Assignment 6 Due date: Friday, 9 February (8pm)

Ex 54

Consider the time independent Schrödinger equation

$$-\psi''(x) + V(x)\psi(x) = k^2\psi(x) ,$$

where the potential V(x) is the sum of two delta functions:

$$V(x) = -a\delta(x) - b\delta(x - r)$$

Taking r > 0, the solution $\psi(x)$ can be split into three pieces, $\psi_1(x)$, $\psi_2(x)$ and $\psi_3(x)$, defined on $(-\infty, 0)$, (0, r), and $(r, +\infty)$ respectively.

- 1. Write down the four matching conditions relating ψ_1 , ψ_2 and ψ_3 , and their derivatives, at x = 0 and x = r. [10 marks]
- 2. For a scattering solution describing waves incident from the left, ψ_1 and ψ_3 are given by

$$\psi_1(x) = e^{ikx} + R(k) e^{-ikx}, \quad \psi_3(x) = T(k) e^{ikx}.$$

Write down the general form of ψ_2 , and then use the matching conditions found in part 1 to eliminate the unknowns and determine R(k) and T(k). [40 marks]

3. Show from the answer to part 2 that, for there to be a bound state pole at $k = i\mu$, μ must satisfy

$$e^{-2\mu r} = (1 - 2\mu/a)(1 - 2\mu/b)$$
 . (***)

[10 marks]

- 4. The solutions to (***) can be analysed using a graphical method. Show that:
 - (a) if both a and b are negative, then there are no bound states;
 - (b) if a and b have opposite signs, then there is at most one bound state, occurring when a + b > rab (note: since a and b have opposite signs, rab is negative);
 - (c) if a and b are positive, then the number of bound states is one if $rab \leq a + b$, and two otherwise.

Sketch on the *ab*-plane the regions corresponding to zero, one and two bound states, and indicate the form of $\psi(x)$ for each of the two bound states found when $ab/(a+b) > r^{-1}$. [40 marks]