Assignment 6
 Due date: Friday, 9 February (8pm)

Ex 54

Consider the time independent Schrödinger equation

$$
-\psi^{\prime \prime}(x)+V(x) \psi(x)=k^{2} \psi(x),
$$

where the potential $V(x)$ is the sum of two delta functions:

$$
V(x)=-a \delta(x)-b \delta(x-r)
$$

Taking $r>0$, the solution $\psi(x)$ can be split into three pieces, $\psi_{1}(x), \psi_{2}(x)$ and $\psi_{3}(x)$, defined on $(-\infty, 0),(0, r)$, and $(r,+\infty)$ respectively.

1. Write down the four matching conditions relating ψ_{1}, ψ_{2} and ψ_{3}, and their derivatives, at $x=0$ and $x=r$.
[10 marks]
2. For a scattering solution describing waves incident from the left, ψ_{1} and ψ_{3} are given by

$$
\psi_{1}(x)=e^{i k x}+R(k) e^{-i k x}, \quad \psi_{3}(x)=T(k) e^{i k x}
$$

Write down the general form of ψ_{2}, and then use the matching conditions found in part 1 to eliminate the unknowns and determine $R(k)$ and $T(k)$.
3. Show from the answer to part 2 that, for there to be a bound state pole at $k=i \mu, \mu$ must satisfy

$$
\begin{equation*}
e^{-2 \mu r}=(1-2 \mu / a)(1-2 \mu / b) . \tag{***}
\end{equation*}
$$

[10 marks]
4. The solutions to $\left({ }^{* * *}\right)$ can be analysed using a graphical method. Show that:
(a) if both a and b are negative, then there are no bound states;
(b) if a and b have opposite signs, then there is at most one bound state, occurring when $a+b>r a b$ (note: since a and b have opposite signs, $r a b$ is negative);
(c) if a and b are positive, then the number of bound states is one if $r a b \leq a+b$, and two otherwise.

Sketch on the $a b$-plane the regions corresponding to zero, one and two bound states, and indicate the form of $\psi(x)$ for each of the two bound states found when $a b /(a+b)>r^{-1}$.
[40 marks]

