Assignment 4

Due date: Friday, 2 December (8pm)

Ex 25

This is yet another question about the KdV equation u; + 6uu, + e, = 0. This time we
will focus on conservation laws and what they can teach us about the time evolution of the
class of initial conditions that we experimented with in the first lecture.

1. Evaluate the first three KdV conserved charges
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for the initial state u(x,0) = Asech?(Bxz), where A and B are constants. [20 marks|

SOLUTION:
I will use the definite integrals (where n € N)
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which are tabulated at the end of the problem sheet, as well as the derivative formula

d
d—sech y = —sech y - tanhy = —sech?®y - sinhy ,
Y

which implies

d
—sech?y = —2 sech®y - sinh y
dy

d 2
(d—sech2y> = 4 sech® - sinh? y = 4 sech®y - (cosh®y — 1) = 4 (sechy — sech®y) .
Y



We can then evaluate @)1, @2, Q3 at t = 0 by changing integration variable y = Buz:
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2. The initial condition
u(r,0) = N(N + 1) sech?(z) , (4.2)

where N is an integer, is known to evolve at late times into N well-separated solitons,
with velocities 4k?, k = 1...N. So for t — o0, this solution approaches the sum of
N single well-separated solitons

N
u(z, t) =~ Z 2k* sech? [k(z — z), — 4k%t)] . (4.3)
k=1

Since )1, ()2 and ()3 are conserved, their values at t = 0 and ¢t — 400 must be equal.
Use this fact to deduce formulae for the sums of the first N integers, the first N cubes,
and the first N fifth powers. [30 marks]

SOLUTION:

To calculate the conserved charges )1, Q)2, Y3 at the initial time ¢ = 0, we can just set
A= N(N+1) and B =1 in the results of part 1:

Q1 =2N(N +1)
4
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Qs = EN2(N +1)*(2N*+2N — 1) .

To calculate the conserved charges @1, ()2, Q3 at late times ¢ — 400, we use the fact
that the N solitons are well-separated, that is, they are separated by much larger
distances than the widths of the solitons. So
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where
Uk, z,, ($, t) = 2]{72 SeCh2 [k‘(;p - 41{:%)} .

The cross terms are negligible because the soliton solutions uy, ,, tend to zero exponen-
tially fast away from their centres, and the solitons are assumed to be well-separated.



Ex

So the contributions of the N well-separated solitons simply add up. Comparing with
part 1, the k-th soliton wy,, has Ay = 2k* and By = k (the shift of x by x), + 4kt is
inconsequential for the calculation of the charges as it can be absorbed by a shift of the
integration variable). So we find the charges
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Equating the ¢t = 0 expressions and the ¢ — 400 expressions for the conserved charges
we find
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26
. Show that the pair of equations
(1= v)y = VI -
(utv)- = V32 ‘
provides a Bécklund transformation linking solutions of v, = 0 (the wave equation in
light-cone coordinates) to those of u;,_ = e" (the Liouville equation). |15 marks]
SOLUTION:
Cross-differentiate ((5.1)) to get
(u— ) = —= W2y 4 p)_ = ) 2u)/2 _ pu
V2
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Taking sum and difference we obtain

(U + ’U)_+ _ e(u—v)/2(u - U)+ _ e(u—v)/Qe(u—l-’U)/Q — v

Uy =e" (Liouville eqn)

vy =0 (the wave eqn)



2. Starting from d’Alembert’s general solution v = f(zT) + g(x~) of the wave equation,
use the Bécklund transform to obtain the corresponding solutions of the Liouville
equation for u.

[Hint: Set u(zt,27) =2U(z",27) + f(27) — g(z7). You might simplify the notation
by setting f(xt) = log(F'(z")) and g(z~) = —log(G'(z~)), where prime means first
derivative.| [35 marks|

SOLUTION:

Substituting the general solution v = f(x%) + g(z™) of the wave equation in the Béck-
lund transform we obtain a system of two first order PDEs for a solution u of the
Liouville equation:
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The system simplifies if we make the substitution u(z™,27) = 2U (2, 27) + f(zT) —
g(x™) given in the hint:
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where in the last expression we used f(z") = log(F'(x)) and g(z7) = —log(G'(z7))
as suggested. This system can be integrated to get
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where ¢ is an integration constant. Taking the logarithm of the previous equation,
U= —log [—i (F(z*)+ G(a™) + c)}
V2

u=2U +log [F'(z7)G'(27)]

= —2log {—% (F(z%) 4+ G(z™) + c)} +log [F'(2)G'(z7)]
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