Assignment 3

Due date: Wednesday, 16 November (8pm)

Ex 16

A field $u(x, t)$ has kinetic energy T and potential energy V, where

$$
\begin{align*}
T & =\int_{-\infty}^{+\infty} d x \frac{1}{2} u_{t}^{2} \\
V & =\int_{-\infty}^{+\infty} d x\left[\frac{1}{2} u_{x}^{2}+\frac{\lambda}{2}\left(u^{2}-a^{2}\right)^{2}\right], \tag{2.1}
\end{align*}
$$

and a and $\lambda>0$ are (real) constants The equation of motion for u is

$$
u_{t t}-u_{x x}+2 \lambda u\left(u^{2}-a^{2}\right)=0
$$

1. If u is to have finite energy, what boundary conditions must be imposed on u, u_{x} and u_{t} at $x= \pm \infty$?

SOLUTION:

The energy $E=T+V$ is the integral of a sum of squares, all of which must vanish at spatial infinity to ensure that E is finite. So

$$
u_{t}, u_{x}, u^{2}-a^{2} \rightarrow 0 \quad \text { as } x \rightarrow \pm \infty
$$

In particular, u must tend to $\pm a$.
2. Find the general travelling-wave solution(s) to the equation of motion, consistent with the boundary conditions found in part 1 . Compute the total energy $E=T+V$ for these solutions. For which velocity do the solutions have the lowest energy?
(The list of integrals at the end of the problem sheet on DUO might help.) [25 marks]

[^0]
SOLUTION:

There are four options for the boundary conditions, corresponding to the two possible limits of u as $x \rightarrow-\infty$ and as $x \rightarrow+\infty$. The corresponding travelling wave solutions are

$u(-\infty, t)$	$u(+\infty, t)$	$u(x, t)=$
$-a$	$-a$	$-a$
$+a$	$+a$	$+a$
$-a$	$+a$	$+a$
$+a$	$-a$	$-a \tanh \left[a \sqrt{\lambda} \gamma\left(x-x_{0}-v t\right)\right]$
		tanh $\left[a \sqrt{\lambda} \gamma\left(x-x_{0}-v t\right)\right]$

The nontrivial travelling wave solutions

$$
u(x, t)= \pm a \tanh \left[a \sqrt{\lambda} \gamma\left(x-x_{0}-v t\right)\right]
$$

are obtained as in Ex 13.3, the only difference being that here $a, \lambda \neq 1$. The dependence on a and λ can be recovered by replacing $(u, x, t) \mapsto(a u, a \sqrt{\lambda} x, a \sqrt{\lambda} t)$ in the solution found in Ex 13.3.
The constant solutions have zero energy. For the travelling wave solutions

$$
\begin{aligned}
u_{t}^{2} & =a^{4} \lambda \gamma^{2} v^{2} \operatorname{sech}^{4}\left[a \sqrt{\lambda} \gamma\left(x-x_{0}-v t\right)\right] \\
u_{x}^{2} & =a^{4} \lambda \gamma^{2} \operatorname{sech}^{4}\left[a \sqrt{\lambda} \gamma\left(x-x_{0}-v t\right)\right] \\
\lambda\left(u^{2}-a^{2}\right)^{2} & =a^{4} \lambda \operatorname{sech}^{4}\left[a \sqrt{\lambda} \gamma\left(x-x_{0}-v t\right)\right],
\end{aligned}
$$

where I used

$$
\frac{d}{d y} \tanh (y)=\operatorname{sech}^{2}(y), \quad \tanh ^{2}(y)-1=-\operatorname{sech}^{2}(y)
$$

So the energy of the travelling wave solutions is

$$
\begin{aligned}
E & =\frac{1}{2} \int_{-\infty}^{+\infty} d x\left[u_{t}^{2}+u_{x}^{2}+\lambda\left(u^{2}-a^{2}\right)\right] \\
& =\frac{\lambda a^{4}}{2}\left(1+\gamma^{2}\left(1+v^{2}\right)\right) \int_{-\infty}^{+\infty} d x \operatorname{sech}^{4}\left[a \sqrt{\lambda} \gamma\left(x-x_{0}-v t\right)\right] \\
& =\frac{\sqrt{\lambda} a^{3}}{2 \gamma} \cdot \underbrace{\frac{1-v^{2}+1+v^{2}}{1-v^{2}}}_{=2 \gamma^{2}} \cdot \underbrace{\int_{-\infty}^{+\infty} d y \operatorname{sech}^{4}(y)}_{=4 / 3}=\frac{4}{3} \sqrt{\lambda} a^{3} \cdot \gamma,
\end{aligned}
$$

where $\gamma=1 / \sqrt{1-v^{2}}$ and I used the change of variable $y=a \sqrt{\lambda} \gamma\left(x-x_{0}-v t\right)$ as well as the integral

$$
\int_{-\infty}^{+\infty} d y \operatorname{sech}^{4}(y)=\frac{4}{3}
$$

given at the end of the problem sheet. The travelling waves with the least energy are the static solutions with $v=0$, hence $\gamma=1$, which have energy $\frac{4}{3} \sqrt{\lambda} a^{3}$.
3. One of the possible boundary conditions for part 1 implies that u is a kink, with $[u(x)]_{x=-\infty}^{x=+\infty}=2 a$. Use the Bogomol'nyi argument to show that the total energy $E=$ $T+V$ of that configuration is bounded from below by $C \sqrt{\lambda} a^{3}$, where C is a constant that you should determine, and find the solution u which saturates this bound. Verify that this solution agrees with the lowest-energy solution of part 2 .
[20 marks]
SOLUTION:

$$
\begin{aligned}
E & =\frac{1}{2} \int_{-\infty}^{+\infty} d x\left[u_{t}^{2}+u_{x}^{2}+\lambda\left(u^{2}-a^{2}\right)\right] \\
& =\frac{1}{2} \int_{-\infty}^{+\infty} d x\left[u_{t}^{2}+\left(u_{x} \mp \sqrt{\lambda}\left(u^{2}-a^{2}\right)\right)^{2} \pm 2 \sqrt{\lambda}\left(u^{2}-a^{2}\right) u_{x}\right] \\
& =\frac{1}{2} \int_{-\infty}^{+\infty} d x\left[u_{t}^{2}+\left(u_{x} \mp \sqrt{\lambda}\left(u^{2}-a^{2}\right)\right)^{2}\right] \pm \sqrt{\lambda}\left[\frac{u^{3}}{3}-a^{2} u\right]_{-\infty}^{+\infty} \\
& \geq \pm \sqrt{\lambda}\left[\frac{u^{3}}{3}-a^{2} u\right]_{-\infty}^{+\infty}
\end{aligned}
$$

For the "kink", $\lim _{x \rightarrow \pm \infty} u= \pm a$ (correlated signs: + with,+- with -), therefore

$$
E \geq \pm 2 \sqrt{\lambda}\left(\frac{a^{3}}{3}-a^{3}\right)=\mp \frac{4}{3} \sqrt{\lambda} a^{3} .
$$

a and λ are positive, so the stronger lower bound for the energy is $E \geq \frac{4}{3} \sqrt{\lambda} a^{3}$, which is obtained by picking the lower sign. So $C=4 / 3$.
The solution which saturates the lower bound is static $u_{t}=0$ and satisfies the Bogomol'nyi equation

$$
u_{x}=-\sqrt{\lambda}\left(u^{2}-a^{2}\right) .
$$

We can solve the equation by separation of variables:

$$
\begin{aligned}
\int \frac{d u}{a^{2}-u^{2}} & =\sqrt{\lambda} \int d x \\
\frac{1}{a} \operatorname{arctanh}\left(\frac{u}{a}\right) & =\sqrt{\lambda}\left(x-x_{0}\right) \\
u(x, t) & =a \tanh \left[a \sqrt{\lambda}\left(x-x_{0}\right)\right]
\end{aligned}
$$

which is nothing but the static kink found in part 1 as a travelling wave solution with $v=0$. [Check: indeed the Bogomol'nyi bound for the energy coincides with the lower bound for the energy of kink and antikink (travelling wave) solutions found in part 1.]

Ex 21

Consider the modified KdV (or mKdV) equation that you studied in Ex. 13.1, namely

$$
u_{t}+6 u^{2} u_{x}+u_{x x x}=0
$$

with the boundary conditions

$$
u \rightarrow 0, u_{x} \rightarrow 0, u_{x x} \rightarrow 0 \text { as } x \rightarrow \pm \infty
$$

1. Find three conserved charges for the mKdV equation which involve u, u^{2} and u^{4} respectively.

SOLUTION:

- The mKdV equation can be written as a continuity equation

$$
u_{t}+\left(2 u^{3}+u_{x x}\right)_{x}=0
$$

where we identify the charge density $\rho_{1}=u$ and the current density $j_{1}=2 u^{3}+u_{x x}$. The BC's imply that $j \rightarrow 0$ as $x \rightarrow \pm \infty$, so the charge

$$
Q_{1}=\int_{-\infty}^{+\infty} d x u
$$

is conserved.

- Now we try $\rho_{2}=u^{2}$. To see if it satisfies a continuity equation $\left(\rho_{2}\right)_{t}+\left(j_{2}\right)_{x}=0$ with a suitable current j_{2}, let's calculate

$$
\begin{aligned}
\left(u^{2}\right)_{t} & =2 u u_{t} \underset{\mathrm{mKdV}}{\bar{K}}-12 u^{3} u_{x}-2 u u_{x x x}=\left(-3 u^{4}-2 u u_{x x}\right)_{x}+2 u_{x} u_{x x} \\
& =-\left(3 u^{4}+2 u u_{x x}-u_{x}^{2}\right)_{x}
\end{aligned}
$$

We identify $j_{2}=3 u^{4}+2 u u_{x x}-u_{x}^{2}$, which has the same limit (equal to zero) as $x \rightarrow \pm \infty$. [NOTE: It is fine to drop x-derivatives of functions which have the same limits at $\pm \infty$ as I did in lectures. Here I keep track of the current even though we only care that it has the same limits at $\pm \infty$.]
Therefore the charge

$$
Q_{2}=\int_{-\infty}^{+\infty} d x u^{2}
$$

is conserved.

- Now we try $\rho_{4}=u^{4}$, and calculate

$$
\begin{aligned}
\left(u^{4}\right)_{t} & =4 u^{3} u_{t} \underset{\overline{\mathrm{~K} d \mathrm{~V}}}{ }-24 u^{5} u_{x}-4 u^{3} u_{x x x}=\left(-4 u^{6}-4 u^{3} u_{x x}\right)_{x}+12 u^{2} u_{x} u_{x x} \\
& =\overline{\overline{\mathrm{K}} \mathrm{dV}}-\left(4 u^{6}+4 u^{3} u_{x x}\right)_{x}-2\left(u_{t}+u_{x x x}\right) u_{x x} \\
& =-\left(4 u^{6}+4 u^{3} u_{x x}+2 u_{t} u_{x}+u_{x x}^{2}\right)_{x}+2 u_{t x} u_{x} \\
& =-\left(4 u^{6}+4 u^{3} u_{x x}+2 u_{t} u_{x}+u_{x x}^{2}\right)_{x}+\left(u_{x}^{2}\right)_{t} .
\end{aligned}
$$

The right-hand side is not an x-derivative, but we can bring the time derivative to the left-hand side to write this as the continuity equation

$$
(\underbrace{u^{4}-u_{x}^{2}}_{=\rho_{4}})_{t}+(\underbrace{4 u^{6}+4 u^{3} u_{x x}+2 u_{t} u_{x}+u_{x x}^{2}}_{=j_{4}})_{x}=0 .
$$

The BC's imply that $j_{4} \rightarrow 0$ as $x \rightarrow \pm \infty$, so the charge

$$
Q_{4}=\int_{-\infty}^{+\infty} d x\left(u^{4}-u_{x}^{2}\right)
$$

is conserved.
2. Evaluate these conserved quantities for the two non-trivial travelling-wave solutions

$$
u(x, t)= \pm \sqrt{v} \operatorname{sech}\left[\sqrt{v}\left(x-x_{0}-v t\right)\right]
$$

that you found in Ex 13.1.
(The list of integrals at the end of the problem sheet on DUO might help.) [25 marks]

SOLUTION:

First of all, note that we can shift the integration variable $x \mapsto x+x_{0}+v t$ to get rid of the integration constant x_{0} and of time t in the charges. Indeed, the charges are conserved, so they don't depend on time. So I will simply take

$$
u(x)= \pm v^{1 / 2} \operatorname{sech}\left(v^{1 / 2} x\right)
$$

in the following. We will also need the integrals
$I_{1}=\int_{-\infty}^{+\infty} d y \operatorname{sech}(y)=\pi, \quad I_{2}=\int_{-\infty}^{+\infty} d y \operatorname{sech}^{2}(y)=2, \quad I_{4}=\int_{-\infty}^{+\infty} d y \operatorname{sech}^{4}(y)=\frac{4}{3}$,
which can be extracted from the table of integrals at the end of the problem sheet.
We easily calculate

$$
\begin{aligned}
& Q_{1}= \pm v^{1 / 2} \int_{-\infty}^{+\infty} d x \operatorname{sech}\left(v^{1 / 2} x\right)= \pm \int_{-\infty}^{+\infty} d y \operatorname{sech}(y)= \pm \pi \\
& Q_{2}=v \int_{-\infty}^{+\infty} d x \operatorname{sech}^{2}\left(v^{1 / 2} x\right)=v^{1 / 2} \int_{-\infty}^{+\infty} d y \operatorname{sech}^{2}(y)=2 v^{1 / 2}
\end{aligned}
$$

where the second equality in both lines follows from setting $y=v^{1 / 2} x$. Note that the measure changes: $d x=v^{-1 / 2} d y$. This is a common source of errors.
For Q_{4}, we first calculate

$$
u_{x}=\mp v \sinh \left(v^{1 / 2} x\right) \cdot \operatorname{sech}^{2}\left(v^{1 / 2} x\right),
$$

then

$$
\begin{aligned}
Q_{4} & =v^{2} \int_{-\infty}^{+\infty} d x \operatorname{sech}^{4}\left(v^{1 / 2} x\right) \cdot\left(1-\sinh ^{2}\left(v^{1 / 2} x\right)\right) \\
& =v^{3 / 2} \int_{-\infty}^{+\infty} d y \operatorname{sech}^{4}(y) \cdot\left(2-\cosh ^{2}(y)\right) \\
& =v^{3 / 2} \int_{-\infty}^{+\infty} d y\left(2 \operatorname{sech}^{4}(y)-\operatorname{sech}^{2}(y)\right) \\
& =v^{3 / 2}\left(2 I_{4}-I_{2}\right)=v^{3 / 2}\left(\frac{8}{3}-2\right)=\frac{2}{3} v^{3 / 2}
\end{aligned}
$$

[^0]: ${ }^{1}$ This is a version of the " ϕ^{4} theory". It's called like that because the scalar potential is quartic, and the field u is usually called ϕ.

