
 

Assignment 3 

Due date: Wednesday, 17 November (8pm) 

Ex 16 

A field u ( x, t ) has kinetic energy T and potential energy V , where

 

T = 

∫ + ∞ 

−∞ 

dx 

1

 

2 

u2 

t 

, 

V = 

∫ + ∞ 

−∞ 

dx 

[
1

 

2 

u2 

x 

+ 

λ

 

2
( u2 − a2)2 

] 

,

 

(2.1) 

and a and λ > 0 are (real) constants.1 The equation of motion for u is 

utt 

− uxx 

+ 2 λu ( u2 − a2) = 0 . 

1. If u is to have finite energy, what boundary conditions must be imposed on u , ux 

and 

ut 

at x = ±∞ ? [5 marks] 

SOLUTION:

 

The energy E = T + V is the integral of a sum of squares, all of which must vanish at 

spatial infinity to ensure that E is finite. So 

ut 

, ux 

, u2 − a2 → 0 as x → ±∞ . 

In particular, u must tend to ± a . 

2. Find the general travelling-wave solution(s) to the equation of motion, consistent with 

the boundary conditions found in part 1. Compute the total energy E = T + V for 

these solutions. For which velocity do the solutions have the lowest energy? 

(The list of integrals at the end of the problem sheet on DUO might help.) [25 marks]

 

1This is a version of the “ ϕ4 theory”. It’s called like that because the scalar potential is quartic, and the 

field u is usually called ϕ . 
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SOLUTION:

 

There are four options for the boundary conditions, corresponding to the two possible 

limits of u as x → −∞ and as x → + ∞ . The corresponding travelling wave solutions 

are 

u ( −∞ , t )

 

u (+ ∞ , t )

 

u ( x, t ) =

 

− a

 

− a

 

− a 

+ a

 

+ a

 

+ a 

− a

 

+ a

 

+ a tanh[ a
√

 

λγ ( x − x0 

− v t )] 

+ a

 

− a

 

− a tanh[ a
√

 

λγ ( x − x0 

− v t )] 

The nontrivial travelling wave solutions 

u ( x, t ) = ± a tanh[ a 

√

 

λγ ( x − x0 

− v t )] 

are obtained as in Ex 13.3 , the only difference being that here a, λ ̸ = 1 . The depen- 

dence on a and λ can be recovered by replacing ( u, x, t ) 7→ ( au, a
√

 

λx, a
√

 

λt ) in the 

solution found in Ex 13.3 . 

The constant solutions have zero energy. For the travelling wave solutions

 

u2 

t 

= a4 λγ2 v2 sech4[ a 

√

 

λγ ( x − x0 

− v t )] 

u2 

x 

= a4 λγ2 sech4[ a 

√

 

λγ ( x − x0 

− v t )] 

λ ( u2 − a2)2 = a4 λ sech4[ a 

√

 

λγ ( x − x0 

− v t )] ,

 

where I used 

d

 

dy 

tanh( y ) = sech2( y ) , tanh2( y ) − 1 = − sech2( y ) . 

So the energy of the travelling wave solutions is

 

E = 

1

 

2 

∫ + ∞ 

−∞ 

dx 

[
u2 

t 

+ u2 

x 

+ λ ( u2 − a2)
] 

= 

λa4

 

2 

(1 + γ2(1 + v2)) 

∫ + ∞ 

−∞ 

dx sech4[ a 

√

 

λγ ( x − x0 

− v t )] 

= 

√

 

λa3

 

2 γ 

· 

1 − v2 + 1 + v2

 

1 − v2︸

 

︷︷

 

︸ 

=2 γ2 

· 

∫ + ∞ 

−∞ 

dy sech4( y ) ︸

 

︷︷

 

︸ 

=4 / 3 

= 

4

 

3 

√

 

λa3 · γ ,

 

where γ = 1 /
√

 

1 − v2 and I used the change of variable y = a
√

 

λγ ( x − x0 

− v t ) as well 

as the integral ∫ + ∞ 

−∞ 

dy sech4( y ) = 

4

 

3 

given at the end of the problem sheet. The travelling waves with the least energy are 

the static solutions with v = 0 , hence γ = 1 , which have energy 

4

 

3 

√

 

λa3.



 

3 

3. One of the possible boundary conditions for part 1 implies that u is a kink, with 

[ u ( x )]x =+ ∞ 

x = −∞ 

= 2 a . Use the Bogomol’nyi argument to show that the total energy E = 

T + V of that configuration is bounded from below by C 

√

 

λa3, where C is a constant 

that you should determine, and find the solution u which saturates this bound. Verify 

that this solution agrees with the lowest-energy solution of part 2. [20 marks] 

SOLUTION:

 

E = 

1

 

2 

∫ + ∞ 

−∞ 

dx 

[
u2 

t 

+ u2 

x 

+ λ ( u2 − a2)
] 

= 

1

 

2 

∫ + ∞ 

−∞ 

dx 

[ 

u2 

t 

+ ( ux 

∓ 

√

 

λ ( u2 − a2))2 ± 2 

√

 

λ ( u2 − a2) ux 

] 

= 

1

 

2 

∫ + ∞ 

−∞ 

dx 

[ 

u2 

t 

+ ( ux 

∓ 

√

 

λ ( u2 − a2))2 

] 

± 

√

 

λ 

[ 

u3

 

3 

− a2 u 

]+ ∞ 

−∞ 

≥ ± 

√

 

λ 

[ 

u3

 

3 

− a2 u 

]+ ∞ 

−∞

 

For the “kink”, limx →±∞ 

u = ± a (correlated signs: + with + , − with − ), therefore

 

E ≥ ± 2 

√

 

λ 

( 

a3

 

3 

− a3 

) 

= ∓4

 

3 

√

 

λa3 .

 

a and λ are positive, so the stronger lower bound for the energy is E ≥ 

4

 

3 

√

 

λa3, which 

is obtained by picking the lower sign. So C = 4 / 3 . 

The solution which saturates the lower bound is static ut 

= 0 and satisfies the Bogo- 

mol’nyi equation 

ux 

= − 

√

 

λ ( u2 − a2) . 

We can solve the equation by separation of variables:

 

∫ 

du

 

a2 − u2 

= 

√

 

λ 

∫ 

dx 

1

 

a
arctanh 

( u

 

a 

) 

= 

√

 

λ ( x − x0) 

u ( x, t ) = a tanh[ a 

√

 

λ ( x − x0)] ,

 

which is nothing but the static kink found in part 1 as a travelling wave solution with 

v = 0 . [ Check : indeed the Bogomol’nyi bound for the energy coincides with the lower 

bound for the energy of kink and antikink (travelling wave) solutions found in part 1.]
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Ex 21 

Consider the modified KdV (or mKdV) equation that you studied in Ex. 13.1, namely 

ut 

+ 6 u2 ux 

+ uxxx 

= 0 

with the boundary conditions 

u → 0 , ux 

→ 0 , uxx 

→ 0 as x → ±∞ . 

1. Find three conserved charges for the mKdV equation which involve u , u2 and u4 re- 

spectively. [25 marks] 

SOLUTION:

 

• The mKdV equation can be written as a continuity equation 

ut 

+ (2 u3 + uxx)x 

= 0 , 

where we identify the charge density ρ1 

= u and the current density j1 

= 2 u3+ uxx. 

The BC’s imply that j → 0 as x → ±∞ , so the charge 

Q1 

= 

∫ + ∞ 

−∞ 

dx u 

is conserved. 

• Now we try ρ2 

= u2. To see if it satisfies a continuity equation ( ρ2)t 

+ ( j2)x 

= 0 

with a suitable current j2, let’s calculate

 

( u2)t 

= 2 uut 

= 

mKdV 

− 12 u3 ux 

− 2 uuxxx 

= ( − 3 u4 − 2 uuxx)x 

+ 2 ux 

uxx 

= − (3 u4 + 2 uuxx 

− u2 

x)x 

.

 

We identify j2 

= 3 u4 + 2 uuxx 

− u2 

x, which has the same limit (equal to zero) as 

x → ±∞ . [ NOTE: It is fine to drop x -derivatives of functions which have the 

same limits at ±∞ as I did in lectures. Here I keep track of the current even 

though we only care that it has the same limits at ±∞ .] 

Therefore the charge 

Q2 

= 

∫ + ∞ 

−∞ 

dx u2 

is conserved.
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• Now we try ρ4 

= u4, and calculate

 

( u4)t 

= 4 u3 ut 

= 

mKdV 

− 24 u5 ux 

− 4 u3 uxxx 

= ( − 4 u6 − 4 u3 uxx)x 

+ 12 u2 ux 

uxx 

= 

mKdV 

− (4 u6 + 4 u3 uxx)x 

− 2( ut 

+ uxxx) uxx 

= − (4 u6 + 4 u3 uxx 

+ 2 ut 

ux 

+ u2 

xx)x 

+ 2 utx 

ux 

= − (4 u6 + 4 u3 uxx 

+ 2 ut 

ux 

+ u2 

xx)x 

+ ( u2 

x)t 

.

 

The right-hand side is not an x -derivative, but we can bring the time derivative 

to the left-hand side to write this as the continuity equation 

( u4 − u2 

x︸

 

︷︷

 

︸ 

= ρ4 

)t 

+ (4 u6 + 4 u3 uxx 

+ 2 ut 

ux 

+ u2 

xx︸

 

︷︷

 

︸ 

= j4 

)x 

= 0 . 

The BC’s imply that j4 

→ 0 as x → ±∞ , so the charge 

Q4 

= 

∫ + ∞ 

−∞ 

dx 

(
u4 − u2 

x 

) 

is conserved. 

2. Evaluate these conserved quantities for the two non-trivial travelling-wave solutions 

u ( x, t ) = ±
√

 

v sech 

[√

 

v ( x − x0 

− v t )
] 

that you found in Ex 13.1. 

(The list of integrals at the end of the problem sheet on DUO might help.) [25 marks] 

SOLUTION:

 

First of all, note that we can shift the integration variable x 7→ x + x0 

+ v t to get rid 

of the integration constant x0 

and of time t in the charges. Indeed, the charges are 

conserved, so they don’t depend on time. So I will simply take 

u ( x ) = ± v1 / 2 sech( v1 / 2 x ) 

in the following. We will also need the integrals 

I1 

= 

∫ + ∞ 

−∞ 

dy sech( y ) = π , I2 

= 

∫ + ∞ 

−∞ 

dy sech2( y ) = 2 , I4 

= 

∫ + ∞ 

−∞ 

dy sech4( y ) = 

4

 

3 

, 

which can be extracted from the table of integrals at the end of the problem sheet. 

We easily calculate

 

Q1 

= ± v1 / 2 

∫ + ∞ 

−∞ 

dx sech( v1 / 2 x ) = ± 

∫ + ∞ 

−∞ 

dy sech( y ) = ± π , 

Q2 

= v 

∫ + ∞ 

−∞ 

dx sech2( v1 / 2 x ) = v1 / 2 

∫ + ∞ 

−∞ 

dy sech2( y ) = 2 v1 / 2 ,
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where the second equality in both lines follows from setting y = v1 / 2 x . Note that the 

measure changes: dx = v 

− 1 / 2 dy . This is a common source of errors. 

For Q4, we first calculate 

ux 

= ∓ v sinh( v1 / 2 x ) · sech2( v1 / 2 x ) , 

then

 

Q4 

= v2 

∫ + ∞ 

−∞ 

dx sech4( v1 / 2 x ) · (1 − sinh2( v1 / 2 x )) 

= v3 / 2 

∫ + ∞ 

−∞ 

dy sech4( y ) · (2 − cosh2( y )) 

= v3 / 2 

∫ + ∞ 

−∞ 

dy (2sech4( y ) − sech2( y )) 

= v3 / 2(2 I4 

− I2) = v3 / 2 

(
8

 

3 

− 2 

) 

= 

2

 

3 

v3 / 2 .


