2w1w2

w6 = −w5x − w2
2 − 2w0w4 − 2w1w3.

Solving recursively in terms of u:

w0 = −u
w1 = ux

w2 = −uxx − u2

w3 = uxxx + 4uux

w4 = −uxxxx − 5u2
x − 6uuxx − 2u3

w5 = uxxxxx + 18uxuxx + 8uuxxx + 16u2ux

w6 = −uxxxxxx − 19u2
xx − 28uxuxxx − 10uuxxxx

− 50uu2
x − 30u2uxx − 5u4.

Now, w3 is indeed a total x derivative:

w3 = −(uxx + 2u2)x ,

and therefore Q̃3 = 0. On the other hand,

w4 = −2(u3 − 1

2
u2
x)− (uxx + 6uux)x ,

so that Q̃4 = −2Q3.
Scrutiny of w5 shows that it too is a total x derivative:

w5 = (uxxxx + 9u2
x + 8uuxx − 4u2

x +
16

3
u3)x

and hence Q̃5 = 0. For w6, we have

w6 = −5(u4 − 2uu2
x +

1

2
u2
xx)

− (uxxxxx + 10uuxxx + 18uxuxx + 25u2ux + 5u2ux)x ,

and we recognize the fourth KdV conserved charge:

Q̃6 = −5

∫ +∞

−∞

(
u4 − 2uu2

x +
1

2
u2
xx

)
dx = −5Q4 .
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25. This question is also about the KdV equation ut + 6uux + uxxx = 0.

(a) Evaluate the first three KdV conserved charges

Q1 =

∫ +∞

−∞
dx u , Q2 =

∫ +∞

−∞
dx u2 , Q3 =

∫ +∞

−∞
dx
(
u3 − 1

2
u2
x

)
for the initial state u(x, 0) = A sech2(Bx), where A and B are constants.

(b) The initial state
u(x, 0) = N(N + 1) sech2(x) ,

where N is an integer, is known to evolve at late times into N well-separated soli-
tons, with velocities 4k2, k = 1 . . . N . So for t → +∞, this solution approaches
the sum of N single well-separated solitons

u(x, t) ≈
N∑
k=1

2µ2
k sech2

[
µk(x− xk − 4µ2

kt)
]
,

where µ1, . . . , µN are N different constants. Since Q1, Q2 and Q3 are conserved,
their values at t = 0 and t→ +∞ must be equal. Use this fact to deduce formulae
for the sums of the first N integers, the first N cubes, and the first N fifth powers.

(c) ∗ Use Q4 and Q5 and the method just described to find the sum of the first N
seventh and ninth powers,

∑N
k=1 k

7 and
∑N

k=1 k
9.

Solution

(a) We can use the definite integrals

In :=

∫ ∞
−∞

dy sech2n(y) =
22n−1((n− 1)!)2

(2n− 1)!

=⇒ I1 = 2, I2 =
4

3
, I3 =

16

15
, I4 =

32

35
, I5 =

256

315
, . . .

which are tabulated on the integrals sheet, as well as the derivative formula

d

dy
sech y = − sech y · tanh y = − sech2 y · sinh y ,

which implies

d

dy
sech2 y = −2 sech3 y · sinh y(

d

dy
sech2 y

)2

= 4 sech6 y · sinh2 y = 4 sech6 y · (cosh2 y − 1) = 4 (sech4 y − sech6 y) .

We can then evaluateQ1, Q2, Q3 at t = 0 by changing integration variable y = Bx:

Q1 =
A

B
I1 =

2A

B

Q2 =
A2

B
I2 =

4A2

3B

Q3 =
A3

B
I3 − 2A2B(I2 − I3) =

8A2(2A−B2)

15B
.



Solitons III 2023-24 Solutions: page 30

(b) To calculate the conserved charges Q1, Q2, Q3 at the initial time t = 0, we can just
set A = N(N + 1) and B = 1 in the results of part 1:

Q1 = 2N(N + 1)

Q2 =
4

3
N2(N + 1)2

Q3 =
8

15
N2(N + 1)2(2N2 + 2N − 1) .

To calculate the conserved charges Q1, Q2, Q3 at late times t → +∞, we use the
fact that theN solitons are well-separated, that is, they are separated by much larger
distances than the widths of the solitons. So

u ≈
N∑
k=1

uk,xk , u2 ≈
N∑
k=1

u2
k,xk

, u3 ≈
N∑
k=1

u3
k,xk

, u2
x ≈

N∑
k=1

(∂xuk,xk)
2

where
uk,xk(x, t) = 2k2 sech2

[
k(x− xk − 4k2t)

]
.

The cross terms are negligible because the soliton solutions uk,xk tend to zero ex-
ponentially fast away from their centres, and the solitons are assumed to be well-
separated. So the contributions of the N well-separated solitons simply add up.
Comparing with part 1, the k-th soliton uk,xk has Ak = 2k2 and Bk = k (the shift
of x by xk + 4k2t is inconsequential for the calculation of the charges as it can be
absorbed by a shift of the integration variable.) So we find the charges

Q1 = 2
N∑
k=1

Ak
Bk

= 4
N∑
k=1

k

Q2 =
4

3

N∑
k=1

A2
k

Bk

=
16

3

N∑
k=1

k3

Q3 =
8

15

N∑
k=1

A2
k(2Ak −B2

k)

Bk

=
32

5

N∑
k=1

k5 .

Equating the t = 0 expressions with the t → +∞ expressions for the conserved
charges we find

N∑
k=1

k =
1

2
N(N+1) ,

N∑
k=1

k3 =
1

4
N2(N+1)2 ,

N∑
k=1

k5 =
1

12
N2(N+1)2(2N2+2N−1) .

(c) We need to use the next two conserved charges

Q4 =

∫ ∞
−∞

dx

(
u4 − 2uu2

x +
1

5
u2
xx

)
Q5 =

∫ ∞
−∞

dx

(
u5 − 5u2u2

x + uu2
xx −

1

14
u2
xxx

)
,
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which again we would like to evaluate for the field configuration u = A sech2(Bx).

If the integrands can be expressed in terms of even powers of z ≡ sech(y), where
y = Bx, the integrals In can be used. There are a few ways to do that; here’s one.
Using the chain rule,

d

dy
=
dz

dy

d

dz
= −z

√
1− z2

d

dz

d2

dy2
=

(
−z
√

1− z2
d

dz

)2

= z2(1− z2)
d2

dz2
+ z(1− 2z2)

d

dz

d3

dy3
=

(
−z
√

1− z2
d

dz

)3

= z
√

1− z2

[
z2(1− z2)

d3

dz3
+ 3z(1− 2z2)

d2

dz2
+ (1− 6z2)

d

dz

]
from which it follows that(

dz2

dy

)2

= 4z4(1− z2)(
d2z2

dy2

)2

= 4z4(2− 3z2)2

(
d3z2

dy3

)2

= 64z4(1− z2)(1− 3z2)2 .

Recalling that x = y/B and multiplying everything out, we get

Q4 =
1

B

∫ ∞
−∞

dy

(
A4z8 − 2Az2 · 4A2B2z4(1− z2) +

1

5
A2B44z4(2− 3z2)2

)
=

=
1

B

(
A4I4 − 8A3B2(I3 − I4) +

4

5
A2B4(4I2 − 12I3 + 9I4)

)
=

32

105

3A2 − 4AB2 + 2B4

B

Q5 =
1

B

∫ ∞
−∞

dy

(
A5z10 − 5A2z4 · 4A2B2z4(1− z2)

+ Az2 · A2B44z4(2− 3z2)2 − 32

7
A2B6z4(1− z2)(1− 3z2)2

)
=

1

B

(
A5I5 − 20A4B2(I4 − I5) + 4A3B4(4I3 − 12I4 + 9I5)

− 32

7
A2B6(I2 − 7I3 + 15I4 − 9I5)

)
=

128

315

A2(A−B2)(2A2 − 3AB2 + 3B4)

B

At t = 0 we use A = N(N + 1) and B = 1 to evaluate

Q4 =
32

105
N2(N + 1)2(3N4 + 6N3 −N2 − 4N + 2)

Q5 =
128

315
N2(N + 1)2(N2 +N − 1)(2N4 + 4N3 −N2 − 3N + 3).
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At t → ∞ we use Ak = 2k2 and Bk = k for the N well-separated solitons
(k = 1, . . . , N ). Adding up their contributions to the charges we obtain

Q4 =
256

35

N∑
k=1

k7

Q5 =
512

63

N∑
k=1

k9 .

Equating the values of the conserved charges at t = 0 and t → +∞ we find the
identities

N∑
k=1

k7 =
1

24
N2(N + 1)2(3N4 + 6N3 −N2 − 4N + 2)

N∑
k=1

k9 =
1

20
N2(N + 1)2(N2 +N − 1)(2N4 + 4N3 −N2 − 3N + 3) .

26. (a) Show that the pair of equations

(u− v)+ =
√

2 e(u+v)/2

(u+ v)− =
√

2 e(u−v)/2

provides a Bäcklund transformation linking solutions of v+− = 0 (the wave equa-
tion in light-cone coordinates) to those of u+− = eu (the Liouville equation).

(b) Starting from d’Alembert’s general solution v = f(x+) + g(x−) of the wave equa-
tion, use the Bäcklund transformation from part (a) to obtain the corresponding
solutions of the Liouville equation for u. [Hint: Set u(x+, x−) = 2U(x+, x−) +
f(x+) − g(x−). You might simplify the notation by setting f(x+) = log(F ′(x+))
and g(x−) = − log(G′(x−)), where prime means first derivative.]

Solution

(a) Cross-differentiate the equations to get

(u− v)+− =
1√
2
e(u+v)/2(u+ v)− = e(u+v)/2e(u−v)/2 = eu

(u+ v)−+ =
1√
2
e(u−v)/2(u− v)+ = e(u−v)/2e(u+v)/2 = eu .

Taking sum and difference we obtain

u+− = eu (Liouville eqn)

v+− = 0 (the wave eqn)
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(b) Substituting the general solution v = f(x+) + g(x−) of the wave equation in the
Bäcklund transform we obtain a system of two first order PDEs for a solution u of
the Liouville equation:{

u+ − f ′(x+) =
√

2 e[u+f(x+)+g(x−)]/2

u− + g′(x−) =
√

2 e[u−f(x+)−g(x−)]/2

The system simplifies if we make the substitution u(x+, x−) = 2U(x+, x−) +
f(x+)− g(x−) given in the hint:{

2U+ =
√

2 eU+f(x+)

2U− =
√

2 eU−g(x
−)

⇐⇒

{
e−U U+ = 1√

2
ef(x+) ≡ 1√

2
F ′(x+)

e−U U− = 1√
2
e−g(x

−) ≡ 1√
2
G′(x−)

where in the last expression we used f(x+) = log(F ′(x+)) and g(x−) = − log(G′(x−))
as suggested. This system can be integrated to get

−e−U =
1√
2

(
F (x+) +G(x−) + c

)
where c is an integration constant. Taking the logarithm of the previous equation,

U = − log

[
− 1√

2

(
F (x+) +G(x−) + c

)]
so

u = 2U + log
[
F ′(x+)G′(x−)

]
= −2 log

[
− 1√

2

(
F (x+) +G(x−) + c

)]
+ log

[
F ′(x+)G′(x−)

]
= log

2F ′(x+)G′(x−)

(F (x+) +G(x−) + c)2

= f(x+)− g(x−)− 2 log
(
F (x+) +G(x−) + c

)
+ log 2 .

Remarks:
• since F and G can be arbitrary functions just as much as can be f and g, the
second-last line is the most efficient way to write the general solution, while strictly
speaking the formula on the last line should be accompanied by the relations be-
tween F and f , and G and g;
• given that F and G are arbitrary and adding a constant to either of them does not
affect their derivatives, we could take c = 0 without losing any generality.

27. Consider the Bäcklund transformation

vx +
1

2
uv = 0

vt +
1

2
uxv −

1

4
u2v = 0 .
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(a) Show that these equations taken together imply that v satisfies the linear heat equa-
tion vt = vxx , while u satisfies Burgers’ equation ut + uux − uxx = 0.
[Hint: for v, solve the first equation for u and substitute in the second; for u, start
by cross-differentiating.]

(b) Find the general travelling-wave solution for v(x, t) and, via the Bäcklund trans-
formation, re-obtain the travelling-wave for Burgers’ equation found in question
13 (e).

(c) ∗ The linear equation satisfied by v(x, t) allows for the linear superposition of so-
lutions. Use this fact, and your answers to part (b), to construct solutions for v and
then u which describe the interaction of two travelling waves.

(d) ∗ Sketch your solutions functions of x at fixed times both before and after the
interaction, and also draw their trajectories in the (x, t) plane, perhaps starting with
the help of a computer. Are the travelling waves of Burgers’ equation true solitons,
in the sense given in lectures?
[Hints: Examine the asymptotics of the solution viewed from frames moving at
various velocities V (that is, set XV = x− V t and consider t→ ±∞ keeping XV

finite). This should allow you to isolate various travelling waves in these limits,
and to decide whether they preserve their form under interactions. For definiteness,
consider the case c1 > c2 > 0, where c1 and c2 are the velocities of the two separate
travelling waves before they were superimposed. A further hint: as well as the
‘expected’ special values for V , namely c1 and c2, be careful about what happens
when V = c1 + c2.]

Solution

(a) From the first equation, u can be expressed as u = −2vx/v . Substituting this into
the second gives

vt +
1

2
v
[
−2

vxx
v

+ 4(
vx
v

)
]
− 2(

vx
v

)v = 0.

This can be rearranged as
vt = vxx ,

which is the heat equation. A little more elegant is to start by using the first equation
to rewrite the second as

vt + 1
2
uxv + 1

2
uvx = vt + 1

2
(uv)x = 0

Now use the first equation again for uv to find vt − vxx = 0, as required.
To get Burgers’ equation, first divide both equations by v and use v′/v = (log v)′

to find

(log v)x + 1
2
u = 0

(log v)t +
1

2
ux − 1

4
u2 = 0 .
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Differentiate the first of these with respect to t, the second with respect to x, and
subtract:

1
2
ut − 1

2
uxx + 1

4
(u2)x = 0

or, multiplying through by 2,

ut − uxx + uux = 0

which is Burgers’ equation.

(b) Substituting v(x, t) = f(x−ct) into the heat equation vt = vxx (I’m using c instead
of v for the velocity of the wave to avoid confusion with the function v(x, t) ) the
equation becomes −cf ′ = f

′′ ⇒ −cf = f ′ + A (where A is the constant of
integration). Solving,

x− x0 − ct = −
∫

df

cf + A
= −1

c
log

(
f +

A

c

)
and so

v(x, t) = f(x−ct) = e−c(x−x0−ct) − A

c
.

Now use the first equation of the Bäcklund transformation to reconstruct u(x, t):

u(x, t) = −2
vx
v

= −2

(
−ce−c(x−x0−ct)

)(
e−c(x−x0−ct) − A

c

)
=

2c

1− A
c
ec(x−x0−ct)

.

In order to ensure a nonsingular solution, we must assume A/c < 0. Taking A =
−c gives the travelling wave found in question 13 (e).
Remark : A and x0 are not independent constants in this solution, since shifting A
to A× δ can be absorbed by a shift in x0.

(c) Let’s set A/ci = −1, i ∈ {1, 2}. The two solutions for v(x, t) are then

v1(x, t) = 1 + e−c1(x−x1−c1t)

v2(x, t) = 1 + e−c2(x−x2−c2t)

with x1, x2, c1, c2 all constants. The equation for v being linear, v1 + v2 is also a
solution. Via the first equation of the BT this gives

u(x, t) = −2
(v1x + v2x)

v1 + v2

=
−2
(
−c1e

−c1(x−x1−c1t) − c2e
−c2(x−x2−c2t)

)
(2 + e−c1(x−x1−c1t) + e−c2(x−x2−c2t))

=
2
(
c1e
−c1(x−x1−c1t) + c2e

−c2(x−x2−c2t)
)

(2 + e−c1(x−x1−c1t) + e−c2(x−x2−c2t))

(d) An example solution is shown in figure 1, where c1 = 2.5, c2 = 1, and x1 = x2 =
0 . Looking at the figure it’s clear that the two separate waves visible for t→ −∞
merge into a single wave as t→ +∞. The waves therefore do not retain their form
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Figure 1: Two-wave solution of Burgers’ equation ut + uux − uxx = 0

in collisions, and so they are not solitons in the sense given in lectures – they fail
to satisfy property 3.
For a more careful analysis, the tactic will be as in lectures: switch to a frame of
reference moving with some velocity c by setting Xc = x−ct, and examine the
form of u(Xc, t) as t → ±∞ with Xc remaining finite. Supposing that x1 = x2 =
0, u as a function of Xc and t is

u(Xc, t) = 2
c1e
−c1(Xc+(c−c1)t) + c2e

−c2(Xc+(c−c2)t)

2 + e−c1(Xc+(c−c1)t) + e−c2(Xc+(c−c2)t)
.

Keeping Xc finite corresponds to following the solution at speed c. As t → ±∞,
we expect to observe different behaviours depending on the value of c relative to
c1 , c2 and (following the hint) c1 + c2. We’ll assume that c1 > c2, and define

θ1 = c1(x−c1t) = c1Xc + c1(c−c1)t ,

θ2 = c2(x−c2t) = c2Xc + c2(c−c2)t

so that

u(Xc, t) = 2
c1e
−θ1 + c2e

−θ2

2 + e−θ1 + e−θ2
.

The limits work much as for sine-Gordon. The trick is to rearrange the formula for
u when taking each limit so as to avoid having∞/∞. . .
• t→ +∞

i. c > c1 : θ1 → +∞ and θ2 → +∞, so e−θ1 → 0 and e−θ2 → 0 and u→ 0.
ii. c = c1 : θ2 → +∞ while θ1 remains finite, so u→ 2c1e−θ1

2+e−θ1
= 2c1

1+2eθ1
, a simple

Burger’s equation travelling wave with velocity c1.
iii. c1 > c > c2 : θ1 → −∞ and θ2 → +∞, so e−θ1 → ∞ and e−θ2 → 0, and

u = 2 c1+c2eθ1e−θ2

2eθ1+1+eθ1e−θ2
→ 2c1.
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iv. c = c2 : θ1 → −∞ and θ2 remains finite, so e−θ1 → ∞ and e−θ2 remains
finite, and so u = 2 c1+c2eθ1e−θ2

2eθ1+1+eθ1e−θ2
→ 2c1.

v. c < c2 : θ1 → −∞ and θ2 → −∞, so e−θ1 → ∞ and e−θ2 → ∞ and, since
c1 > c2, eθ1e−θ2 → 0. Hence u = 2 c1+c2eθ1e−θ2

2eθ1+1+eθ1e−θ2
→ 2c1.

• t→ −∞ (in slightly less detail)

i. c > c1 : θ1 → −∞ and θ2 → −∞, and there are three subcases:
A. c > c1 + c2 : θ1 − θ2 → −∞ and u→ 2c1.
B. c = c1 + c2 : θ1 − θ2 remains finite and u→ 2 c1e

−(c1−c2)Xc+c2
e−(c1−c2)Xc+1

.

C. c < c1 + c2 : θ1 − θ2 → +∞ and u→ 2c2.
ii. c = c1 : θ2 → −∞ while θ1 remains finite, so u→ 2c2.

iii. c1 > c > c2 : θ1 → +∞ and θ2 → −∞, so u→ 2c2.
iv. c1 > c = c2 : θ1 → +∞ and θ2 remains finite, so u → 2c2

1+2ec2Xc
, a simple

travelling wave with velocity c2 .
v. c < c2 : θ1 → +∞ and θ2 → +∞, then u→ 0 .

Putting these results together allows the solution to be sketched in the two limits –
the results are shown in figure 2.

0

2

4
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4

 

0 5 10 15 20
 

t = −4 t = 4

Figure 2: The solution for c1 = 2.5 and c2 = 1 at two different times

Figure 3: Burgers’ equation: a faster wave “eating” a slower one

The form of the waves is not preserved under collision (the faster wave “eats” the slower
one) and so these travelling waves are not true solitons (see figure 3).

Note: this question in its entirety is much more involved than would be asked in an exam,
where you would also be given more hints as to which steps to take. But it would still be
good to make sure that, with the solution to hand, you understand how it goes.
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28. (a) Show that the two equations

vx = −u− v2

vt = 2u2 + 2uv2 + uxx − 2uxv

are a Bäcklund transformation relating solutions of the KdV equation

ut + 6uux + uxxx = 0

and the wrong sign modified KdV (mKdV) equation

vt − 6v2vx + vxxx = 0 .

(Note the appearance of the Miura transform in the Bäcklund transformation.)

(b) Taking u = c2, where c is a constant, as a seed solution of the KdV equation, find
the corresponding solution of the wrong sign mKdV equation.

Solution

(a) We’ll label the two equations of the BT as follows:

vx = −u− v2 (a)
vt = 2u2 + 2uv2 + uxx − 2uxv (b)

Solving (a) for u, u = −v2 − vx. Substituting into (b),

vt = 2(v2 + vx)
2 − 2(v2 + vx)v

2 − (v2 + vx)xx + 2(v2 + vx)xv .

After some cancellations, the RHS simplifies to 6v2vx−vxxx , so v satisfies mKdV.
For u, take ∂(a)

∂t
and use (b) for vt to find

vxt = −ut − 2vvt = −ut − 2v(2u2 + 2uv2 + uxx − 2uxv) (c)

Next, take ∂(b)
∂x

and use (a) for vx to find

vtx = 4uux + 2uxv
2 + 4uvvx + uxxx − 2uxxv − 2uxvx

= 4uux + 2uxv
2 + uxxx − 2uxxv + (4uv − 2ux)(−u− v2) (d)

Since vtx = vxt, the last lines of (c) and (d) are equal. All terms involving v cancel,
leaving −ut = 6uux + uxxx, the KdV equation.

(b) Substituting u = c2 into the BT leads to

vx = −c2 − v2 (e)
vt = 2c4 + 2c2v2 (f)

Solving (e),

x = −
∫

dv

c2 + v2
= −1

c
arctan(v/c) + f(t) ⇒ arctan(v/c) = −c(x− f(t))



Solitons III 2023-24 Solutions: page 39

where f(t) is the x-independent constant of integration. Similarly from (f)

t =
1

2c2

∫
dv

c2 + v2
=

1

2c3
arctan(v/c)+g(x) ⇒ arctan(v/c) = 2c3(t−g(x))

Equating the two, −c(x−f(t)) = 2c3(t−g(x)) , or x−2c2g(x) = −2c2t+f(t) =
const (since LHS and RHS depend on x and t only) = x0, say. Hence f(t) =
x0 + 2c2t and

arctan(v/c) = −c(x− x0 − 2c2t) ⇒ v(x, t) = −c tan
(
c(x− x0 − 2c2t)

)
.

(For c real, the solution is singular. That sometimes happens with Bäcklund trans-
formations, but a nonsingular solution can be found if we allow c to be purely
imaginary.)
A quick check: (e) and (f) together imply ( ∂

∂t
+ 2c2 ∂

∂x
)v(x, t) = 0, which is clearly

satisfied by the final answer.

29. The 2-soliton solution of the sine-Gordon equation with Bäcklund parameters a1 and a2

is

u(x, t) = 4 arctan

(
µ
eθ1 − eθ2
1 + eθ1+θ2

)
, θi = εiγi(x− vit− x̄i)

where µ = (a2+a1)/(a2−a1), vi = (a2
i−1)/(a2

i+1), γi = 1/
√

1−v2
i , εi = sign(ai), and

x̄1 and x̄2 are constants, as in the lectures. Rewriting u as a function of XV ≡ x − V t
and t, show that, for V 6= v1, v2 (and v1 6= v2)

lim
t→∞

XV finite

u = 2nπ ,

where n is an integer. If v2 > v1 > 0 and εi = 1, how does the parity of n (whether it is
even or odd) depend on the value of v relative to v1 and v2?
[Hints: First show that |θi| → +∞ as t→ ±∞; then consider each of the four possible
options (θ1, θ2) → (+∞,+∞), (−∞,−∞), (+∞,−∞), (−∞,+∞). Remember that
arctan(0) = mπ and arctan(±∞) = ±π/2+mπ, where the ambiguities ofmπ,m ∈ Z,
encode the multivalued nature of the arctan function.]

Solution Working with (Xv, t) instead of (x, t):

θi = εiγi(Xv + (v−vi)t)− x̄i)

As in lectures, if v 6= v1 and v 6= v2 then v−v1 6= 0 and v−v2 6= 0 so both |θ1| and |θ2|
tend to∞ as t → ∞. (In fact, θi → sign(εi(v − vi) ×∞ .) It’s probably easiest just to
look at the various cases in turn:

(a) (θ1, θ2)→ (+∞,+∞) : then eθi → +∞ and e−θi → 0 for i = 1, 2 and

µ
eθ1 − eθ2
1 + eθ1+θ2

= µ
e−θ2 − e−θ1
e−θ1−θ2 + 1

→ µ
0− 0

0 + 1
= 0

The first equality comes on dividing top and bottom by eθ1+θ2 .
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(b) (θ1, θ2)→ (−∞,−∞) : then eθ1 and eθ2 both tend to zero, and so

µ
eθ1 − eθ2
1 + eθ1+θ2

→ µ
0− 0

1 + 0
= 0

(c) (θ1, θ2)→ (+∞,−∞) : then eθ1 →∞ while eθ2 → 0 and so

µ
eθ1 − eθ2
1 + eθ1+θ2

∼ µ
eθ1

1 + eθ1+θ2
= µ

1

e−θ1 + eθ2
→ sign(µ)×∞

Here the first step relies on the fact that eθ1 wins over eθ2 in the first numerator,
while the final one uses e−θ1 → 0, eθ2 → 0.

(d) (θ1, θ2) → (−∞,+∞) : this is just like case (c) apart from a minus sign, so the
limit is −sign(µ)×∞.

Taking the 4×arctan of these limits and using the values of arctan that the question
is kind enough to quote for you, it follows that for cases (a) and (b) the limit of u as
t → ∞ with Xv finite is 4mπ, while in case (c) it is 2π sign(µ) + 4mπ, and in case
(d), −2π sign(µ) + 4mπ. Since sign(µ) = ±1, in every case the limit is equal to 2nπ
for some integer n ; and furthermore n is even in cases (a) and (b), and odd in cases (c)
and (d).
To complete the final part, we need to check which of cases (a), (b), (c) or (d) hold for
the various options for v when v2 > v1 > 0 and ε1 = ε2 = 1. The given values imply
a2 > a1 > 0, and so µ > 0, sign(µ) = +1, and θi → sign(v− vi)×∞. Thus the options
are:

• v < v1 < v2: (θ1, θ2)→ (−∞,−∞) – case (b), n even;

• v1 < v < v2: (θ1, θ2)→ (+∞,−∞) – case (c), n odd;

• v1 < v2 < v: (θ1, θ2)→ (+∞,+∞) – case (a), n even.

It’s not a bad idea to compare these predictions with the plots on the course webpage,
just to see that they check out.

30. Find the asymptotics of the 2-soliton sine-Gordon solution defined in problem 29, in the
case a2 > a1 > 0, as t→ ±∞ with Xv2 ≡ x−v2t held finite.

Solution This is solved in the same way as the case covered in lectures. However be-
cause we are now following the faster of the two solitons, the limits work a little differ-
ently and you should recover the profile of a single antikink rather than the kink that you
might have expected to find, with a total forwards phase shift of 2

γ2
log((a2+a1)/(a2−a1)).

31. Show by direct analysis (as in the lectures) that taking a1 and a2 of opposite signs in
problem 29 results in a two-kink, or two-antikink, solution to the sine-Gordon equation.
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Solution Again, this is just a case of grinding through the various cases, tracking the
solution at various speeds and paying particular attention when those speeds are equal to
v1 or v2.

32. (a) The argument of the arctangent in the sine-Gordon 2-soliton solution of problem
29 is a continuous function of x for all x ∈ R. In particular, it is never infinite.
What does this imply about the range of u? [Hint: consider the graph of tanu/4.]

(b) By taking the limits of this function as x → ±∞ (with t = x̄1 = x̄2 = 0 for
simplicity), show that the topological charge of this two-soliton solution is 0 if
sign(a1) = sign(a2), and ±2 if sign(a1) = −sign(a2), in units where the topologi-
cal charge of a kink is 1.

Solution

(a) The argument of the arctangent in the sine-Gordon 2-soliton solution is equal to
µ(eθ1 − eθ2)/(1 + eθ1+θ2) . Since θ1 and θ2 are both real, eθ1+θ2 is positive for all x,
and so the denominator is never zero, and hence the whole function is continuous
and never infinite. Hence tan(u/4) is never infinite, which means that u/4 is never
equal to ±π/2. Thus if u is in the range (−2π, 2π) for any value of x, it must
remain in that range for all other values of x.

(b) For t = x̄1 = x̄2 = 0 the argument of the arctangent is

µ

(
eε1γ1x − eε2γ2x

1 + eε1γ1x+ε2γ2x

)
where εi = sign(ai). If ε1 = ε2 = 1 or ε1 = ε2 = −1 the limit of this function
as x → ±∞ is zero. Picking the branch of the arctangent such that u tends to 0
as x → −∞, the limit as x → ∞ must be an integer multiple of 4π; but by the
first part of the question, u must stay in the range (−2π, 2π) and hence the limit as
x → ∞ of u must also be zero, and so the topological charge of u is 0. (Note that
this is consistent with the earlier calculations which showed that for a2 > a1 > 1
the solution (3) consists of a kink and an antikink.) The calculation is similar for
sign(a1) = −sign(a2).
Note: this question is filling in a detail from the lectures, but I wouldn’t expect you
to reproduce the whole argument in an exam.

33. Consider the two-soliton solution of the sine-Gordon equation from problem 29 with
complex Bäcklund parameters a1 = a∗2 := a ∈ C and with vanishing integration con-
stants, as is appropriate to find the breather solution. Show that

Re(θ1) = +Re(θ2) = γ(x− vt) cosϕ ,

Im(θ1) = −Im(θ2) = γ(vx− t) sinϕ ,

where ϕ = arg(a) and

v =
|a|2 − 1

|a|2 + 1

γ =
1√

1− v2
=

1 + |a|2

2|a|
.
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Solution This is largely bookwork – have a look at section 6.8 of the printed notes (but
note that this material is only examinable for those on the 1-year MSc course).

34. The stationary breather solution of the sine-Gordon equation (that is the breather solu-
tion with v = 0) has the form

tan
u

4
=

cosϕ

sinϕ
· sin(t sinϕ)

cosh(x cosϕ)
.

Show that in the limit ϕ → 0, in which the kink and antikink that form the breather are
very loosely bound, the time period τ of a single oscillation of the breather scales like
τ ∼ |ϕ|−1, and the spatial size xmax of the breather scales like xmax ∼ − logϕ.
[Hint: You could define xmax as the value of x at which tan(u/4) = 1 when the oscilla-
tory factor in the numerator is at its maximum. Focus only on the parametric dependence
on ϕ, ignoring all numerical factors.]

Solution I’ll leave this for you to think about, but please feel free to ask me about it.

35. We have seen in lectures that the KdV equation ut+6uux+uxxx = 0 for the field u(x, t)
that describes the profile of a wave translates into the following equation for the new
variable w(x, t) =

∫
dx u:

wt + 3w2
x + wxxx = 0 .

Let w = 2 ∂
∂x

log f = 2fx/f where f(x, t) is a nowhere vanishing function of x and t,
so that u = 2 ∂2

∂x2 log f . The aim of this exercise is to rewrite the equation for w as an
equation for f .

(a) Express wt, wx, wxx and wxxx in terms of f and its derivatives.

(b) Show that the equation for wt + 3w2
x + wxxx = 0 can be rewritten as

ffxt − fxft + 3f 2
xx − 4fxfxxx + ffxxxx = 0 ,

which is known as the quadratic form of the KdV equation.

Solution This is a case of hacking through the equations to fill in the (small) gaps in the
derivation given in the printed notes. It’s a good exercise to try it for yourself.

36. The Hirota bilinear differential operatorDm
t D

n
x is defined for any pair of natural numbers

(m,n) by

Dm
t D

n
x(f · g) =

(
∂

∂t
− ∂

∂t′

)m(
∂

∂x
− ∂

∂x′

)n
f(x, t)g(x′, t′)

∣∣∣∣∣
x′=x
t′=t

and maps a pair of functions (f(x, t), g(x, t)) into a single function.

(a) Prove that the Hirota operators Bm,n := Dm
t D

n
x are bilinear, i.e. for all constants

a1, a2

Bm,n(a1f1 + a2f2 · g) = a1Bm,n(f1 · g) + a2Bm,n(f2 · g) ,

Bm,n(f · a1g1 + a2g2) = a1Bm,n(f · g1) + a2Bm,n(f · g2) .
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(b) Prove the symmetry property

Bm,n(f · g) = (−1)m+nBm,n(g · f) .

(c) Compute the Hirota derivatives D2
t (f · g) and D4

x(f · g), and verify that your ex-
pression for the latter is consistent with the result for D4

x(f · f) given in lectures.

Solution

(a) This follows fairly directly from the definitions – for a complete proof you can
expand out all terms using the binomial theorem and the use the linearity of all of
the partial derivatives involved.

(b) As in part (a), this can be proved quickly starting from the defnition of Hirota’s
bilinear operator - but it is worth checking you understand how it goes.

(c)

D2
t (f · g) =

(
∂

∂t
− ∂

∂t′

)2

f(x, t)g(x′, t′)
∣∣∣
x′=x
t′=t

= (fttg − 2ftgt′ + fgt′t′)
∣∣
x′=x
t′=t

= fttg − 2ftgt + fgtt

D4
x(f · g) =

(
∂

∂x
− ∂

∂x′

)4

f(x, t)g(x′, t′)
∣∣∣
x′=x
t′=t

=

(
∂4

∂x4
− 4

∂3

∂x3

∂

∂x′
+ 6

∂2

∂x2

∂2

∂x′2
− 4

∂

∂x

∂3

∂x′3
+

∂4

∂x′4

)
f(x, t)g(x′, t′)

∣∣∣
x′=x
t′=t

= fxxxxg − 4fxxxgx + 6fxxgxx − 4fxgxxx + fgxxxx

Taking f = g gives D4
x(f · f) = 2(fxxxxf − 4fxxxfx + 3f 2

xx), as required.

37. Define a “not-Hirota” bilinear differential operator D̃m
t D̃

n
x by

D̃m
t D̃

n
x(f · g) =

(
∂

∂t
+

∂

∂t′

)m(
∂

∂x
+

∂

∂x′

)n
f(x, t)g(x′, t′)

∣∣∣∣∣
x′=x
t′=t

(note the plus signs!).

(a) Compute D̃x(f · g) and D̃t(f · g), verifying that in both cases the answer is given
by the corresponding ‘ordinary’ derivative of the product f(x, t)g(x, t).

(b) How does this result generalise for arbitrary not-Hirota differential operators? Prove
your claim.

(c) Compare your answer with the Hirota operators defined above.
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Solution

(a) For the first case:

D̃x(f · g) =

(
∂

∂x
+

∂

∂x′

)
f(x, t)g(x′, t′)

∣∣∣
x′=x
t′=t

= (fxg + fgx′)
∣∣
x′=x
t′=t

= fxg + fgx =
∂

∂x
(fg) .

In just the same way, D̃t(f · g) = ∂
∂t

(fg).

(b) Generalisation:

D̃m
t D̃

n
x(f · g) =

∂m

∂tm
∂n

∂xn
(f(x, t)g(x, t))

Proof: expand out both sides, using the binomial formula for the nth/mth derivative
of a product on the RHS.

38. (a) If θi = aix+ bit+ ci, prove that

DtDx(e
θ1 · eθ2) = (b1 − b2)(a1 − a2)eθ1+θ2 .

(b) Prove the corresponding result for Dm
t D

n
x(eθ1 · eθ2), as quoted in lectures.

Solution

(a) We have

DtDx(e
θ1 · eθ2) =

((
∂

∂t
− ∂

∂t′

)(
∂

∂x
− ∂

∂x′

)
ea1x+b1t+c1ea2x′+b2t′+c2

) ∣∣∣∣∣
x′=x
t′=t

=

((
∂

∂t
− ∂

∂t′

)
(a1 − a2) ea1x+b1t+c1ea2x′+b2t′+c2

) ∣∣∣∣∣
x′=x
t′=t

=
(

(b1 − b2) (a1 − a2) ea1x+b1t+c1ea2x′+b2t′+c2
) ∣∣∣∣∣

x′=x
t′=t

= (b1 − b2) (a1 − a2) eθ1x+θ2

as required.

(b) To save space, write θ1 = a1x + b1t + c1 , and θ′2 = a2x
′ + b2t

′ + c2 . Then note
that ∂

∂t
eθ1eθ

′
2 = b1e

θ1eθ
′
2 ; ∂

∂t′
eθ1eθ

′
2 = b2e

θ1eθ
′
2 , etc, so(

∂

∂t
− ∂

∂t′

)m
eθ1eθ

′
2 =

(
∂

∂t
− ∂

∂t′

)m−1(
∂

∂t
− ∂

∂t′

)
eθ1eθ

′
2

=

(
∂

∂t
− ∂

∂t′

)m−1

(b1 − b2) eθ1eθ
′
2

= . . . = (b1 − b2)meθ1eθ
′
2 .
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Similarly (
∂

∂t
− ∂

∂t′

)n
eθ1eθ

′
2 = (a1 − a2)n(b1 − b2)meθ1eθ

′
2 .

Putting these results together,

Dm
t D

n
x(eθ1 · eθ2) =

(
∂

∂t
− ∂

∂t′

)m(
∂

∂x
− ∂

∂x′

)n
eθ1eθ

′
2

∣∣∣
x′=x
t′=t

= (b1 − b2)m (a1 − a2)n eθ1eθ
′
2

∣∣∣
x′=x
t′=t

= (b1 − b2)m (a1 − a2)n eθ1eθ2 .

39. Prove that
Dm
t D

n
x(f · 1) =

∂m

∂tm
∂n

∂xn
f .

Solution
Dm
t D

n
x(f · 1) =

(
∂

∂t
− ∂

∂t′

)m(
∂

∂x
− ∂

∂x′

)n
f(x, t)

∣∣∣
x′=x
t′=t

Now note,(
∂

∂x
− ∂

∂x′

)n
f(x, t) =

(
∂

∂x
− ∂

∂x′

)n−1(
∂

∂x
f(x, t)− ∂

∂x′
f(x, t)

)
=

(
∂

∂x
− ∂

∂x′

)n−1
∂

∂x
f(x, t) = . . . =

∂n

∂xn
f(x, t) .

(Don’t forget that ∂
∂x′
f(x, t) = 0.) The same holds for

(
∂
∂t
− ∂
∂t′

)m, so the result follows.
For Dm

t D
n
x(1 · f), you get an extra factor of (−1)m from

(
∂
∂t
− ∂
∂t′

)m, and (−1)n from(
∂
∂x
− ∂
∂x′

)n.

40. Consider the function f , such that u = 2 ∂2

∂x2 log f is the KdV field, which corresponds
to a 2-soliton solution:

f = 1 + εf1 + ε2f2 = 1 + ε
(
eθ1 + eθ2

)
+ ε2

(
a1 − a2

a1 + a2

)2

eθ1+θ2 ,

where θi = aix − a3
i t + ci, with ai and ci constants. Check that B(f1 · f2) = 0 and

B(f2 · f2) = 0, where B = Dx(Dt + D3
x), and show that this implies that the above

expansion, which is truncated at order ε2, is a solution of the bilinear form of the KdV
equation.

Solution Here’s part of the answer: equation A3 is the n = 3 case of equation (7.20)
from notes, which is

∂

∂x

(
∂

∂t
+
∂3

∂t3

)
fn = −1

2

n−1∑
m=1

B(fn−m · fm) . (7.20)
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Up to a factor of −1/2 the RHS of (7.20) for n = 3 is B(f1 · f2) + B(f2 · f1), as
stated in the question. Substituting in and dropping another overall factor, this time
(a1 − a2)2/(a1 + a2)2, B(f1 · f2) +B(f2 · f1) is proportional to

B(eθ1 · eθ1+θ2) +B(eθ2 · eθ1+θ2) +B(eθ1+θ2 · eθ1) +B(eθ1+θ2 · eθ2) , (*)

where θ1 = a1x−a3
1t+c1, θ2 = a2x−a3

2t+c2, θ1 +θ2 = (a1+a2)x−(a3
1+a3

2)t+c1+c2.
Now from lemma 1 in your notes, if ϑ1 = α1x+ β1t+ γ1, ϑ2 = α1x+ β2t+ γ2, then

Dm
t D

n
x(eϑ1 · eϑ2) = (β1 − β2)m(α1 − α2)neϑ1+ϑ2 . (7.13)

Since B = DtDx +D4
x, this implies

B(eθ1 · eθ1+θ2) =
(
(−a3

1 + a3
1 + a3

2)(a1 − a1 − a2) + (a1 − a1 − a2)4
)
e2θ1+θ2

= (a3
2(−a2) + (−a2)4)e2θ1+θ2 = 0

and likewise for the other three terms, soB(f1 ·f2)+B(f2 ·f1) = 0 as required. It’s easy
to check that all further terms f4, f5, . . . can also be set to zero, which means that the
potentially-infinite series f = 1+εf1+ε2f2+. . . does indeed terminate at order ε2 for this
choice of f1. Setting ε = 1 gives the exact KdV solution u(x, t) = 2 ∂2

∂x2 log(1 + f1 + f2).

41. Derive the solution of the bilinear form of the KdV equation Dx(Dt + D3
x)(f · f) = 0

which represents the 3-soliton solution, in the form

f = 1 + εf1 + ε2f2 + ε3f3

where f1 =
∑3

i=1 e
θi . [This includes proving that the higher order terms in the ε expan-

sion can be consistently set to zero, as in problem 40.]

Solution This is quite a long task! But the final answer turns out to fit the general
formula given at the end of section 7.3 of your notes.

42. Show that the Boussinesq equation

utt − uxx − 3(u2)xx − uxxxx = 0

can be written in the bilinear form

(D2
t −D2

x −D4
x)(f · f) = 0

where u = 2 ∂2

∂x2 log f .

Solution Substituting in u = 2 ∂2

∂x2 log f and integrating twice in x,

2(log f)tt − 2(log f)xx − 3 · 4(log f)2
xx − 2(log f)xxxx = a(t)x+ b(t)
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where a(t) and b(t) are the constants (in x) of integration. We’re free to redefne log f −→
log f + α(t)x+ β(t) without changing u. Picking α and β such that 2α′i(t)′ = a(t) and
2β′′(t) = b(t) we can absorb the RHS, and the equation becomes

2(log f)tt − 2(log f)xx − 3 · 4(log f)2
xx − 2(log f)xxxx = 0 .

The terms are

2(log f)tt = 2
fttf − f 2

t

f 2
=
D2
t (f · f)

f 2
,

2(log f)xx = 2
fxxf − f 2

x

f 2
=
D2
x(f · f)

f 2
,

⇒ 3 · 4(log f)2
xx = 12

f 2
xxf

2 − 2fxxff
2
x + f 4

x

f 4
,

2(log f)xxxx = . . .

= 2
−6f 4

x + 12ff 2
xfxx − 3f 2f 2

xx − 4f 2fxfxxx + f 3fxxxx
f 4

.

Adding the last twp equations,

3 · 4(log f)2
xx + 2(log f)xxxx = 2

iffxxxx − 4fxxxfx + 3f 2
xx

f 2
=
D4
x(f · f)

f 2
.

Finally, combining everything and multiplying by f 2 yields the Boussinesq equation in
bilineaar form: (

D2
t −D2

x −D4
x

)
(f · f) = 0 .

43. Show that the following higher-dimensional version of the KdV equation,

(ut + 6uux + uxxx)x + 3σ2uyy = 0

for the field u(x, y, t), also known as the Kadomtsev-Petviashvili (KP) equation, can be
written in the bilinear form

(DtDx +D4
x + 3σ2D2

y)(f · f) = 0

where u(x, y, t) = 2 ∂2

∂x2 log f(x, y, t).

Solution This is left for you to try – but you can check your answer against that given
in the question.

44. It is given that the system of Hirota equations{
(D2

x −D2
t − 1)(f · g) = 0

(D2
x −D2

t )(f · f) = (D2
x −D2

t )(g · g)

yields solutions u = 4 arctan(g/f) of the sine-Gordon equation. Let θi = aix+ bit+ ci,
where ai, bi, ci are constants.



Solitons III 2023-24 Solutions: page 48

(a) Take
f = 1 , g = εeθ1

and work order by order in powers of ε to find the one-soliton solution of the sine-
Gordon equation.

(b) Taking eθi as in the solution of the previous part, repeat the exercise for

f = 1 + ε2f2 , g = ε(eθ1 + eθ2) ,

and check that the Hirota equations are satisfied to all orders in ε.

Solution

(a) Let’s write the system of Hirota equations as a power series in ε, using the shorthand
B = D2

x −D2
t and bilinearity:{

0 = (B − 1)(f · g) = (B − 1)(1 · 0) + ε(B − 1)(1 · eθ1)

0 = B(1 · 1)− ε2B(eθ1 · eθ1)

Now we solve the system order by order.

• Order ε0: we have the system{
0 = (B − 1)(1 · 0)

0 = B(1 · 1)
.

This is trivially satisfied, since B(1 · 0) = 1(1 · 0) = B(1 · 1) = 0, using
bilinearity and/or direct differentiation.

• Order ε1: we have the equation

0 = (B − 1)(1 · eθ1) = (∂2
x − ∂2

t − 1)eθ1 = (a2
1 − b2

1 − 1)eθ1 ,

so the parameters must satisfy a2
1 = b2

1 + 1.

• Order ε2: we have the equation B(eθ1 · eθ1) = 0, which is trivially satisfied
using Lemma 1 from the notes (or explicit differentiation).

(b) Subbing in
f = 1 + ε2f2 , g = εg1 ≡ ε(eθ1 + eθ2),

using some of the above results, bilinearity and the symmetry property ofB(h·k) =
B(k · h), we find the system{

0 = (B − 1)((1 + ε2f2) · (εg1)) = ε(B − 1)(1 · g1) + ε3(B − 1)(f2 · g1)

0 = B((1 + ε2f2) · (1 + ε2f2))−B((εg1) · (εg1)) = ε2 [2B(f2 · 1)−B(g1 · g1)] + ε4B(f2 · f2)

We need to solve the system order by order. Note that we have a single equation
at each order, since the first Hirota equation is odd in ε, while the second Hirota
equation is even.
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• Order ε0: this is trivially satisfied.

• Order ε1: the equation (B−1)(1·(eθ1 +eθ2)) = 0 is satisfied using bilinearity
and a2

i = b2
i + 1 (as in part a).

• Order ε2: we have the equation

0 = 2B(f2 · 1)−B((eθ1 + eθ2) · (eθ1 + eθ2))

= 2(∂2
x − ∂2

t )f2 − 2B(eθ1 · eθ2)

= 2(∂2
x − ∂2

t )f2 − 2
[
(a2 − a1)2 − (b2 − b1)2

]
eθ1+θ2 ,

using bilinearity and Lemmata 1 and 2. (It’s understood that a2
i = b2

i + 1.)
This equation determines f2. As for the 2-soliton solution of KdV, we can
take f2 = Aeθ1+θ2 for a constant A to be determined. Subbing in the previous
equation, we obtain

A
[
(a1 + a2)2 − (b1 + b2)2

]
eθ1+θ2 =

[
(a2 − a1)2 − (b2 − b1)2

]
eθ1+θ2 ,

which determines

A =
(a2 − a1)2 − (b2 − b1)2

(a1 + a2)2 − (b1 + b2)2
.

One can use a2
i = b2

i + 1 to simplify the result, but this is not necessary.

• Order ε3: simplifying a factor of A, we have to check that the equation

0 = (B−1)(eθ1+θ2 · (eθ1 +eθ2)) = (B−1)(eθ1+θ2 ·eθ1)+(B−1)(eθ1+θ2 ·eθ2)

is satisfied, since there are no unknowns left. The two terms in the RHS vanish
individually, as in the solution to problem 40. Let’s check it explicitly for the
first term (for the second term, swap 1 and 2):[

(a1 + a2 − a1)2 − (b1 + b2 − b1)2 − 1
]
e2θ1+θ2 = [a2

2 − b2
2 − 1]e2θ1+θ2 = 0

using a2
i = b2

i + 1.

• Order ε4: we have

B(f2, f2) = A2B(eθ1+θ2 · eθ1+θ2) = 0

by Lemma 1 or by explicit differentiation.
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45. Note: In this and subsequent exercises the Fourier transform will be denoted as F[f(x)] =

f̃(k), where F[f(x)] = f̃(k) =
∫∞
−∞ dx e

−ikxf(x) and f(x) = 1
2π

∫∞
−∞ dk e

ikxf̃(k) . You
can use results from the Fourier transform handout such as δ(y) = 1

2π

∫∞
−∞ dz e

iyz with-
out proof.
Some properties of Fourier transforms:

(a) The convolution of f and g is defined as

(f ∗ g)(x) =

∫ ∞
−∞

dz f(z) g(x− z) .

Prove that F[fg] = 1
2π
f̃(k) ∗ g̃(k) and F[f ∗ g] = f̃(k)g̃(k).

(b) The cross-correlation of f and g is defined as

(f ⊗ g)(x) =

∫ ∞
−∞

dz f ∗(z) g(x+ z) .

Prove the Weiner-Kinchin theorem, that F[f ⊗ g] = f̃ ∗(k)g̃(k).

(c) The auto-correlation of f(x) is defined as

a(x) = (f ⊗ f)(x).

Using the answer to part b, verify that F[a] = |f̃(k)|2. This is called the energy
spectrum of f .

(d) Prove the FT version of Parseval’s theorem, which you may have already seen for
Fourier series: ∫ ∞

−∞
dx |f(x)|2 =

∫ ∞
−∞

dk

2π
|f̃(k)|2 .

(Strictly speaking this is Plancherel’s theorem; Parseval allows for two different
functions f and g and turns into Plancherel when f = g.)

The locations of the factors of 2π in these formulae depend on the conventions used
for the Fourier transform and its inverse, so they might look a little different in some
textbooks.

Solution To save space all integrals will henceforth be assumed to run from −∞ to∞
unless otherwise stated.

(a) Convolution: (f ∗ g)(x) =
∫
dz f(z) g(x− z) .

We have

F[fg] =

∫
dx e−ikxf(x)g(x)

=

∫
dx

∫∫
dk1dk2

(2π)2
e−i(k−k1−k2)xf̃(k1)g̃(k2)

=

∫∫
dk1dk2

2π
δ(k − k1 − k2)f̃(k1)g̃(k2) (doing the

∫
dx)

=
1

2π

∫
dk1 f̃(k1)g̃(k − k1) =

1

2π
(f̃ ∗ g̃)(k) .
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and

F[f ∗ g] =

∫
dx e−ikx

∫
dz f(z)g(x− z)

=

∫
dx e−ikx

∫
dz

∫∫
dk1dk2

(2π)2
eik1z+ik2(x−z)f̃(k1)g̃(k2)

=

∫
dz

∫∫
dk1dk2

2π
ei(k1−k2)zδ(k2 − k)f̃(k1)g̃(k2) (doing the

∫
dx)

=

∫∫
dk1dk2 δ(k1 − k2)δ(k2 − k)f̃(k1)g̃(k2) (doing the

∫
dz)

= f̃(k)g̃(k) .

(b) Cross-correlation: (f ⊗ g)(x) =
∫
dz f ∗(z) g(x+ z) .

Note that (f ⊗ g)(x) =
∫
dy f ∗(−y) g(x− y), which is the convolution of f ∗(−x)

and g(x). So if we can show that F[f ∗(−x)](k) = f̃ ∗(k) it will follow from part (a)
that F[f ⊗ g] = f̃ ∗(k)g̃(k). This holds since

F[f ∗(−x)](k) =

∫
dx f ∗(−x)e−ikx

=

(∫
dx f(−x)eikx

)∗
=

(∫
dy f(y)e−iky

)∗
(substituting y = −x)

= f̃ ∗(k)

(c) Auto-correlation: a(x) = (f ⊗ f)(x).
Using part (b), F[a] = F[f ⊗ f ] = f̃ ∗(k)f̃(k) = |f̃(k)|2.

(d) Parseval’s theorem:
∫
dx |f(x)|2 = 1

2π

∫
dk |f̃(k)|2 .∫

dx |f(x)|2 =

∫
dx

∫∫
dk1dk2

(2π)2
e−i(k1−k2)xf̃ ∗(k1)f̃(k2)

=

∫∫
dk1dk2

2π
δ(k1 − k2)f̃ ∗(k1)f̃(k2) (doing the

∫
dz)

=

∫
dk1

2π
f̃ ∗(k1)f̃(k1) =

∫
dk

2π
|f̃(k)|2 .

46. Examples of Fourier transforms:

(a) Show that e−x2/2 is (up to a factor of
√

2π) its own FT.

(b) Find the FT of

f(x) =

{
1/(2ε) |x| ≤ ε

0 |x| > ε

and discuss the ε→ 0 limit.
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(c) Find the FT of

f(x) =

{
1− x2 |x| < 1

0 |x| > 1
.

Solution

(a)

F[e−x
2/2](k) =

∫
dx e−ikxe−x

2/2

=

∫
dx e−(x2+2ikx)/2

=

∫
dx e−((x+ik)2+k2)/2 (completing the square)

= e−k
2/2

∫
dx e−(x+ik)2/2

= e−k
2/2

∫
dx e−x

2/2 (shifting x→ x+ ik as on the integrals sheet)

=
√

2π e−k
2/2 (using the definite integral from the integrals sheet).

(b)

F[f(x)](k) =

∫ ε

−ε
dx e−ikx

1

2ε

=

[
e−ikx

−1

2ikε

]ε
−ε

=
1

εk
sin(kε)

As ε → 0 with k fixed this tends to 1, a constant. Now consider the Fourier
transform of a Dirac delta function: F[δ(x)](k) =

∫
dx e−ikxδ(x) = 1 – it’s the

same! If you think about the shape of the original function f(x) in the limit, this
might seem reasonable.

(c) In this case F[f(x)](k) =
∫ 1

−1
dx e−ikx(1 − x2) . As a shortcut which avoids inte-

grating by parts, define

I(k) =

∫ 1

−1

dx e−ikx =
1

−ik
[
e−ikx

]1
−1

=
2

k
sin(k)

and notice, differentiating inside the integral for the first equality, that

d2

dk2
I(k) = −

∫ 1

−1

dx x2e−ikx =
d2

dk2

(
2

k
sin(k)

)
=

4

k3
sin(k)− 4

k2
cos(k)−2

k
sin(k) .

Thus

F[f(x)](k) =

(
I(k) +

d2

dk2
I(k)

)
=

4

k3

(
sin(k)− k cos(k)

)
.
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47. Solving the heat equation using Fourier transforms:

(a) Find the general solution of the heat equation ut = uxx in the form

u(x, t) =

∫ +∞

−∞
dk ũ(k, 0)f(k, x, t) ,

where ũ(k, 0) is the Fourier transform of the initial condition u(x, 0) and f(k, x, t)
is a function of k, x and t that you should determine.

(b) Evaluate the previous integral over k in the case where the initial condition is
u(x, 0) = δ(x), to obtain the corresponding solution u(x, t) for t > 0 explicitly.
[Hint: look at the definite integrals on the useful integrals sheet and read the note
below.]

(c) Finally, derive the general solution as in equation (7.2) in the lecture notes.

Solution

(a) Taking the Fourier transform of the heat equation and integrating by parts twice on
the uxx term, ũ(k, t) must solve

ũt + k2ũ = 0

which is a first-order ODE, easily solved for any value of k:

ũ(k, t) = ũ(k, 0) e−k
2t .

Transforming back,

u(x, t) =
1

2π

∫
dk ũ(k, t) eikx =

1

2π

∫
dk ũ(k, 0) e−k

2t+ikx .

(b) For u(x, 0) = δ(x) it’s easy to compute that ũ(k, 0) = 1 . Substituting this into the
result from part (a),

u(x, t) =
1

2π

∫
dk e−k

2t+ikx =
1

2π

∫
dk e−t(k−i

x
2t

)2

e−
x2

4t =
1

2
√
πt
e−

x2

4t

using the Gaussian integral from the integrals sheet for the definite integral, after
shifting the integration variable by a finite imaginary amount as in the note below
the integral.

(c) In the general case we want u(x, 0) = u0(x), so (using x′ instead of x for the
integration variable in the FT) ũ(k, 0) =

∫
dx′e−ikx

′
u0(x′) . Inserting this into the

formula found in part (a) and then doing the k integral just as in part (b), though
with x replaced by x− x′,

u(x, t) =
1

2π

∫∫
dk dx′ e−ikx

′
u0(x′) e−k

2t+ikx

=
1

2π

∫∫
dk dx′ u0(x′) e−k

2t+ik(x−x′)

=
1

2
√
πt

∫
dx′ u0(x′) e−

(x−x′)2
4t
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which is indeed formula (7.2) from lectures. Note, you can think of this as “adding
up” (using an integral) lots of solutions to the problem from part (b) – this is the
motivation for the idea of a Green’s function.

48. Find the general solution of the linearised KdV equation ut + uxxx = 0. Your answer
should be in the form of an integral involving ũ(k, 0), the Fourier transform of the initial
condition u(x, 0).

Solution Taking the Fourier transform of the linearised KdV equation ut + uxxx = 0,

ũt = ik3ũ

which has the solution ũ(k, t) = eik
3tũ(k, 0) . Transforming back,

u(x, t) =
1

2π

∫ ∞
−∞

ũ(k, t) eikx dk

=
1

2π

∫ ∞
−∞

eik
3tũ(k, 0) eikx dk

=
1

2π

∫ ∞
−∞

eik(k2t+x)ũ(k, 0) dk

where ũ(k, 0) =
∫∞
−∞ u(x, 0) e−ikx dx . Note that this is a superposition of waves trav-

elling leftwards, in line with numerical simulations of small-amplitude waves in the full
KdV equation.

49. Try to solve the full (non-linear) KdV equation using the same method, Fourier trans-
form. [Do not try too hard as it is impossible! Just convince yourself that it is impossible
and understand what goes wrong/why the Fourier transform doesn’t work in the non-
linear case.]

50. Show that if u(x, t) satisfies the KdV equation ut+6uux+uxxx = 0, and u = λ−v2−vx
where λ is a constant and v(x, t) some other function, then v satisfies(

2v +
∂

∂x

)(
vt + 6(λ− v2)vx + vxxx

)
= 0 .

(You might recognise this problem from last term!)

Solution Differentiating u = λ− v2 − vx yields:

ut = −2vvt − vtx
ux = −2vvx − vxx
uxx = −2v2

x − 2vvxx − vxxx
uxxx = −6vxvxx − 2vvxxx − vxxxx .

Substituting into the KdV equation, and noting that (v2vx)x = v2vxx + 2vv2
x , we find

−2v
[
vt + 6λvx − 6v2vx + vxxx

]
− ∂

∂x

[
vt + 6λvx − 6v2vx + vxxx

]
= 0,
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and thus (
2v +

∂

∂x

)(
vt + 6λvx − 6v2vx + vxxx

)
= 0 .

51. If λ is an eigenvalue of d2

dx2ψ(x)+u(x)ψ(x) = λψ(x), where we require that
∫∞
−∞ |ψ(x)|2dx <

∞, and u(x) is real, prove that λ must also be real. [Hint: start by multiplying by ψ(x)∗

and integrating.]

Solution Following the hint, we find∫ ∞
−∞

dx

[
ψ(x)∗

d2

dx2
ψ(x) + ψ(x)∗u(x)ψ(x)

]
= λ

∫ ∞
−∞

dx |ψ(x)|2

and integrating the first term on the LHS by parts once,∫ ∞
−∞

dx
[
−|dψ(x)/dx|2 + u(x)|ψ(x)|2

]
= λ

∫ ∞
−∞

dx |ψ(x)|2 .

Since u(x) is real, the LHS is real; and dividing through by
∫∞
−∞ dx |ψ(x)|2 (which is

finite, real and nonzero) shows that λ is real.

52. The Wronskian W [f, g](x) of two differentiable functions f(x) and g(x) is defined as

W [f, g](x) = f ′(x)g(x)− f(x)g′(x) .

If the functions f and g are linearly dependent, then their Wronskian vanishes identi-
cally: W [f, g](x) = 0. (Equivalently, if W [f, g](x) 6= 0, the functions f and g are
linearly independent.) Conversely, if the Wronskian vanishes identically for two ana-
lytic functions f and g, then f and g are linearly dependent.

(a) Write down the WronskianW [ψ∗1, ψ2](x) of two eigenfunctions ψ1,2(x) of the time-
independent Schrödinger equation with the same potential V (x) and possibly dif-
ferent eigenvalues k2

i :

ψ′′i (x)− V (x)ψi(x) = −k2
iψi(x) (i = 1, 2) . (**)

(This is just preparation for what follows, no computation is needed.)

(b) Show that the Wronskian is constant if the two eigenfunctions correspond to the
same eigenvalue.

(c) Show that two eigenfunctions with different eigenvalues are orthogonal with re-
spect to the (hermitian) inner product

(ψ1, ψ2) :=

∫ +∞

−∞
dx ψ∗1(x)ψ2(x)

if at least one of the two eigenfunctions describes a bound state.
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(d) Show that the Wronskian vanishes for two eigenfunctions with the same eigenvalue
in the discrete spectrum. (This implies the linear dependence of the two eigenfunc-
tions, provided that they are analytic.) [Hint: consider the limit x→ ±∞.]

(e) The x→ ±∞ asymptotics of a scattering solution ψ(x) with eigenvalue k2 > 0 is

ψ(x) ≈

{
eikx +R(k) e−ikx , x→ −∞
T (k) eikx , x→ +∞

By evaluating the Wronskian W [ψ∗, ψ] at x → ±∞, show that the reflection and
transmission coefficients R(k) and T (k) satisfy

|R(k)|2 + |T (k)|2 = 1 .

Solution

(a) W [ψ∗1, ψ2] = ψ∗1
′(x)ψ2(x)− ψ∗1(x)ψ′2(x) .

(b) We have

d

dx
W [ψ∗1, ψ2](x) = ψ∗1

′′ψ2 + ψ∗1
′ψ′2 − ψ∗1 ′ψ′2 − ψ∗1ψ′′2 = ψ∗1

′′ψ2 − ψ∗1ψ′′2 .

Then use the differential equation (details should be given) to substitute for ψ∗1
′′

and ψ′′2 to see that the two terms on the RHS cancel when the eigenvalues are the
same, so the Wronskian is indeed constant.

(c) Multiply the complex conjugate of (**) with i = 1 by ψ2(x) and subtract ψ1(x)∗

times (**) with i = 2 and integrate from −∞ to∞ to find∫ ∞
−∞

(ψ∗1
′′ψ2 − ψ∗1ψ′′2) dx = (k2

2 − k2
1) (ψ1, ψ2) .

As in the solution to part 2, the integrand on the LHS of this equation is equal to
d
dx
W [ψ∗1, ψ2](x), and integrates to zero since at least one of ψ1 and ψ2 is a bound

state and vanishes at ±∞ (while the other, even if not in the discrete spectrum,
must be bounded at infinity). Hence for k2

1 6= k2
2 , (ψ1, ψ2) = 0.

(d) From part 2, the Wronskian of the two eigenfunctions, sharing the same eigenvalue,
is constant. Since this eigenvalue is in the discrete spectrum these eigenfunctions
vanish at ±∞, and so their Wronskian vanishes there. It therefore vanishes for all
x, as required.

(e) As x→ +∞,

W [ψ∗, ψ]→ (T (k)∗e−ikx)′ T (k)eikx − T (k)∗e−ikx (T (k)eikx)′ = −2ik|T (k)|2 .

Likewise, as x→ −∞

W [ψ∗, ψ]→ (e−ikx +R(k)∗eikx)′ (eikx +R(k)e−ikx)

− (e−ikx +R(k)∗eikx) (eikx +R(k)e−ikx)′

= −2ik + 2ik|R(k)|2 = −2ik(1− |R(k)|2) .

Since by part 2 this Wronskian is constant, these two limits must agree, and with a
little rearrangement the desired result follows.
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53. Consider the time independent Schrödinger equation(
− d2

dx2
+ V (x)

)
ψ(x) = k2ψ(x)

with energy E = k2 for the square barrier/well potential

V (x) =


0 , x < 0

V0 , 0 < x < a

0 , x > a

where a > 0 and V0 are constants.

(a) Show that the matching conditions to be imposed at x = 0 and a, where the square
well potential is discontinuous (but finite), are that ψ(x) and ψ′(x) are continuous.

(b) Solve the Schrödinger equation for this potential in the three given regions and
impose the matching conditions to find the scattering solutions associated to energy
eigenvalues k2 > 0 in the continuous spectrum, and determine the reflection and
transmission coefficients R(k) and T (k) in terms of a and l =

√
k2 − V0.

(c) For which values of the wavenumber k is the square well potential transparent, that
is R(k) = 0?

(d) Write down the bound state solutions corresponding to the discrete spectrum k2 =
−µ2 < 0. Find the equations that determine implicitly the allowed values of µ in
terms of a and l (or V0).

(e) Do bound state solutions exist for V0 > 0? And for V0 < 0? In the latter case, use
a graphical argument to show that a new bound state solution appears every time
that
√
−V0 crosses a non-negative integer multiple of π/a.

(f) Show that in the limit a → 0, V0 → +∞ with b = aV0 fixed, the reflection and
transmission coefficients reduce to those of the delta-function potential V (x) =
bδ(x).

Solution See the handwritten notes for the problems class.

54. Consider the time independent Schrödinger equation

−ψ′′(x) + V (x)ψ(x) = k2ψ(x) ,

where the potential V (x) is the sum of two delta functions:

V (x) = −aδ(x)− bδ(x− r) .

Taking r > 0, the solution ψ(x) can be split into three pieces, ψ1(x), ψ2(x) and ψ3(x),
defined on (−∞, 0), (0, r), and (r,+∞) respectively.

(a) Write down the four matching conditions relating ψ1, ψ2 and ψ3, and their deriva-
tives, at x = 0 and x = r.
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(b) For a scattering solution describing waves incident from the left, ψ1 and ψ3 are
given by

ψ1(x) = eikx +R(k) e−ikx, ψ3(x) = T (k) eikx.

Write down the general form of ψ2, and then use the matching conditions found in
part 1 to eliminate the unknowns and determine R(k) and T (k).

(c) Show from the answer to part 2 that, for there to be a bound state pole at k = iµ, µ
must satisfy

e−2µr = (1− 2µ/a)(1− 2µ/b) . (***)

(d) The solutions to (***) can be analysed using a graphical method. Show that:

i. if both a and b are negative, then there are no bound states;
ii. if a and b have opposite signs, then there is at most one bound state, occurring

when a+ b > rab (note: since a and b have opposite signs, rab is negative);
iii. if a and b are positive, then the number of bound states is one if rab ≤ a + b,

and two otherwise.

Sketch on the ab-plane the regions which correspond to zero, one and two bound
states, and indicate the form of ψ(x) for each of the two bound states found when
ab/(a+ b) > r−1.

Solution We have

ψ(x) =


ψ1(x) , x < 0 ,

ψ2(x) , 0 < x < r ,

ψ3(x) , x > r .

(a) With ψ = ψ1, ψ2 or ψ3 as above, at x = 0 we have

ψ(0−) = ψ(0+) ≡ ψ(0) , ψ′(0+)− ψ′(0−) = −aψ(0) ,

while at x = r,

ψ(r−) = ψ(r+) ≡ ψ(r) , ψ′(r+)− ψ′(r−) = −bψ(r) .

(b)

ψ(x) =


eikx +R(k) e−ikx , x < 0 ,

A(k) eikx +B(k)(k) e−ikx , 0 < x < r ,

T (k) eikx , x > r .

Imposing the matching conditions at x = 0,

1 +R(k) = A(k) +B(k) , ik(A(k)−B(k))− ik(1−R(k)) = −a(1 +R(k)) ,

so

A(k) +B(k) = 1 +R(k) , (α)

A(k)−B(k) =
(

1 + i
a

k

)
−R(k)

(
1− ia

k

)
. (β)
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Likewise, looking at x = r,

A(k) eikr +B(k) e−ikr = T (k) eikr

ikT (k) eikr − ik(A(k) eikr −B(k) e−ikr) = −bT (k) eikr,

so

A(k) eikr +B(k) e−ikr = T (k) eikr (γ)

A(k) eikr −B(k) e−ikr = T (k) eikr
(

1− i b
k

)
. (δ)

Solving these for A(k) and B(k),

(γ) + (δ) : A(k) =

(
1− i b

2k

)
T (k) ; (γ)− (δ) : B(k) = i

b

2k
e2ikr T (k) .

Thus (α) and (β) become:

1 +R(k) =

(
1− i b

2k
+ i

b

2k
e2ikr

)
T (k) (α′)

(
1− i b

2k
− i b

2k
e2ikr

)
T (k) = · · · = 2−

(
1− ia

k

)
(1 +R(k)) (β′)

and substituting for 1 +R(k) from (α′) into (β′) and solving for T (k) yields

T (k) =
4k2/(ab)

e2ikr − (1 + i2k
a

)(1 + i2k
b

)
=

4k2

abe2ikr − (a+ 2ik)(b+ 2ik)
.

Finally we can use (α′) once more to find

R(k) =
1 + i2k

b
− (1− i2k

a
)e2ikr

e2ikr − (1 + i2k
a

)(1 + i2k
b

)
=
a(b+ 2ik)− b(a− 2ik)e2ikr

abe2ikr − (a+ 2ik)(b+ 2ik)
.

NOTE: problems like this can be solved more systematically using ‘transfer ma-
trices’. Ask me about them if you are interested.

(c) Bound states occur at poles in T (k) with k = iµ, µ > 0. This needs the denomina-
tor of the above formula for T (k)|k=iµ to vanish, that is

e−2µr =

(
1− 2µ

a

)(
1− 2µ

b

)
as required.

(d) The LHS of (***), plotted in red below, is a simple decaying exponential, while the
RHS (plotted in blue) is a quadratic in µ with zeros at µ = a/2 and µ = b/2. The
two curves always intersect at µ = 0; bound states will occur if there are further
intersections with µ > 0. Going case by case,
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(a) For a < 0, b < 0, both zeros of the RHS are negative and so there are no
intersections with µ > 0:

(b) When a and b have opposite signs, there is one negative and one positive zero
of the RHS, and the number of intersections with µ > 0 will be either zero or one:

Which one occurs depends on the relative gradients of the LHS and RHS at µ = 0.
These gradients are

GL =
d

dµ
e−2µr

∣∣∣∣
µ=0

= −2r

and

GR =
d

dµ

(
1− 2µ

a

)(
1− 2µ

b

) ∣∣∣∣
µ=0

= −2

a
− 2

b
= −2

(a+b)

ab

and we are in the situation of the right-hand plot, with one bound state, when
GL < GR, ie −2r < −2(a + b)/(ab), or r > (a + b)/(ab), or (noting that ab < 0
when rearranging the inequality)

a+ b > rab ,

as required. Note that this should indeed be a strict inequality: when a + b = rab
the gradients at the origin are equal, and by considering the second derivatives (or
otherwise) it can be shown that the only intersection is at µ = 0, which does not
give a bound state.
(c) When a and b are both positive, both zeros of the RHS are positive, and the
number of intersections with µ > 0 is either one or two:
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Again, a comparison of the derivatives of the two curves at µ = 0 determines
which situation arises, and calculating as above shows that there is one bound state
for rab ≤ a + b and two otherwise. Also as above, extra arguments need to be
made when rab = a+ b to get the right answer in this case too.

For the last part, note that the transitions in the numbers of bound states occur on
the curves rab = a + b, or rab − a − b = 0, or r(a − 1/r)(b − 1/r) = 1/r. On
the a, b plane this is the hyperbola b = 1/a, but with the asymptotes shifted up and
to the right, to b = 1/r and a = 1/r. Here’s a region plot in the (a, b)-plane for
r = 1/2:

Finally, here’s a rough sketch of the forms that ψ(x) takes in the zone where there
are two bound states:

55. The time independent Schrödinger equation

−ψ′′(x) + V (x)ψ(x) = k2ψ(x)

is conjectured to have solutions in the form

ψ(x) = eikx(2k + iw(x)) ,

where w(x) is real, non-singular for all x, independent of k, and has finite limits as
x→ ±∞. Substituting in, deduce the equation

w′(x) +
1

2
w2(x) = 2µ2 ,
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where µ is an integration constant. [Hint: take real and imaginary parts of an intermedi-
ate equation.] Solve this via the substitution w(x) = 2f ′(x)/f(x), and deduce that V (x)
must have the form

V (x) = −2µ2 sech2(µ(x− x0)) .

Show also that u = −V is a solution of the KdV equation provided that x0 depends on t
in a certain way that you should determine.

Solution Substituting in, we need

0 =

(
− d2

dx2
+ V (x)− k2

)(
eikx(2k + iw(x))

)
= eikx

(
2k3 + ik2w(x) + 2kw′(x)− iw′′(x) + 2kV (x) + iw(x)V (x)− 2k3 − ik2w(x)

)
= eikx

(
2kw′(x)− iw′′(x) + 2kV (x) + iw(x)V (x)

)
= eikx

(
2k(V (x) + w′(x)) + i(w(x)V (x)− w′′(x))

)
.

Setting real and imaginary parts of the term in big brackets on the last line equal to zero
(and noting that w, V (x) and k are all real) implies{

V (x) = −w′(x)

w′′(x) = w(x)V (x) .

Substituting the first of these into the second,

0 = w′′(x) + w(x)w′(x) =
d

dx

(
w′(x) +

1

2
w2(x)

)
.

Integrating once and setting the constant of integration equal to 2µ2 gives us the claimed
result.
Substituting w(x) = 2f ′(x)/f(x) and cancelling some terms,

f ′′(x) = µ2f(x)

and hence f(x) = Aeµx +Be−µx for some A and B, and

w(x) = 2
f ′(x)

f(x)
= 2µ

Aeµx −Be−µx

Aeµx +Be−µx
.

Since (A,B) and (λA, λB) give the same w(x), we can take AB = 1 without loss of
generality, and set A = e−µx0 , B = eµx0 for some x0. Hence

w(x) = 2µ tanh(µ(x− x0)) , V (x) = −w′(x) = −2µ2 sech2(µ(x− x0)) .

As seen earlier in the course (so it won’t be repeated here), substituting u = −V into the
KdV equation leads to a solution provided that x0(t) = x0(0) + 4µ2t.
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56. Using the results of question 55, show that V (x) = −2µ2 sech2(µ(x−x0)) is an example
of a reflectionless potential, for which R(k) = 0. By adjusting the normalisation of the
wavefunction ψ(x) correctly, find out what the transmission coefficient T (k) is for this
potential. Verify that |T (k)|2 = 1, consistent with the idea that for such a potential an
incident particle must certainly be transmitted.

Solution Substituting w = 2µ tanh(µ(x− x0)) into the given equation we have

ψ(x) = 2eikx(k + iµ tanh(µ(x− x0))) ∼

{
2eikx(k − iµ) x→ −∞
2eikx(k + iµ) x→ +∞ .

Dividing through by 2(k − iµ) gives us the correctly-normalised scattering solution:

ψscattering(x) = eikx
k + iµ tanh(µ(x− x0))

k − iµ
∼

{
eikx x→ −∞
k+iµ
k−iµ e

ikx x→ +∞

from which we can read off that R(k) = 0 (so the potential is indeed reflectionless) and

T (k) =
k + iµ

k − iµ
.

Furthermore

|T (k)|2 =
|k + iµ|2

|k − iµ|2
=
k2 + µ2

k2 + µ2
= 1

as expected.

57. Show by induction or otherwise that the general solution to the differential equation

ψ′′n(x) = (−k2 − n(n+ 1) sech2 x)ψn(x) (n = 0, 1, 2, . . . )

is given by ψn(x) = OnOn−1 . . .O1ψ0(x), where

ψ0(x) = A(k)eikx +B(k)e−ikx ,

A(k) and B(k) are constants (with respect to x), and Ol is the differential operator

Ol =
d

dx
− l tanhx .

Find the asymptotic behaviour of this solution as x→ ±∞ and hence find the eigenval-
ues k2 for the bound states of the potential V (x) = −n(n+ 1) sech2 x.

Solution This one is left for you to figure out! (But feel free to ask me for hints.)

58. Let D = d/dx and let g(x) be a general function of x.

(a) Show that, as differential operators,

Dg = gx + gD , D2g = gxx + 2gxD + gD2 .
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(b) Show more generally that

Dng =
n∑

m=0

(
n

m

)
dmg

dxm
Dn−m .

[Hint: to show that two differential operators are equal, you just have to show that they
have the same effect on any function f(x). For part (b), either try induction or think
about the formula for the differentiation of a product.]

Solution
(a) g as an operator sends f(x) to g(x)f(x); D sends f(x) to d

dx
f(x). Dg means ‘do g

then do D on the result’, so Dg f = d
dx

(gf) = gxf + gfx = (gx + gD)f . Hence on any
function f , the action of Dg is the same as that of gx + gD, which implies

Dg = gx + gD .

Likewise

D2g f =
d2

dx2
(gf) =

d

dx
(gxf + gfx) = gxxf + 2gxfx + gfxx

which is the same as (gxx + 2gxD + gD2)f , from which the desired identity follows.

(b) The relevant formula for differentiating a product is

dn

dxn
(gf) =

n∑
m=0

(
n

m

)
g(m)f (n−m) .

59. Let D = ∂/∂x, and

L(u) = D2 + u(x, t) , M(u) = −(4D3 + 6uD + 3ux) .

Check that
L(u)t + [L(u),M(u)] = ut + 6uux + uxxx .

Solution This goes as in the lecture notes.

60. Let L(u) = D2 + u(x, t) and M(u) = αD for some constant α.

(a) Check that
L(u)t = [M(u), L(u)] ⇐⇒ ut = αux .

(b) Let ψ(x, 0) be an eigenfunction of L(u) at t = 0 with eigenvalue λ, so that

(D2 + u(x, 0))ψ(x, 0) = λψ(x, 0) .

If u(x, t) evolves according to the equation of part 1, find an eigenfunction ψ(x, t)
for each later time t, with the same eigenvalue λ, so that

(D2 + u(x, t))ψ(x, t) = λψ(x, t) .
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Verify that ψ(x, t) can be arranged to satisfy ψt = M(u)ψ. (You can assume
that the eigenfunction is non-degenerate, namely that there is a single eigenfunc-
tion with that eigenvalue. This is the case both for bound state solutions and for
scattering solutions.)

Solution
(a) We have L(u)t = ut, and

[M(u), L(u)] = α[D,D2 + u] = α[D, u] = αux .

Hence L(u)t = [M(u), L(u)] ⇔ ut = αux as required.

(b) If ut = αux then u(x, t) = f(x + αt); matching to the initial condition at t = 0,
u(x, t) = u(x+ αt, 0). Now suppose that

(D2 + u(x, 0))ψ(x, 0) = λψ(x, 0) .

Replacing x by x+ αt throughout,

(D2 + u(x+ αt, 0))ψ(x+ αt, 0) = λψ(x+ αt, 0)

but since u(x, t) = u(x+ αt, 0) this is the same as

(D2 + u(x, t))ψ(x+ αt, 0) = λψ(x+ αt, 0)

and hence (D2 + u(x, t))ψ(x, t) = λψ(x, t) is solved by setting ψ(x, t) = ψ(x+ αt, 0).
For this solution we have

ψ(x, t)t =
∂

∂t
ψ(x+αt, 0) = α

∂

∂x
ψ(x+αt, 0) = α

∂

∂x
ψ(x, t) = αDψ(x, t) = M(u)ψ(x, t)

as required.

61. (a) Show that the differential operator D = ∂/∂x is anti-symmetric with respect to the
inner product

〈ψ1, ψ2〉 :=

∫ +∞

−∞
dx ψ1(x)∗ψ2(x)

on the space L2(R) of square integrable functions, that is 〈ψ1, Dψ2〉 = −〈Dψ1, ψ2〉
for all ψ1, ψ2 ∈ L2(R).

(b) Show that L(u) = D2 + u(x, t) is self-adjoint, given that u is real.

(c) Given a Lax pair L(u), M(u), show that the symmetric part of M(u) commutes
with L(u) and therefore drops out of the Lax equation L(u)t = [M(u), L(u)].

(d) Now assume that M(u) is anti-symmetric. Show that 〈ψ1, ψ2〉 is independent of
time t if ψi(x; t) evolves according to the equation (ψi)t = M(u)ψi.

Solution
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(a) We have

〈ψ1, Dψ2〉 =

∫ +∞

−∞
dx ψ1(x)∗ ∂

∂x
ψ2(x) = −

∫ +∞

−∞
dx ( ∂

∂x
ψ1(x)∗)ψ2(x) = −〈Dψ1, ψ2〉

integrating by parts for the middle equality and using the fact that ψ1 and ψ2 tend
to zero at ±∞, so there’s no boundary term.

(b) This follows in much the same way as part (a), integrating by parts twice.

(c) Given that L and M form a Lax pair, we know that [L,M ] is multiplicative (and
real) and so [L,M ] = [L,M ]†, and also L = L†. Hence

0 = [L,M ]− [L,M ]†

= LM −ML− (LM −ML)†

= LM −ML− (M †L† − L†M †)

= LM −ML− (M †L− LM †)

= L(M +M †)− (M +M †)L = [L, (M +M †)]

Since the symmetric part of M is 1
2
(M + M †) (and the commutator is linear) the

result follows.

(d) We have

∂

∂t
〈ψ1, ψ2〉 = 〈 ∂

∂t
ψ1, ψ2〉+ 〈ψ1,

∂

∂t
ψ2〉

= 〈Mψ1, ψ2〉+ 〈ψ1,Mψ2〉
= 〈Mψ1, ψ2〉 − 〈Mψ1, ψ2〉 (using antisymmetry of M )
= 0

as required.

62. (a) Show that the differential operator of order 2m− 1

M(u) =
m∑
j=1

(
βj(x)D2j−1 +D2j−1βj(x)

)
is anti-symmetric if the functions βj(x) are real.

(b) If L(u) = D2 + u(x, t), compute the leading term of [L(u),M(u)] in the form
γ(x)D2m. If [L(u),M(u)] is to be purely multiplicative (forcing γ(x) to be zero),
deduce that βm(x) must be a constant.

Solution
(a) As in lectures, integration by parts shows that D† = −D, and hence (D2j−1)† =
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(−1)2j−1D2j−1 = −D2j−1 if j ∈ N. Thus

M(u)† =
m∑
j=1

(
βj(x)D2j−1 +D2j−1βj(x)

)†
=

m∑
j=1

(
(D2j−1)†βj(x)∗ + βj(x)∗(D2j−1)†

)
= −

m∑
j=1

(
(D2j−1)†βj(x) + βj(x)(D2j−1)†

)
(since βj ∈ R)

= −M(u) .

(b) For L(u) = D2 + u , M(u) as above, we have

[L(u),M(u)] = [D2 + u,

m∑
j=1

(
βjD

2j−1 +D2j−1βj
)
]

= [D2, βmD
2m−1 +D2m−1βm] + (terms involving Dn with n < 2m)

= [D2, βm]D2m−1 +D2m−1[D2, βm] + (terms involving Dn with n < 2m)

where the last step can be checked by writing out the terms. Since [D2, βm] = βm,xx +
2βm,xD we deduce

[L(u),M(u)] = 2βm,xD
2m + 2D2m−1βm,xD + (terms involving Dn with n < 2m)

= 2βm,xD
2m + 2βm,xD

2m + (terms involving Dn with n < 2m)

= 4βm,xD
2m + (terms involving Dn with n < 2m) .

Now [L(u),M(u)] multiplicative implies in particular that the D2m derivative term must
vanish and hence βm,x = 0, so βm must be a constant (as a function of x) as required.

63. Consider them = 2 case of the equation from Ex 62 (a). Given the result of that question,
you can assume that β2 is a constant. Fix a normalization by imposing β2 = 1/2, and
find the most general form of β1 which allows [L(u),M(u)] to be multiplicative. Show
that the Lax equation L(u)t+[L(u),M(u)] = 0 is equivalent to the following alternative
version of the KdV equation

ut =
1

4
uxxx +

3

2
uux + 2kux , (*)

where k is an integration constant. Finally, check that the redefined field

ũ(x, t) = u(x+ 8kt,−4t)

solves the standard KdV equation ũt + 6ũũx + ũxxx = 0.

Solution The first part of this is as in example (iii) of section 10.1 in notes (Epiphany
term lecture 5). For the last part, using the chain rule for the derivatives we have

ũt = 8kux − 4ut , ũx = ux , ũxxx = uxxx ,
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and so

ũt + 6ũũx + ũxxx = 8kux − 4ut + 6uux + uxxx

= 4
(
−ut +

1

4
uxxx +

3

2
uux + 2ku

)
= 0 ,

the term in brackets vanishing by (*).

64. Consider the m = 3 case of the equation from problem 62 (a). Given the result of
that question, you can assume that L(u)t + [L(u),M(u)] = 0 forces β3 to be a con-
stant. Complete the calculation to find the most general form of β2 and β1 which allow
[L(u),M(u)] to be multiplicative. Deduce from a special case of your result that a func-
tion u(x, t) evolving according to the fifth-order KdV equation

ut + 30u2ux + 20uxuxx + 10uuxxx + uxxxxx = 0

leaves the eigenvalues of L(u) = D2 + u invariant.

Solution Assuming β3 is constant as in the question, we can set β3 = 1/2 by choice of
normalisation. Then

M(u) = D5 + (β2D
3 +D3β2) + (β1D +Dβ1) .

Then [L(u),M(u)] = [D2 + u,M(u)] and (long calculation – it is handy to use the
formula from question 52 to move all the D’s to the far right in every term) the terms
here are

[D2,M(u)] = [D2, D5 + (β2D
3 +D3β2) + (β1D +Dβ1)]

= [D2, (β2D
3 +D3β2) + (β1D +Dβ1)]

= 2β2,xD
4 + β2,xxD

3 + β2,xxxxx + 5β2,xxxxD + 9β2,xxxD
2 + 7β2,xxD

3 + 2β2,xD
4

+ β1,xxD + 2β1,xD
2 + β1,xxx + 3β1,xxD + 2β1,xD

2

= β2,xxxxx + β1,xxx + (5β2,xxxx + 4β1,xx)D + (9β2,xxx + 4β1,x)D
2 + 8β2,xxD

3 + 4β2,xD
4

and

[u,M(u)] = [u,D5 + (β2D
3 +D3β2) + (β1D +Dβ1)]

= −uxxxxx − 5uxxxxD − 10uxxxD
2 − 10uxxD

3 − 5uxD
4

− β2uxxx − 3β2uxxD − 3β2uxD
2

− β2uxxx − 3β2,xuxx − 3β2,xxux

− 3(β2uxx + 2β2,xux)D − 3β2uxD
2

− 2β1ux

= −uxxxxx − 2β2uxxx − 3β2,xuxx − (3β2,xx + 2β1)ux

− (5uxxxx + 6β2uxx + 6β2,xux)D

− (10uxxx + 6β2ux)D
2

− 10uxxD
3 − 5uxD

4 .
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Collecting the pieces:

[L(u),M(u)] = (4β2,x − 5ux)D
4 + (8β2,xx − 10uxx)D

3

+ (9β2,xxx + 4β1,x − 10uxxx − 6β2ux)D
2

+ (5β2,xxxx + 4β1,xx − 5uxxxx − 6β2uxx − 6β2,xux)D

+ β2,xxxxx + β1,xxx − uxxxxx − 2β2uxxx − 3β2,xuxx − (3β2,xx + 2β1)ux .

Next we must set the coefficients of the derivative terms to zero.

D4: (4β2 − 5u)x = 0 ⇒ β2 = 5
4
(u+ k) where k is a constant with respect to x.

D3: now automatic.

D2: 9β2,xxx + 4β1,x − 10uxxx − 6β2ux = 0

⇒ 45
4
uxxx + 4β1,x − 10uxxx − 15

2
(u+ k)ux = 5

4
uxxx + 4β1,x − 15

2
(u+ k)ux = 0 ,

⇒ (5
4
uxx + 4β1 − 15

4
u2 − 15

2
ku)x = 0 and hence β1 = − 5

16
(uxx − 3u2 − 6ku+ h)

where h is another constant.

D1: (5β2,xxxx + 4β1,xx − 5uxxxx − 6β2uxx − 6β2,xux) = 0.
It can be checked (bonus exercise!) that this is now automatic.

Finally(!) the D0 term gives us the general form of [L(u),M(u)], given that it has to be
multiplicative:

[L(u),M(u)] = β2,xxxxx + β1,xxx − uxxxxx − 2β2uxxx − 3β2,xuxx − 3β2,xxux − 2β1ux

= 5
4
uxxxxx − 5

16
(uxx − 3u2 − 6ku)xxx − uxxxxx

− 5
2
(u+ k)uxxx − 15

4
uxuxx − 15

4
uxxux + 5

8
(uxx − 3u2 − 6ku+ h)ux

= − 1
16
uxxxxx + 15

8
(3uxuxx + uuxxx) + 15

8
kuxxx

− 5
2
(u+ k)uxxx − 15

4
uxuxx − 15

4
uxxux + 5

8
(uxx − 3u2 − 6ku+ h)ux

= − 1
16
uxxxxx − 5

4
uxuxx − 5

8
(u+ k)uxxx − 15

8
u2ux − 15

4
kuux + 5

8
hux .

Rescaling M(u) → −16M(u) and setting k = h = 0, we have, applying the general
theorem about Lax pairs, that if

0 = L(u)t + [L(u),M(u)] = ut + uxxxxx + 20uxuxx + 10uuxxx + 30u2ux

then the spectrum of L(u) is independent of t, as required.

65. Let ψ(x, y) be a two-dimensional column vector of smooth functions of x and y, and

A =

(
f 0
−h −f

)
, B =

(
g h
0 −g

)
where f, g, h are smooth functions of x and y. Find the consistency conditions for the
pair of equations

∂ψ

∂x
+ Aψ = 0 ,

∂ψ

∂y
+Bψ = 0 .

Eliminate f and g from this consistency condition, to leave an equation for h only.
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Solution Denote partial derivatives by subscripts. Cross-differentiating the two equa-
tions above we find

0 = ψyx + Ayψ + Aψy

0 = ψxy +Bxψ +Bψx .

Using the given pair of equation, we can rewrite this as

0 = ψyx + Ayψ − ABψ
0 = ψxy +Bxψ −BAψ .

Subtracting and using ψxy = ψyx we obtain

(Ay −Bx − [A,B])ψ = 0 .

Hence consistency of the pair of equations requires

Ay −Bx − [A,B] = 0 .

Calculating the partial derivatives and the commutator, we find that this consistency
condition reads (

fy − gx − h2 −hx − 2fh
−hy + 2gh −fy + gx + h2

)
= 0 .

Solving the off-diagonal equations,

hx + 2fh = 0 =⇒ f = −1

2
(log h)x

−hy + 2gh = 0 =⇒ g = +
1

2
(log h)y .

The diagonal equations coincide. Using the expressions for f and g that we just derived,
the equation is

0 = fy − gx − h2 = −1

2
(log h)yx −

1

2
(log h)xy − h2 ,

hence the PDE for h is
(log h)xy + h2 = 0 .

66. Two differential operators are given as

L = ∂y − ∂2
x − u

M = ∂t + 4∂3
x + 6u∂x + 3ux + w

where u = u(t, x, y) and w = w(t, x, y). Show that if [M,L]ψ = 0 for any smooth ψ,
then

wy = −ut − uxxx − 6uux

wx = 3uy .
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Show that there exists a solution for u,w of the form

u =
A

cosh2(z)
, w =

B

cosh2(z)

where z = αt + βx + γy and α, β, γ, A,B are constants satisfying A = 2β2, B = 6βγ
and αβ + 4β4 + 3γ2 = 0.

Solution This is left as an exercise.

67. The Lax Pair L,M is defined by the expressions

L = (1− c) ∂x + au+ bv

M = ∂2
x +

1

2
(u2 + v2)− avx + bux

where where u, v are real valued functions and a, b, c are constant unit quaternions, that
you may take to be defined by their (non-commutative) multiplication rules:

a2 = b2 = c2 = −1 , ab = c , bc = a , ca = b .

Note that a, b, c do not commute (e.g. ab 6= ba). Find the differential equations sat-
isfied by u and v which are a sufficient condition for the eigenvalue of L to be time-
independent.

[Hint: Equations involving quaternions are a generalization of complex equations in the
sense that one can equate coefficients of 1, a, b, c.]

Solution This is left as an exercise for those who like unusual number systems.

68. The functional derivative δF/δu of F [u] is defined by the equation

F [u+ δu] = F [u] +

∫ +∞

−∞
dx

δF [u]

δu(x)
δu(x) +O((δu)2) ,

where the infinitesimal variation δu(x) is small everywhere and goes to zero at the
boundaries of the integration range (the same applies to its derivatives δux, δuxx, . . . ).
If

F [u] =

∫ +∞

−∞
dx f(u, ux, uxx, uxxx, . . . ) ,

show that
δF [u]

δu
=
∂f

∂u
− ∂

∂x

∂f

∂ux
+

∂2

∂x2

∂f

∂uxx
− ∂3

∂x3

∂f

∂uxxx
+ . . .
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Solution We have

F [u+ δu] =

∫ +∞

−∞
dx f(u+ δu, ux + δux, uxx + δuxx, . . . )

=

∫ +∞

−∞
dx f(u) +

∂f

∂u
δu+

∂f

∂ux
δux +

∂f

∂uxx
δuxx + · · ·+O((δu)2)

= F [u] +

∫ +∞

−∞
dx

∂f

∂u
δu− ∂

∂x

( ∂f
∂ux

)
δu+

∂2

∂x2

( ∂f

∂uxx

)
δu+ · · ·+O((δu)2)

= F [u] +

∫ +∞

−∞
dx

(
∂f

∂u
− ∂

∂x

( ∂f
∂ux

)
+

∂2

∂x2

( ∂f

∂uxx

)
+ . . .

)
δu+O((δu)2)

where to get from the second line to the third we integrated by parts once for the δux
term, twice for δuxx, and so on, each time using the fact that the variation and its dervi-
tives go to zero at the boundaries of the integration range. Comparing the last line with
the formula in the question gives the desired result.

69. (a) Find a function f(u, ux, uxx) and a functional

F [u] =

∫ +∞

−∞
dx f(u, ux, uxx)

such that the equation

ut =
∂

∂x

δF

δu

is the same as the fifth-order KdV equation from question 64.

(b) Show that your F [u] is a conserved quantity if u evolves according to the standard
third order KdV equation.

(c) Show that
∫ +∞
−∞ dx u is a conserved quantity if u evolves according to the fifth-order

KdV equation.

Solution See the handwritten notes for problems class 7.

70. Consider the scattering data

S = {R(k), {µn, cn}Nn=1 }

for the potential V (x) = aδ(x) derived in the lectures. For each sign of a:

(a) Calculate

F (ξ) =

∫ ∞
−∞

dk

2π
R(k) e−ikξ +

N∑
n=1

c2
n e

µnξ .

[Hint: close the integration contour of the k integral by adding an infinite arc in the
upper or lower half of the complex plane for k, and use Cauchy’s residue theorem.]
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(b) Solve the Marchenko equation

K(x, z) + F (x+z) +

∫ x

−∞
dy K(x, y)F (y+z) = 0

to determine the unknown function K(x, z) for all z ≤ x (and set K(x, z) = 0 for
x < z).

(c) Show that

V (x) = 2
d

dx
lim
z→x−

K(x, z) .

Solution For a > 0, see the handwritten notes for problems class 7.

For a < 0, the main difference is that there is a single bound state. From the scattering
data

S =

{
R(k) =

a

2ik − a
,

{
µ1 = −a

2
, c1 =

√
−a

2

}}
,

we find
F (ξ) =

∫ ∞
−∞

dk

2π

a

2ik − a
e−ikξ − a

2
e−

a
2
ξ .

The integrand has a pole at k = −ia/2, which has a positive imaginary part. As in the
case a > 0 which was solved in the problems class, we close the integration contour
(originally the real k axis) in the complex plane by adding an infinite arc in the upper or
lower half plane, picking the arc in such a way that it doesn’t contribute to the integral,
thanks to exponential damping.

• ξ > 0: we have
|e−ikξ| = eξ Im(k) ,

therefore the integrand tends to zero exponentially fast along the lower infinite arc,
where Im(k)→ −∞. Thus we find

F (ξ) = −a
2

∮
C−

dk

2πi

e−ikξ

k + ia
2

− a

2
e−

a
2
ξ ,

where C− is the counterclockwise (and−C− the clockwise) oriented contour in the
complex k plane consisting of the infinite arc in the lower half plane and the real
line. Because the integrand is holomorphic (that, is it has no poles) in the region
enclosed by C−, the integral vanishes by Cauchy’s residue theorem, and we obtain

F (ξ) = −a
2
e−

a
2
ξ .

• ξ < 0: we have
|e−ikξ| = eξ Im(k) ,

therefore the integrand tends to zero exponentially fast along the upper infinite arc,
where Im(k)→ +∞. Adding (at no cost) this arc to the real k line we find that

F (ξ) =
a

2

∮
C+

dk

2πi

e−ikξ

k + ia
2

− a

2
e−

a
2
ξ ,



Solitons III 2023-24 Solutions: page 74

where C+ is the counterclockwise contour in the complex k plane consisting of
the real line followed by the infinite arc in the upper half plane, until the contour is
closed. Now the integration contour contains the single simple pole of the integrand
(at k = −ia/2), and by Cauchy’s residue theorem we find that

F (ξ) =
a

2
Res
k=−ia

2

e−ikξ

k + ia
2

− a

2
e−

a
2
ξ

=
a

2
e−

a
2
ξ − a

2
e−

a
2
ξ = 0 .

We can combine the results for ξ > 0 and ξ < 0 together in the single formula

F (ξ) = −a
2
e−

a
2
ξ Θ(ξ) ,

where Θ(ξ) is the Heaviside step function.

We have found exactly the same result for F (ξ) that we found for a > 0 in Problems
Class 7. The solution of parts (b) and (c) is then identical to the one for a > 0. See the
handwritten notes for Problems Class 7 for the details.

[Note: the careful reader may complain that we didn’t determine what happens if ξ = 0.
We run into the problem that the integral in

F (0) = −i a
4π

∫ ∞
−∞

dk
1

k + ia
2

− a

2

= −i a
4π

∫ ∞
−∞

dk

[
k

k2 + a2

4

− ia
2

1

k2 + a2

4

]
− a

2

is not absolutely convergent. If we regularize the imaginary part of the integral using
Cauchy’s principal value, then this imaginary part vanishes (because we integrate an odd
function over a symmetric domain). The real part of the integral is a/4, therefore we get
F (0) = −a/4. This is consistent with taking Θ(0) = 1

2
, the average of the left-sided and

right-sided limits, in the general formula above.]

71. Consider the scattering data

S = {R(k), {µn, cn}Nn=1 }

for the square barrier/well potential studied in problem 53. For each sign of V0:

(a) Calculate

F (ξ) =

∫ ∞
−∞

dk

2π
R(k) e−ikξ +

N∑
n=1

c2
n e

µnξ .

(b) Solve the Marchenko equation

K(x, z) + F (x+z) +

∫ x

−∞
dy K(x, y)F (y+z) = 0

to determine the unknown function K(x, z) for all z ≤ x (and set K(x, z) = 0 for
x < z).
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(c) Show that

V (x) = 2
d

dx
lim
z→x−

K(x, z) .

Solution This is left for you as an exercise. Feel free to ask me hints.

72. Show that the Poisson bracket {, } has the following properties for any three smooth
functions f , g and h on phase space:
• antisymmetry:

{f, g} = −{g, f}

• bilinearity:

{af + bg, h} = a{f, h}+ b{g, h} , {f, ag + bh} = a{f, g}+ b{f, h} , a, b ∈ R

• Leibniz’s rule:
{fg, h} = {f, h}g + f{g, h}

• The Jacobi identity:

{f, {g, h}}+ {g, {h, f}}+ {h, {f, g}} = 0

73. Let Q1(p, q) and Q2(p, q) be two smooth functions on phase space in involution, that is
{Q1, Q2} = 0. Q1 and Q2 generate the evolution of the Hamiltonian system under two
different ‘time’ coordinates t1 and t2 respectively, according to the equations

∂pi
∂ta

= −∂Qa

∂qi
∂qi
∂ta

= +
∂Qa

∂pi

where a = 1, 2.

(a) Show that the evolution of a smooth function X(p, q) by an infinitesimal time dta
generated by Qa is given by

X 7→ X + {Qa, X}dta +
1

2
{Qa, {Qa, X}}dt2a +O(dt3a) ,

to second order in the infinitesimal time increment dta.

(b) Evolve X first by an infinitesimal time dt1 using Q1, and then by an infinitesimal
time dt2 using Q2, working to second order in dt1 and dt2.
[Note: you’ll need to keep terms proportional to dt21, to dt22 and to dt1dt2.]

(c) Repeat the time evolutions in the opposite order: first by dt2 using Q2, and then by
dt1 using Q1.

(d) Show that the results of parts (b) and (c) coincide.
[Hint: use the Jacobi identity for the Poisson bracket.]
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74. If

L(t) =

(
x(t) y(t)
y(t) −x(t)

)
,

find an antisymmetric matrix M(t) such that the Lax equation L̇+ [L,M ] = 0 is equiv-
alent to the system of ODE’s {

ẋ = gy

ẏ = −gx

where g(x, y, t) is some function of x, y and t, and dots denote time derivatives. Using
only the symmetry properties of L, together with the Lax equation, show that the eigen-
values of L do not depend on t. Deduce the (otherwise fairly obvious) fact that if x(t)
and y(t) evolve according to the above system of ODE, then the value of x(t)2 + y(t)2

remains constant.

75. Consider a classical Hamiltonian system with n = 3 coordinates qi and momenta pi. A
Lax pair of matrices L and M is given by

L =

 p1 b1 b3

b1 p2 b2

b3 b2 p3

 , M =

 0 b1 −b3

−b1 0 b2

b3 −b2 0

 ,

where pi = q̇i and bi = exp[c(qi − qi+1)] for some constant c (with qi+3 = qi and
pi+3 = pi). Use the Lax equation L̇ + [L,M ] = 0 to find the constant c and to obtain
equations of motion in the form q̈i = fi(q), for some functions fi(q) that you should
determine.
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A Useful integrals
You can freely quote the following formulae, although deriving them may be instructive:

• Indefinite integrals: [Note: the integration constant is in principle complex]∫
dx

x
√

1− x
= −2arcsech(

√
x) (1)∫

dx

x
√

1− x2
= −arcsech(x) (2)∫

dx

x
√

1 + x2
= −arccosech(x) (3)∫

dx

sin(x/2)
= 2 log tan(x/4) (4)∫

dx

cosh(x)
= 2 arctan(ex) (5)∫

dx

1− x2
= arctanh(x) (6)∫

dx
√

1− x2 =
1

2

[
x
√

1− x2 + arcsin(x)
]

(7)∫
dx

cos2(x)
= tan(x) (8)∫

dx

cosh2(x)
= tanh(x) (9)

• Definite integrals: ∫ +∞

−∞
dx e−Ax

2

=

√
π

A
(A > 0) (10)∫ +∞

−∞
dx sech2n(x) =

22n−1((n− 1)!)2

(2n− 1)!
(11)

Note: the result of the Gaussian integral (10) does not change if the integration vari-
able x is shifted by a finite imaginary amount c, namely if you replace x→ x+ ic.


