Assignment 3

Due date: Wednesday, 17 November (8pm)

Ex 16

A field u(x,t) has kinetic energy 7" and potential energy V', where

400 12
T = 3 da:iut,

o

oo . ) (2.1)
Vv :/OO dx {52@ + §(u2 —a®)?|

and a and A > 0 are (real) constants[| The equation of motion for u is

Uy — Ugg + 20 u(u® — a®) = 0.

1. If w is to have finite energy, what boundary conditions must be imposed on u, u, and
up at © = £oo? [5 marks|

SOLUTION:

The energy ' =T + V is the integral of a sum of squares, all of which must vanish at
spatial infinity to ensure that E is finite. So

Uy, Uy, U2 —a® — 0 as r — +oo .

In particular, » must tend to *a.

2. Find the general travelling-wave solution(s) to the equation of motion, consistent with
the boundary conditions found in part 1. Compute the total energy £ = T+ V for
these solutions. For which velocity do the solutions have the lowest energy?

(The list of integrals at the end of the problem sheet on DUO might help.) [25 marks]

IThis is a version of the “¢* theory”. It’s called like that because the scalar potential is quartic, and the
field w is usually called ¢.



SOLUTION:

There are four options for the boundary conditions, corresponding to the two possible
limits of u as x — —oo and as x — 400. The corresponding travelling wave solutions

are

u(—o00,t) | u(+oo,t) u(z,t) =
—a —a —a
+a +a +a
—a +a +a tanh[av y(z — 2o — vt)]
+a —a —a tanh[avVMy(z — z — vt)]

The nontrivial travelling wave solutions
u(z,t) = +a tanh[aV My (z — g — vt)]

are obtained as in Ex 13.3, the only difference being that here a, A # 1. The depen-
dence on a and A can be recovered by replacing (u,x,t) — (au,av/Az,av/Xt) in the
solution found in Ex 13.3.

The constant solutions have zero energy. For the travelling wave solutions

u? = a* y*? sech*[av/ My (x — 29 — vt)]
u? = a' y? sech*|avV My (@ — 2o — vt)]
Au? — a?)? = a* A sech?[avV/ Ny (z — 2o — vt)]

where I used

di tanh(y) = sech?(y) , tanh®(y) — 1 = —sech?(y) .
Y

So the energy of the travelling wave solutions is

1 [T
E:—/ dr [uf +ul + ANu® — a®)]

2 )
Aat +oo
= T(1 +92(1 + U2>)/ dz sech*[avV My (z — xo — vt)]
Va® 1 =024 1402 [+ A 4~
= > -\ o2 /-/oodysech(y):§\/Xa-'y,
:3;2 :21,/3

where v = 1/4/1 — 02 and I used the change of variable y = av/ y(z — 2y — vt) as well

as the integral
+o0 4
I

given at the end of the problem sheet. The travelling waves with the least energy are
the static solutions with v = 0, hence v = 1, which have energy ‘%\/Xa?’.



3. One of the possible boundary conditions for part 1 implies that w is a kink, with
[u(z)]2=F2 = 2a. Use the Bogomol'nyi argument to show that the total energy £ =
T+V of that configuration is bounded from below by C'v/Aa?, where C is a constant
that you should determine, and find the solution v which saturates this bound. Verify

that this solution agrees with the lowest-energy solution of part 2. [20 marks|

SOLUTION:

&
Il

v [uf 4+ ul 4+ Au? — a®)]

|\
] +
&8

8

o0
/ x [uf + (up T VAU — a?))? £ 2V A(u® — aQ)Ux}

“+o00
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/_+°°dx [u? + (up FVA(? — a2))2} £V {%3 B agu:|
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For the “kink”, lim,_, 4., u = ta (correlated signs: + with +, — with —), therefore
a’ 3 4 3
E > 42V 5 —a ::Fg\/Xa.

a and \ are positive, so the stronger lower bound for the energy is £ > %\/Xa3, which
is obtained by picking the lower sign. So C' = 4/3.

The solution which saturates the lower bound is static u; = 0 and satisfies the Bogo-
mol’'nyi equation
Uy = —\/X(u2 —a?) .

We can solve the equation by separation of variables:

/% = \/X/dx
éarctanh (g) = V\(z — )
u(z,t) = a tanh[aV\(z — 20)] ,

which is nothing but the static kink found in part 1 as a travelling wave solution with
v = 0. [Check: indeed the Bogomol’'nyi bound for the energy coincides with the lower
bound for the energy of kink and antikink (travelling wave) solutions found in part 1.|



Ex 21

Consider the modified KdV (or mKdV) equation that you studied in Ex. 13.1, namely
Up + 6uty + Upyy = 0

with the boundary conditions

u—0, u, >0, up, >0 asz — o0 .

1. Find three conserved charges for the mKdV equation which involve u, u? and u* re-
spectively. |25 marks|

SOLUTION:

e The mKdV equation can be written as a continuity equation
up + (2u% + Uy ) = 0,

where we identify the charge density p; = u and the current density j; = 2u®+y,.
The BC’s imply that j — 0 as x — £o0, so the charge

+o00
le/ dx u

e Now we try py = u?. To see if it satisfies a continuity equation (p2); + (j2). = 0
with a suitable current jo, let’s calculate

is conserved.

(u?); = 2uuy = — 1203y — 2y, = (—3u* — 2utiyy )y + gty

m

= —(3u* + Uy, — u2), .

We identify jo = 3u® + 2uu,, — u2, which has the same limit (equal to zero) as
r — xoo. [INOTE: It is fine to drop z-derivatives of functions which have the
same limits at +oo as I did in lectures. Here I keep track of the current even

though we only care that it has the same limits at +oc0.]|

+oo
Qs = / dr u?

o0

Therefore the charge

is conserved.



e Now we try ps = u?, and calculate
(u'), = 4u’u, = —24u Uy — 4P Upyy = (—4U° — 4UPUsy) e + 120U Uy,

mIiiV _<4u6 + 4u3u:px)m - 2(ut + umxw)uxa:

= —(4u® + 4P Uy + 2uuy + Ul + 2ty
= —(4u® + 4Pupy + 2upuy + ) + (U3,

The right-hand side is not an x-derivative, but we can bring the time derivative
to the left-hand side to write this as the continuity equation

(u —u2)y + (4u® + dulug, + 2upu, +u2,), = 0.
=p4 =Ja
The BC’s imply that j4 — 0 as x — £o0, so the charge
+oo
Q4= / dx (u4 — ui)

is conserved.

2. Evaluate these conserved quantities for the two non-trivial travelling-wave solutions

u(z,t) = £y/v sech [Vv(z — 2o — vt)]

that you found in Ex 13.1.
(The list of integrals at the end of the problem sheet on DUO might help.) [25 marks]

SOLUTION:

First of all, note that we can shift the integration variable x — = + xg + vt to get rid
of the integration constant xy and of time ¢ in the charges. Indeed, the charges are
conserved, so they don’t depend on time. So I will simply take

u(z) = £v/? sech(v'/?z)

in the following. We will also need the integrals

+oo +00 +00 4
I, = / dysech(y) =n, I,= / dy seChQ(y) =2, I= / dy sech4(y) =3

which can be extracted from the table of integrals at the end of the problem sheet.

We easily calculate

+00 +0oo

1= :|:U1/2/ dx sech(v'/?z) = :I:/ dy sech(y) = £7 ,
+o0 - Jr_oc<>>o

Qs = v/ dx sech?(v*/?x) = v1/2/ dy sech?(y) = 202 |

o0 —00



where the second equality in both lines follows from setting y = v'/?z. Note that the
measure changes: dz = v~'/2dy. This is a common source of errors.

For @4, we first calculate
U, = Fousinh(v'/2z) - sech?(v'/%z) |

then

+00
Qs = v2/ dz sech*(v*/2z) - (1 — sinh?(v"/%2))

o0

+oo
= 113/2/ dy sech*(y) - (2 — cosh?(y))

[e.o]

—+o00
_ / dy (2sech’(y) — sech?(y))

e}

8 2
= 0*2(20, — I,) = v*/? <§ — 2) = 51}3/2 :



