
 

Assignment 4 

Due date: Monday, 6 December (9am) 

Please select 2 of the following 3 exercises to be submitted and marked. 

Ex 25 

This is yet another question about the KdV equation ut 

+ 6 uux 

+ uxxx 

= 0 . This time we 

will focus on conservation laws and what they can teach us about the time evolution of the 

class of initial conditions that we experimented with in the first lecture. 

1. Evaluate the first three KdV conserved charges

  Q_1=\infint u~, \qquad Q_2=\infint u^2~, \qquad Q_3=\infint \Big (u^3-\half u_x^2\Big ) 









  







  

























 

(4.1) 

for the initial state u ( x, 0) = A sech2( B x ) , where A and B are constants. [20 marks] 

SOLUTION:

 

I will use the definite integrals (where n ∈ N )

 I_n:=&\intinf dy~\mathrm {sech}^{2n}(y) = \frac {2^{2n-1}((n-1)!)^2}{(2n-1)!} \\ \Longrightarrow ~ I_1=2, \quad &I_2=\frac {4}{3}~, \quad I_3=\frac {16}{15}~, \quad I_4=\frac {32}{35}~, \quad I_5=\frac {256}{315}~, \quad \dots









 

 



 



 







































  

 

which are tabulated at the end of the problem sheet, as well as the derivative formula 

d

 

dy
sech y = − sech y · tanh y = − sech2 y · sinh y , 

which implies

 \frac {d}{d y}\sech ^2 y &= -2~ \sech ^3 y \cdot \sinh ~y \\ \left (\frac {d}{d y}\sech ^2 y\right )^2 &= 4 ~ \sech ^6y \cdot \sinh ^2 y = 4 ~ \sech ^6 y\cdot (\cosh ^2 y-1) = 4 ~ (\sech ^4 y- \sech ^6 y) ~.






     










                  









 

We can then evaluate Q1 

, Q2 

, Q3 

at t = 0 by changing integration variable y = B x :

 Q_1 & = \frac {A}{B}I_1 = \frac {2A}{B} \\ Q_2 & = \frac {A^2}{B}I_2 = \frac {4A^2}{3B}\\ Q_3 & = \frac {A^3}{B}I_3 -2A^2 B (I_2-I_3) = \frac {8A^2(2A-B^2)}{15B}~.























































 

 







 

2. The initial condition

  u(x,0)=N(N+1)\,\sech ^2(x)~, 

      

 

(4.2) 

where N is an integer, is known to evolve at late times into N well-separated solitons, 

with velocities 4 k2, k = 1 . . . N . So for t → + ∞ , this solution approaches the sum of 

N single well-separated solitons

  \label {sum_solitons} u(x,t) \approx \sum _{k=1}^N 2 k^2\,\sech ^2\big [k(x-x_k-4 k^2 t)\big ]~. 

 








 






 

(4.3) 

Since Q1, Q2 

and Q3 

are conserved, their values at t = 0 and t → + ∞ must be equal. 

Use this fact to deduce formulae for the sums of the first N integers, the first N cubes, 

and the first N fifth powers. [30 marks] 

SOLUTION:

 

To calculate the conserved charges Q1 

, Q2 

, Q3 

at the initial time t = 0 , we can just set 

A = N ( N + 1) and B = 1 in the results of part 1:

 Q_1 & = 2N(N+1) \\ Q_2 & = \frac {4}{3} N^2(N+1)^2 \\ Q_3 & = \frac {8}{15}N^2(N+1)^2(2N^2+2N-1)~.



  











 











      

 

To calculate the conserved charges Q1 

, Q2 

, Q3 

at late times t → + ∞ , we use the fact 

that the N solitons are well-separated, that is, they are separated by much larger 

distances than the widths of the solitons. So

 u & \approx \sum _{k=1}^N u_{k,x_k} ~,\qquad u^2 \approx \sum _{k=1}^N u_{k,x_k}^2~, \qquad u^3 \approx \sum _{k=1}^N u_{k,x_k}^3 ~,\qquad u_x^2 \approx \sum _{k=1}^N (\de _x u_{k,x_k})^2









 









 
























 

where 

uk ,xk
( x, t ) = 2 k2 sech2 

[
k ( x − xk 

− 4 k2 t )
] 

.
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The cross terms are negligible because the soliton solutions uk ,xk 

tend to zero exponen- 

tially fast away from their centres, and the solitons are assumed to be well-separated. 

So the contributions of the N well-separated solitons simply add up. Comparing with 

part 1, the k -th soliton uk ,xk 

has Ak 

= 2 k2 and Bk 

= k (the shift of x by xk 

+ 4 k2 t is 

inconsequential for the calculation of the charges as it can be absorbed by a shift of the 

integration variable). So we find the charges

 Q_1 & = 2 \sum _{k=1}^N \frac {A_k}{B_k} = 4 \sum _{k=1}^N k\\ Q_2 & = \frac {4}{3}\sum _{k=1}^N \frac {A_k^2}{B_k} = \frac {16}{3}\sum _{k=1}^N k^3 \\ Q_3 & = \frac {8}{15} \sum _{k=1}^N \frac {A_k^2(2A_k-B_k^2)}{B_k}= \frac {32}{5} \sum _{k=1}^N k^5 ~.



































































































 

Equating the t = 0 expressions and the t → + ∞ expressions for the conserved charges 

we find 

N∑ 

k =1 

k = 

1

 

2 

N ( N +1) , 

N∑ 

k =1 

k3 = 

1

 

4 

N2( N +1)2 , 

N∑ 

k =1 

k5 = 

1

 

12 

N2( N +1)2(2 N2+2 N − 1) . 

Ex 26 

1. Show that the pair of equations

  \label {BT_dAleLiou} \begin {split} (u-v)_+ &=\sqrt {2}\,e^{(u+v)/2}\\ (u+v)_- &=\sqrt {2}\,e^{(u-v)/2} \end {split} 

 









 









 

(5.1) 

provides a Bäcklund transformation linking solutions of v+ − 

= 0 (the wave equation in 

light-cone coordinates) to those of u+ − 

= eu (the Liouville equation). [15 marks] 

SOLUTION:

 

Cross-differentiate (5.1) to get

  \begin {split} (u-v)_{+-} &=\frac {1}{\sqrt {2}}\,e^{(u+v)/2}(u+v)_- = e^{(u+v)/2} e^{(u-v)/2} =e^u\\ (u+v)_{-+} &=\frac {1}{\sqrt {2}}\,e^{(u-v)/2}(u-v)_+ = e^{(u-v)/2}e^{(u+v)/2}=e^u~. \end {split} 

 













 

  

 













 

   

 

Taking sum and difference we obtain

  \begin {split} u_{+-} &= e^u \qquad (\text {Liouville eqn})\\ v_{+-} &=0 \qquad ~ (\text {the wave eqn}) \end {split} 
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2. Starting from d’Alembert’s general solution v = f ( x+) + g ( x−) of the wave equation, 

use the Bäcklund transform (5.1) to obtain the corresponding solutions of the Liouville 

equation for u . 

[ Hint : Set u ( x+ , x−) = 2 U ( x+ , x−) + f ( x+) − g ( x−) . You might simplify the notation 

by setting f ( x+) = log( F 

′( x+)) and g ( x−) = − log( G′( x−)) , where prime means first 

derivative.] [35 marks] 

SOLUTION:

 

Substituting the general solution v = f ( x+) + g ( x−) of the wave equation in the Bäck- 

lund transform we obtain a system of two first order PDEs for a solution u of the 

Liouville equation:

  \begin {cases} u_+-f'(x^+) = \sqrt {2}~ e^{\left [u+f(x^+)+g(x^-)\right ]/2}\\ u_-+g'(x^-) = \sqrt {2}~ e^{\left [u-f(x^+)-g(x^-)\right ]/2} \end {cases} 



























 

The system simplifies if we make the substitution u ( x+ , x−) = 2 U ( x+ , x−) + f ( x+) − 

g ( x−) given in the hint:

  \begin {cases} 2U_+ = \sqrt {2}~ e^{U+f(x^+)}\\ 2U_- = \sqrt {2}~ e^{U-g(x^-)} \end {cases} \qquad \Longleftrightarrow \qquad \begin {cases} e^{-U}~U_+ = \frac {1}{\sqrt {2}}~ e^{f(x^+)} \equiv \frac {1}{\sqrt {2}}~F'(x^+)\\ e^{-U}~U_- = \frac {1}{\sqrt {2}}~ e^{-g(x^-)} \equiv \frac {1}{\sqrt {2}}~G'(x^-) \end {cases}~ 





















































































 

where in the last expression we used f ( x+) = log( F 

′( x+)) and g ( x−) = − log( G′( x−)) 

as suggested. This system can be integrated to get 

− e− U = 

1

 

√

 

2 

(
F ( x+) + G ( x−) + c

) 

where c is an integration constant. Taking the logarithm of the previous equation, 

U = − log 

[ 

− 

1

 

√

 

2 

(
F ( x+) + G ( x−) + c

)] 

so

 u&=2U+\log \left [F'(x^+)G'(x^-)\right ]\\ &= -2 \log \left [-\frac {1}{\sqrt {2}}\left (F(x^+)+G(x^-)+c\right )\right ] +\log \left [F'(x^+)G'(x^-)\right ]\\ & =\log \frac {2 F'(x^+)G'(x^-)}{\left (F(x^+)+G(x^-)+c\right )^2}~.
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Ex 32 

1. The argument of the arctangent in the sine-Gordon 2 -soliton solution 

u ( x, t ) = 4 arctan 

( 

µ 

eθ1 − eθ2

 

1 + eθ1+ θ2 

) 

, θi 

= εi 

γi( x − vi 

t − ¯ xi) 

where µ = ( a2 

+ a1) / ( a2 

− a1) , vi 

= ( a2 

i 

− 1) / ( a2 

i+1) , γi 

= 1 / 

√

 

1 − v2 

i , εi 

= sign( ai) , and 

¯ x1 

and ¯ x2 

are constants as in the lectures, is a continuous function of x ∈ R . Show that, 

in particular, it is never infinite for finite x . What does this imply about the range of 

u ? [ Hint : consider the graph of tan u/ 4 .] [20 marks] 

SOLUTION:

 

Here we are not considering the breather solution, but rather a genuine 2-soliton solu- 

tion. θ1 

and θ2 

are real, therefore 1 + eθ1+ θ2 > 0 (in fact > 1 ), which implies that the 

argument of the arctangent is never infinite. Hence 

1

 

4 

u ( x, t ) ̸ = 

π

 

2 

mod π ⇐⇒ u ( x, t ) ̸ = 2 π mod 4 π 

for all x ∈ R at fixed time t . Therefore if 

u ( x, t ) ∈ ( − 2 π , +2 π ) + 4 nπ 

for some integer n at some finite value of x (at fixed t), then by continuity 

u ( x, t ) ∈ ( − 2 π , +2 π ) + 4 nπ 

with the same integer n for all finite values of x (at fixed t). In fact the previous 

argument applies for all values of x and t , since u is a continuous function of both x 

and t . 

2. By taking the limits of this function as x → ±∞ (with t = ¯ x1 

= ¯ x2 

= 0 for simplicity), 

show that the topological charge of the two-soliton solution is 0 if sign( a1) = sign( a2) , 

and ± 2 if sign( a1) = − sign( a2) , in units where the topological charge of a kink is 1 . 

[30 marks] 

SOLUTION:

 

If t = ¯ x1 

= ¯ x2 

= 0 , the 2-soliton solution becomes

 \label {2sol} \tan \frac {u}{4}= \mu \,\frac {e^{\varepsilon _1 \gamma _1 x}-e^{\varepsilon _2 \gamma _2 x}}{ 1+e^{(\varepsilon _1 \gamma _1 +\varepsilon _2 \gamma _2)x}} 















 







 





 

(5.2) 

where εi 

= sign( ai) . We need to consider two cases: either a1 

and a2 

have the same 

sign, or they have opposite sign.
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(a) ε1 

= ε2 

⇔ sign( a1) = sign( a2) :

 

Both exponentials eε1 

γ1 

x and eε2 

γ2 

x tend to zero or to infinity in any given limit 

x → ±∞ . In the former case the numerator of the RHS of (5.2) tends to zero and 

the denominator tends to 1 . In the latter case the numerator and the denominator 

diverge, but the denominator diverges faster because of the sum in the exponent. 

In either case 

lim 

| x |→ + ∞
tan 

u

 

4 

= 0 . 

Choosing for definiteness the branch of the arctangent such that u → 0 as x → 

−∞ , it follows from the previous limit and the continuity argument in part 1 that 

u → 0 as x → + ∞ as well. Therefore the topological charge of the solution is 

1

 

2 π 

( 

lim 

x → + ∞ 

u ( x, t ) − lim 

x →−∞ 

u ( x, t ) 

) 

= 0 . 

(b) ε1 

= − ε2 

⇔ sign( a1) = − sign( a2) :

 

In this case in any given limit x → ±∞ one of the two exponentials eε1 

γ1 

x and 

eε2 

γ2 

x tends to zero and the other exponential tends to infinity. Then the numerator 

diverges faster than the denominator (if that diverges at all). Hence 

lim 

| x |→ + ∞
tan 

u

 

4 

= ±∞ , 

with opposite signs for x → ±∞ . Choosing for definiteness the branch of the 

arctangent such that u → 0 as x → −∞ , it follows from the previous limit and 

the continuity argument in part 1 that u → 0 as x → + ∞ as well. Therefore the 

topological charge of the solution is 

1

 

2 π 

( 

lim 

x → + ∞ 

u ( x, t ) − lim 

x →−∞ 

u ( x, t ) 

) 

= 

± 4 π

 

2 π 

= ± 2 .


