Assignment 6

Due date: Monday, 12 February (12 noon)

Ex 54
Consider the time independent Schrodinger equation
—¢" (@) + V(2)y(x) = k()
where the potential V'(x) is the sum of two delta functions:
V(z) = —ad(x) —bd(z —) .

Taking r > 0, the solution ¢ (x) can be split into three pieces, 1 (), 1¥o(z) and ¢3(z), defined
on (—00,0), (0,7), and (r, +00) respectively.

1. Write down the four matching conditions relating 1, 15 and 13, and their derivatives,

at v =0and z =7r. [10 marks|
SOLUTION:
We have
n(z), =<0,
(x) =q va(x), O<z<r,
v3(x), =>7r

while at z = r,

Ya(r™) = ¢s(r) = a(r) . Us(rT) —h(rT) = —bu(r) .

2. For a scattering solution describing waves incident from the left, ¢, and 3 are given
by
Uy (x) = e* 4 R(k)e™™  aps(x) = T(k)e™™.

Write down the general form of )5, and then use the matching conditions found in part
1 to eliminate the unknowns and determine R(k) and T'(k). [40 marks|



SOLUTION:
eke + R(k) e~ r <0,
Y(z) =3 Ak)e* + B(k)(k)e ™, 0<x<r,
T(k) eik:p7 r>r.

Imposing the matching conditions at x = 0,
1+ R(k) = A(k) + B(k), ik(A(k)— B(k)) —ik(l — R(k)) = —a(1 + R(k)),
A(k)+ B(k) =1+ R(k), (a)
A(k) — B(k) = (1 n @%) — R(k) (1 - %) . (8)

Likewise, looking at = = r,
A(k) e* + B(k) e = T(k) e
ikT (k) e* — ik(A(k) e — B(k)e ™) = —bT' (k) e™,
SO

A(k) e* + B(k) e = T(k) e ()
A(k) e — B(k) e = T(k) e (1 - i—) : (0)

Solving these for A(k) and B(k),

() + (6) A(k)z(l—i%) () ()= (3): BU)=ime e T(k).

Thus («) and () become:

1+ R(k) = (1 — z% + z% e%’“) T(k) (o)
(1 LA e2i’“> Tk)=---=2— (1 — z’ﬁ) (1+ R(k)) (B
2k 2k k
and substituting for 1+ R(k) from (o) into (') and solving for T'(k) yields
4k* / (ab) 4k?

T(k) = = ; -
(k) e2ibr — (14 425)(1 4 ¢2E)  abe?  — (a + 2ik)(b + 2ik)

Finally we can use (a’) once more to find

2k _ 2k 2ikr AN _ 9 2ikr
R(k) = 1'—1— i —(1—1i%)e _ a(b + 2ik) b(a. 2zk)e. '
€2kt — (1 +422)(1 4 42)  abe? ™ — (a + 2ik)(b + 2ik)

NOTE: problems like this can be solved more systematically using ‘transfer matrices’.
Ask me about them if you are interested.



3. Show from the answer to part 2 that, for there to be a bound state pole at k = iu (with
p > 0), ;o must satisfy

e = (1= 2u/a)(1 = 2p/b) (55
[10 marks]

SOLUTION:

Bound states occur at poles in T'(k) with k& = ip, g > 0. This needs the denominator
of the above formula for T'(k)|;—;, to vanish, that is

e = (12 (12
a b

as required.

4. The solutions to (***) can be analysed using a graphical method. Show that:

(a) if both @ and b are negative, then there are no bound states;

(b) if a and b have opposite signs, then there is at most one bound state, occurring
when a + b > rab (note: since a and b have opposite signs, rab is negative);

(c) if @ and b are positive, then the number of bound states is one if rab < a + b, and
two otherwise.

Sketch on the ab-plane the regions corresponding to zero, one and two bound states, and
indicate the form of ¥ () for each of the two bound states found when ab/(a+b) > r~!.
|40 marks]

SOLUTION:

The LHS of (***)] plotted in red below, is a simple decaying exponential, while the RHS
(plotted in blue) is a quadratic in pu with zeros at y = a/2 and p = b/2. The two curves
always intersect at ;1 = 0; bound states will occur if there are further intersections with
i > 0. Going case by case,

(a) For a < 0, b < 0, both zeros of the RHS are negative and so there are no intersections
with p > 0:




(b) When a and b have opposite signs, there is one negative and one positive zero of
the RHS, and the number of intersections with g > 0 will be either zero or one:

Which one occurs depends on the relative gradients of the LHS and RHS at p = 0.
These gradients are

and

d 20 21
=g (-2 (- F)

and we are in the situation of the right-hand plot, with one bound state, when G, < G,
ie —=2r < —2(a+b)/(ab), or r > (a+ b)/(ab), or (noting that ab < 0 when rearranging
the inequality)

pn=0

a+b>rab,

as required. Note that this should indeed be a strict inequality: when a + b = rab
the gradients at the origin are equal, and by considering the second derivatives (or
otherwise) it can be shown that the only intersection is at g = 0, which does not give
a bound state.

(c) When a and b are both positive, both zeros of the RHS are positive, and the number
of intersections with p > 0 is either one or two:
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Again, a comparison of the derivatives of the two curves at u = 0 determines which
situation arises, and calculating as above shows that there is one bound state for rab <
a + b and two otherwise. Also as above, extra arguments need to be made when
rab = a 4+ b to get the right answer in this case too.

For the last part, note that the transitions in the numbers of bound states occur on the
curves rab=a+b, or rab—a—b =10, or r(a —1/r)(b—1/r) = 1/r. On the a, b plane



this is the hyperbola b = 1/a, but with the asymptotes shifted up and to the right, to
b=1/r and a = 1/r. Here’s a region plot in the (a, b)-plane for r = 1/2:
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Finally, here’s a rough sketch of the forms that ¢)(x) takes in the zone where there are
two bound states:
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