
 

Assignment 6 

Due date: Monday, 12 February (12 noon) 

Ex 54 

Consider the time independent Schrödinger equation

 

− ψ 

′′( x ) + V ( x ) ψ ( x ) = k2 ψ ( x ) ,

 

where the potential V ( x ) is the sum of two delta functions:

 

V ( x ) = − aδ ( x ) − bδ ( x − r ) .

 

Taking r > 0 , the solution ψ ( x ) can be split into three pieces, ψ1( x ) , ψ2( x ) and ψ3( x ) , defined 

on ( −∞ , 0) , (0 , r ) , and ( r, + ∞ ) respectively. 

1. Write down the four matching conditions relating ψ1, ψ2 

and ψ3, and their derivatives, 

at x = 0 and x = r . [10 marks] 

SOLUTION:

 

We have 

ψ ( x ) = 

   

ψ1( x ) , x < 0 , 

ψ2( x ) , 0 < x < r , 

ψ3( x ) , x > r . 

With ψ = ψ1, ψ2 

or ψ3 

as above, at x = 0 we have

 

ψ1(0
−) = ψ2(0

+) ≡ ψ (0) , ψ 

′ 

2(0
+) − ψ 

′ 

1(0
−) = − aψ (0) ,

 

while at x = r ,

 

ψ2( r 

−) = ψ3( r+) ≡ ψ ( r ) , ψ 

′ 

3( r+) − ψ 

′ 

2( r 

−) = − bψ ( r ) .

 

2. For a scattering solution describing waves incident from the left, ψ1 

and ψ3 

are given 

by

 

ψ1( x ) = eik x + R ( k ) e− ik x , ψ3( x ) = T ( k ) eik x .

 

Write down the general form of ψ2, and then use the matching conditions found in part 

1 to eliminate the unknowns and determine R ( k ) and T ( k ) . [40 marks] 

1



 

2 

SOLUTION:

 

ψ ( x ) = 

   

eik x + R ( k ) e− ik x , x < 0 , 

A ( k ) eik x + B ( k )( k ) e− ik x , 0 < x < r , 

T ( k ) eik x , x > r .

 

Imposing the matching conditions at x = 0 ,

 

1 + R ( k ) = A ( k ) + B ( k ) , ik ( A ( k ) − B ( k )) − ik (1 − R ( k )) = − a (1 + R ( k )) ,

 

so

 

A ( k ) + B ( k ) = 1 + R ( k ) , ( α ) 

A ( k ) − B ( k ) = 

( 

1 + i 

a

 

k 

) 

− R ( k ) 

( 

1 − i 

a

 

k 

) 

. ( β )

 

Likewise, looking at x = r ,

 

A ( k ) eik r + B ( k ) e− ik r = T ( k ) eik r 

ik T ( k ) eik r − ik ( A ( k ) eik r − B ( k ) e− ik r) = − bT ( k ) eik r ,

 

so

 

A ( k ) eik r + B ( k ) e− ik r = T ( k ) eik r ( γ ) 

A ( k ) eik r − B ( k ) e− ik r = T ( k ) eik r 

( 

1 − i 

b

 

k 

) 

. ( δ )

 

Solving these for A ( k ) and B ( k ) ,

 

( γ ) + ( δ ) : A ( k ) = 

( 

1 − i 

b

 

2 k 

) 

T ( k ) ; ( γ ) − ( δ ) : B ( k ) = i 

b

 

2 k 

e2 ik r T ( k ) .

 

Thus ( α ) and ( β ) become:

 

1 + R ( k ) = 

( 

1 − i 

b

 

2 k 

+ i 

b

 

2 k 

e2 ik r 

) 

T ( k )

 

( α 

′)

 

( 

1 − i 

b

 

2 k 

− i 

b

 

2 k 

e2 ik r 

) 

T ( k ) = · · · = 2 − 

( 

1 − i 

a

 

k 

) 

(1 + R ( k ))

 

( β 

′) 

and substituting for 1 + R ( k ) from ( α 

′) into ( β 

′) and solving for T ( k ) yields

 

T ( k ) = 

4 k2 / ( ab )

 

e2 ik r − (1 + i2 k

 

a 

)(1 + i2 k

 

b 

) 

= 

4 k2

 

abe2 ik r − ( a + 2 ik )( b + 2 ik ) 

.

 

Finally we can use ( α 

′) once more to find

 

R ( k ) = 

1 + i2 k

 

b 

− (1 − i2 k

 

a 

) e2 ik r

 

e2 ik r − (1 + i2 k

 

a 

)(1 + i2 k

 

b 

) 

= 

a ( b + 2 ik ) − b ( a − 2 ik ) e2 ik r

 

abe2 ik r − ( a + 2 ik )( b + 2 ik ) 

.

 

NOTE: problems like this can be solved more systematically using ‘transfer matrices’. 

Ask me about them if you are interested.
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3. Show from the answer to part 2 that, for there to be a bound state pole at k = iµ (with 

µ > 0 ), µ must satisfy

 

e− 2 µr = (1 − 2 µ/a )(1 − 2 µ/b ) .

 

(***) 

[10 marks] 

SOLUTION:

 

Bound states occur at poles in T ( k ) with k = iµ , µ > 0 . This needs the denominator 

of the above formula for T ( k ) |k = iµ 

to vanish, that is

 

e− 2 µr = 

( 

1 − 

2 µ

 

a 

) ( 

1 − 

2 µ

 

b 

)

 

as required. 

4. The solutions to (***) can be analysed using a graphical method. Show that: 

(a) if both a and b are negative, then there are no bound states; 

(b) if a and b have opposite signs, then there is at most one bound state, occurring 

when a + b > r ab (note: since a and b have opposite signs, r ab is negative); 

(c) if a and b are positive, then the number of bound states is one if r ab ≤ a + b , and 

two otherwise. 

Sketch on the ab -plane the regions corresponding to zero, one and two bound states, and 

indicate the form of ψ ( x ) for each of the two bound states found when ab/ ( a + b ) > r 

− 1. 

[40 marks] 

SOLUTION:

 

The LHS of (***), plotted in red below, is a simple decaying exponential, while the RHS 

(plotted in blue) is a quadratic in µ with zeros at µ = a/ 2 and µ = b/ 2 . The two curves 

always intersect at µ = 0 ; bound states will occur if there are further intersections with 

µ > 0 . Going case by case, 

(a) For a < 0 , b < 0 , both zeros of the RHS are negative and so there are no intersections 

with µ > 0 :
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(b) When a and b have opposite signs, there is one negative and one positive zero of 

the RHS, and the number of intersections with µ > 0 will be either zero or one:

 

Which one occurs depends on the relative gradients of the LHS and RHS at µ = 0 . 

These gradients are

 

GL 

= 

d

 

dµ 

e− 2 µr 

∣∣∣∣ 

µ =0 

= − 2 r

 

and

 

GR 

= 

d

 

dµ 

( 

1 − 

2 µ

 

a 

) ( 

1 − 

2 µ

 

b 

) 

∣∣∣∣ 

µ =0 

= −2

 

a 

− 

2

 

b 

= − 2
( a + b )

 

ab

 

and we are in the situation of the right-hand plot, with one bound state, when GL 

< GR, 

ie − 2 r < − 2( a + b ) / ( ab ) , or r > ( a + b ) / ( ab ) , or (noting that ab < 0 when rearranging 

the inequality)

 

a + b > r ab ,

 

as required. Note that this should indeed be a strict inequality: when a + b = r ab 

the gradients at the origin are equal, and by considering the second derivatives (or 

otherwise) it can be shown that the only intersection is at µ = 0 , which does not give 

a bound state. 

(c) When a and b are both positive, both zeros of the RHS are positive, and the number 

of intersections with µ > 0 is either one or two:

 

Again, a comparison of the derivatives of the two curves at µ = 0 determines which 

situation arises, and calculating as above shows that there is one bound state for r ab ≤ 

a + b and two otherwise. Also as above, extra arguments need to be made when 

r ab = a + b to get the right answer in this case too. 

For the last part, note that the transitions in the numbers of bound states occur on the 

curves r ab = a + b , or r ab − a − b = 0 , or r ( a − 1 /r )( b − 1 /r ) = 1 /r . On the a , b plane



 

5 

this is the hyperbola b = 1 /a , but with the asymptotes shifted up and to the right, to 

b = 1 /r and a = 1 /r . Here’s a region plot in the ( a, b ) -plane for r = 1 / 2 :

 

Finally, here’s a rough sketch of the forms that ψ ( x ) takes in the zone where there are 

two bound states:


