
 

Assignment 3 

Due date: Wednesday, 17 November (8pm) 

Ex 16 

A field u ( x, t ) has kinetic energy T and potential energy V , where

  \begin {split} T=&\infint \half u_t^2~,\\ V=&\infint \left [\half u_x^2+\frac {\lambda }{2} (u^2-a^2)^2\right ]~, \end {split} 















































 





 

(2.1) 

and a and λ > 0 are (real) constants.1 The equation of motion for u is 

utt 

− uxx 

+ 2 λu ( u2 − a2) = 0 . 

1. If u is to have finite energy, what boundary conditions must be imposed on u , ux 

and 

ut 

at x = ±∞ ? [5 marks] 

SOLUTION:

 

The energy E = T + V is the integral of a sum of squares, all of which must vanish at 

spatial infinity to ensure that E is finite. So 

ut 

, ux 

, u2 − a2 → 0 as x → ±∞ . 

In particular, u must tend to ± a . 

2. Find the general travelling-wave solution(s) to the equation of motion, consistent with 

the boundary conditions found in part 1. Compute the total energy E = T + V for 

these solutions. For which velocity do the solutions have the lowest energy? 

(The list of integrals at the end of the problem sheet on DUO might help.) [25 marks]

 

1This is a version of the “ ϕ4 theory”. It’s called like that because the scalar potential is quartic, and the 

field u is usually called ϕ . 
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SOLUTION:

 

There are four options for the boundary conditions, corresponding to the two possible 

limits of u as x → −∞ and as x → + ∞ . The corresponding travelling wave solutions 

are 

u ( −∞ , t )

 

u (+ ∞ , t )

 

u ( x, t ) =

 

− a

 

− a

 

− a 

+ a

 

+ a

 

+ a 

− a

 

+ a

 

+ a tanh[ a
√

 

λγ ( x − x0 

− v t )] 

+ a

 

− a

 

− a tanh[ a
√

 

λγ ( x − x0 

− v t )] 

The nontrivial travelling wave solutions 

u ( x, t ) = ± a tanh[ a 

√

 

λγ ( x − x0 

− v t )] 

are obtained as in Ex 13.3 , the only difference being that here a, λ ̸ = 1 . The depen- 

dence on a and λ can be recovered by replacing ( u, x, t ) 7→ ( au, a
√

 

λx, a
√

 

λt ) in the 

solution found in Ex 13.3 . 

The constant solutions have zero energy. For the travelling wave solutions

 u_t^2 &= a^4 \lambda \gamma ^2 v^2 ~\sech ^4[a \sqrt {\lambda }\gamma (x-x_0-vt)] \\ u_x^2 &= a^4 \lambda \gamma ^2 ~\sech ^4[a \sqrt {\lambda }\gamma (x-x_0-vt)] \\ \lambda (u^2-a^2)^2 &= a^4 \lambda ~\sech ^4[a \sqrt {\lambda }\gamma (x-x_0-vt)] ~,





 





 







 





 



    





 

 

 

where I used 

d

 

dy 

tanh( y ) = sech2( y ) , tanh2( y ) − 1 = − sech2( y ) . 

So the energy of the travelling wave solutions is

 E&= \frac {1}{2} \infint \left [u_t^2+u_x^2+\lambda (u^2-a^2)\right ]\\ &=\frac {\lambda a^4}{2}(1+\gamma ^2(1+v^2)) \infint \sech ^4[a \sqrt {\lambda }\gamma (x-x_0-vt)]\\ &=\frac {\sqrt {\lambda } a^3}{2\gamma }\cdot \underbrace { \frac {1-v^2+1+v^2}{1-v^2}}_{=2\gamma ^2} \cdot \underbrace {\intinf dy ~ \sech ^4(y)}_{=4/3} = \frac {4}{3} \sqrt {\lambda } a^3 \cdot \gamma ~,
























  










   











 

















     



 









































  

 

where γ = 1 /
√

 

1 − v2 and I used the change of variable y = a
√

 

λγ ( x − x0 

− v t ) as well 

as the integral ∫ + ∞ 

−∞ 

dy sech4( y ) = 

4

 

3 

given at the end of the problem sheet. The travelling waves with the least energy are 

the static solutions with v = 0 , hence γ = 1 , which have energy 

4

 

3 

√

 

λa3.



 

3 

3. One of the possible boundary conditions for part 1 implies that u is a kink, with 

[ u ( x )]x =+ ∞ 

x = −∞ 

= 2 a . Use the Bogomol’nyi argument to show that the total energy E = 

T + V of that configuration is bounded from below by C 

√

 

λa3, where C is a constant 

that you should determine, and find the solution u which saturates this bound. Verify 

that this solution agrees with the lowest-energy solution of part 2. [20 marks] 

SOLUTION:

 E&= \frac {1}{2} \infint \left [u_t^2+u_x^2+\lambda (u^2-a^2)\right ]\\ &= \frac {1}{2} \infint \left [u_t^2+(u_x \mp \sqrt {\lambda }(u^2-a^2))^2 \pm 2\sqrt {\lambda }(u^2-a^2)u_x\right ]\\ &= \frac {1}{2} \infint \left [u_t^2+(u_x \mp \sqrt {\lambda }(u^2-a^2))^2\right ] \pm \sqrt {\lambda }\left [\frac {u^3}{3}-a^2 u\right ]_{-\infty }^{+\infty }\\ &\ge \pm \sqrt {\lambda }\left [\frac {u^3}{3}-a^2 u\right ]_{-\infty }^{+\infty }
























  






























   





 































 















































 

For the “kink”, limx →±∞ 

u = ± a (correlated signs: + with + , − with − ), therefore

 E &\ge \pm 2\sqrt {\lambda }\left (\frac {a^3}{3}-a^3\right ) = \mp \frac {4}{3}\sqrt {\lambda } a^3.

 































 

a and λ are positive, so the stronger lower bound for the energy is E ≥ 

4

 

3 

√

 

λa3, which 

is obtained by picking the lower sign. So C = 4 / 3 . 

The solution which saturates the lower bound is static ut 

= 0 and satisfies the Bogo- 

mol’nyi equation 

ux 

= − 

√

 

λ ( u2 − a2) . 

We can solve the equation by separation of variables:

 \int \frac {du}{a^2-u^2} &= \sqrt {\lambda }\int dx \\ \frac {1}{a}\mathrm {arctanh} \left (\frac {u}{a}\right ) &= \sqrt {\lambda }(x-x_0)\\ u(x,t)&=a ~\tanh [a\sqrt {\lambda }(x-x_0)]~,







 


































 

   





  

 

which is nothing but the static kink found in part 1 as a travelling wave solution with 

v = 0 . [ Check : indeed the Bogomol’nyi bound for the energy coincides with the lower 

bound for the energy of kink and antikink (travelling wave) solutions found in part 1.]
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Ex 21 

Consider the modified KdV (or mKdV) equation that you studied in Ex. 13.1, namely 

ut 

+ 6 u2 ux 

+ uxxx 

= 0 

with the boundary conditions 

u → 0 , ux 

→ 0 , uxx 

→ 0 as x → ±∞ . 

1. Find three conserved charges for the mKdV equation which involve u , u2 and u4 re- 

spectively. [25 marks] 

SOLUTION:

 

• The mKdV equation can be written as a continuity equation 

ut 

+ (2 u3 + uxx)x 

= 0 , 

where we identify the charge density ρ1 

= u and the current density j1 

= 2 u3+ uxx. 

The BC’s imply that j → 0 as x → ±∞ , so the charge 

Q1 

= 

∫ + ∞ 

−∞ 

dx u 

is conserved. 

• Now we try ρ2 

= u2. To see if it satisfies a continuity equation ( ρ2)t 

+ ( j2)x 

= 0 

with a suitable current j2, let’s calculate

 (u^2)_t&= 2 u u_t \underset {\text {mKdV}}{=} -12 u^3 u_x - 2 u u_{xxx}= (-3u^4-2u u_{xx})_x + 2u_x u_{xx}\\ &= -(3u^4+2u u_{xx}-u_x^2)_x ~.













  





  







 

We identify j2 

= 3 u4 + 2 uuxx 

− u2 

x, which has the same limit (equal to zero) as 

x → ±∞ . [ NOTE: It is fine to drop x -derivatives of functions which have the 

same limits at ±∞ as I did in lectures. Here I keep track of the current even 

though we only care that it has the same limits at ±∞ .] 

Therefore the charge 

Q2 

= 

∫ + ∞ 

−∞ 

dx u2 

is conserved.
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• Now we try ρ4 

= u4, and calculate

 (u^4)_t&= 4 u^3 u_t \underset {\text {mKdV}}{=} -24 u^5 u_x - 4 u^3 u_{xxx}= (-4u^6-4u^3 u_{xx})_x + 12u^2 u_x u_{xx}\\ &\hspace {-8pt}\underset {\text {mKdV}}{=} -(4u^6+4u^3 u_{xx})_x -2(u_t+u_{xxx})u_{xx} \\ &= -(4u^6+4u^3 u_{xx}+2u_t u_x+u_{xx}^2)_x + 2 u_{tx}u_x\\ &= -(4u^6+4u^3 u_{xx}+2u_t u_x+u_{xx}^2)_x + (u_x^2)_t ~.













  









 





  













  















 

The right-hand side is not an x -derivative, but we can bring the time derivative 

to the left-hand side to write this as the continuity equation 

( u4 − u2 

x︸

 

︷︷

 

︸ 

= ρ4 

)t 

+ (4 u6 + 4 u3 uxx 

+ 2 ut 

ux 

+ u2 

xx︸

 

︷︷

 

︸ 

= j4 

)x 

= 0 . 

The BC’s imply that j4 

→ 0 as x → ±∞ , so the charge 

Q4 

= 

∫ + ∞ 

−∞ 

dx 

(
u4 − u2 

x 

) 

is conserved. 

2. Evaluate these conserved quantities for the two non-trivial travelling-wave solutions 

u ( x, t ) = ±
√

 

v sech 

[√

 

v ( x − x0 

− v t )
] 

that you found in Ex 13.1. 

(The list of integrals at the end of the problem sheet on DUO might help.) [25 marks] 

SOLUTION:

 

First of all, note that we can shift the integration variable x 7→ x + x0 

+ v t to get rid 

of the integration constant x0 

and of time t in the charges. Indeed, the charges are 

conserved, so they don’t depend on time. So I will simply take 

u ( x ) = ± v1 / 2 sech( v1 / 2 x ) 

in the following. We will also need the integrals 

I1 

= 

∫ + ∞ 

−∞ 

dy sech( y ) = π , I2 

= 

∫ + ∞ 

−∞ 

dy sech2( y ) = 2 , I4 

= 

∫ + ∞ 

−∞ 

dy sech4( y ) = 

4

 

3 

, 

which can be extracted from the table of integrals at the end of the problem sheet. 

We easily calculate

 Q_1 &= \pm v^{1/2} \intinf dx~ \sech (v^{1/2}x) = \pm \intinf dy ~\sech (y) = \pm \pi ~,\\ Q_2 &= v \intinf dx~ \sech ^2(v^{1/2} x) = v^{1/2} \intinf dy ~\sech ^2(y) = 2v^{1/2}~,









  





   









  





   







 

where the second equality in both lines follows from setting y = v1 / 2 x . Note that the 

measure changes: dx = v 

− 1 / 2 dy . This is a common source of errors. 

For Q4, we first calculate 

ux 

= ∓ v sinh( v1 / 2 x ) · sech2( v1 / 2 x ) , 

then

 Q_4 &= v^2 \intinf dx~ \sech ^4(v^{1/2}x) \cdot (1-\sinh ^2(v^{1/2}x)) \\ &= v^{3/2} \intinf dy ~\sech ^4(y) \cdot (2-\cosh ^2(y))\\ &= v^{3/2} \intinf dy ~(2\sech ^4(y)- \sech ^2(y)) \\ &= v^{3/2} (2I_4-I_2) = v^{3/2} \left (\frac {8}{3}-2\right ) = \frac {2}{3} v^{3/2}~.









    







    







  



  























