Assignment 1
 Due date: Wednesday, 20 October (8pm)

Ex 2

This exercise explores the scale invariance of the KdV equation.

1. Show that if $u(x, t)=g(x, t)$ solves the KdV equation

$$
u_{t}+6 u u_{x}+u_{x x x}=0
$$

so does $u(x, t)=A g(B x, C t)$, provided that the constants B and C are related to A in a way which you should determine.
[15 marks]
2. Apply this transformation to the basic KdV solution

$$
u(x, t)=\frac{2}{\cosh ^{2}(x-4 t)}
$$

to construct a one-parameter family of one-soliton solutions of the KdV equation.
[10 marks]
3. Find a formula relating the velocities to the heights for solitons in this one-parameter family. How does the spatial width of a soliton in this family change if its velocity is rescaled by a factor of 4 ?
[10 marks]

Ex 4

Consider a pair of solitons with velocities m and n in the ball and box model, with $m>n$ and the faster soliton to the left of the slower one, with separation $l \geq n$ (i.e. there are l empty boxes between the two solitons). Evolve various such initial conditions forward in time using the ball and box rule, for different values of m, n and l. Prove that the system always evolves into an oppositely-ordered pair of the same two solitons, and find a general formula for the phase shifts of the solitons in terms of m and n.
[45 marks]

Ex 11

Find the dispersion relation and the phase and group velocities for:
(a)

$$
\begin{equation*}
u_{t}+u_{x}+\alpha u_{x x x}=0 \tag{10marks}
\end{equation*}
$$

[10 marks]

$$
\begin{equation*}
u_{t t}-\alpha^{2} u_{x x}=\beta^{2} u_{t t x x} \tag{b}
\end{equation*}
$$

