
 

Assignment 6 

Due date: Monday, 12 February (12 noon) 

Ex 54 

Consider the time independent Schrödinger equation

  -\psi ''(x) + V(x)\psi (x)=k^2\psi (x)~, 



     

 

where the potential V ( x ) is the sum of two delta functions:

  V(x)=-a\delta (x)-b\delta (x-r)~. 

       

 

Taking r > 0 , the solution ψ ( x ) can be split into three pieces, ψ1( x ) , ψ2( x ) and ψ3( x ) , defined 

on ( −∞ , 0) , (0 , r ) , and ( r, + ∞ ) respectively. 

1. Write down the four matching conditions relating ψ1, ψ2 

and ψ3, and their derivatives, 

at x = 0 and x = r . [10 marks] 

SOLUTION:

 

We have 

ψ ( x ) = 

   

ψ1( x ) , x < 0 , 

ψ2( x ) , 0 < x < r , 

ψ3( x ) , x > r . 

With ψ = ψ1, ψ2 

or ψ3 

as above, at x = 0 we have

  \psi _1(0^-)=\psi _2(0^+)\equiv \psi (0)~,\quad \psi '_2(0^+)-\psi '_1(0^-) = -a \psi (0)~, 


 

   




 




  

 

while at x = r ,

  \psi _2(r^-)=\psi _3(r^+)\equiv \psi (r)~,\quad \psi '_3(r^+)-\psi '_2(r^-) = -b \psi (r)~. 



     



 





  

 

2. For a scattering solution describing waves incident from the left, ψ1 

and ψ3 

are given 

by

  \psi _1(x)=e^{ikx}+R(k)\,e^{-ikx}, \quad \psi _3(x)=T(k)\,e^{ikx}. 

         

 

Write down the general form of ψ2, and then use the matching conditions found in part 

1 to eliminate the unknowns and determine R ( k ) and T ( k ) . [40 marks] 
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SOLUTION:

  \psi (x)= \begin {cases} ~~~~~~~\,e^{ikx}+R(k)\,e^{-ikx}\,, & x<0\,, \\ ~A(k)\,e^{ikx}+B(k)(k)\,e^{-ikx}\,, & 0<x<r\,, \\ ~T(k)\,e^{ikx}\,, & x>r\,. \end {cases} 





       

          

      

 

Imposing the matching conditions at x = 0 ,

  1+R(k)=A(k)+B(k)~,\quad ik(A(k)-B(k)) -ik(1-R(k)) =-a(1+R(k))\,, 

                  

 

so

A(k)+B(k)&=1+R(k)\,, \tag {$\alpha $} \\ A(k)-B(k)&=\left (1+i\frac {a}{k}\right )-R(k)\left (1-i\frac {a}{k}\right )\,. \tag {$\beta $}

       

  



 













 











 

Likewise, looking at x = r ,

  \begin {split} A(k)\,e^{ikr}+B(k)\,e^{-ikr}&=T(k)\,e^{ikr}\\ ikT(k)\,e^{ikr} - ik(A(k)\,e^{ikr}-B(k)\,e^{-ikr}) &= -bT(k)\,e^{ikr}, \end {split} 

       

           

 

so

A(k)\,e^{ikr}+B(k)\,e^{-ikr}&=T(k)\,e^{ikr} \tag {$\gamma $} \\ A(k)\,e^{ikr}-B(k)\,e^{-ikr}&=T(k)\,e^{ikr}\left (1-i\frac {b}{k}\right )\,. \tag {$\delta $}

        

       



 











 

Solving these for A ( k ) and B ( k ) ,

  (\gamma )+(\delta ): ~~ A(k)=\left (1-i\frac {b}{2k}\right )\,T(k)\,;\quad (\gamma )-(\delta ):~~ B(k)=i\frac {b}{2k}\,e^{2ikr}\,T(k)\,. 

    



 









        







  

 

Thus ( α ) and ( β ) become:

  {}~~~~~~ {}~~~~~~ {}~~~~~ 1+R(k)=\left (1-i\frac {b}{2k}+i\frac {b}{2k}\,e^{2ikr}\right )\,T(k) \tag {$\alpha '$} 

  



 





















 

( α 

′)

  \left (1-i\frac {b}{2k}-i\frac {b}{2k}\,e^{2ikr}\right )\,T(k)=\dots = 2-\left (1-i\frac {a}{k}\right )(1+R(k)) \tag {$\beta '$} 



 



















       



 









 

 

( β 

′) 

and substituting for 1 + R ( k ) from ( α 

′) into ( β 

′) and solving for T ( k ) yields

  T(k)=\frac {4k^2/(ab)}{e^{2ikr}-(1+i\frac {2k}{a})(1+i\frac {2k}{b})}= \frac {4k^2}{ab e^{2ikr}-(a+2ik)(b+2ik)}\,. 

 





   





 













     



 

Finally we can use ( α 

′) once more to find

  R(k)=\frac {1+i\frac {2k}{b}-(1-i\frac {2k}{a})e^{2ikr}}{e^{2ikr}-(1+i\frac {2k}{a})(1+i\frac {2k}{b})} = \frac {a(b +2ik)-b(a-2ik)e^{2ikr}}{ab e^{2ikr}-(a+2ik)(b+2ik)} \,. 



 





  









   





 









     



     



 

NOTE: problems like this can be solved more systematically using ‘transfer matrices’. 

Ask me about them if you are interested.
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3. Show from the answer to part 2 that, for there to be a bound state pole at k = iµ (with 

µ > 0 ), µ must satisfy

  \tag {***} e^{-2\mu r}=(1-2\mu /a)(1-2\mu /b)~. 

      

 

(***) 

[10 marks] 

SOLUTION:

 

Bound states occur at poles in T ( k ) with k = iµ , µ > 0 . This needs the denominator 

of the above formula for T ( k ) |k = iµ 

to vanish, that is

  e^{-2\mu r}=\left (1-\frac {2\mu }{a}\right )\left (1-\frac {2\mu }{b}\right ) 

























 

as required. 

4. The solutions to (***) can be analysed using a graphical method. Show that: 

(a) if both a and b are negative, then there are no bound states; 

(b) if a and b have opposite signs, then there is at most one bound state, occurring 

when a + b > r ab (note: since a and b have opposite signs, r ab is negative); 

(c) if a and b are positive, then the number of bound states is one if r ab ≤ a + b , and 

two otherwise. 

Sketch on the ab -plane the regions corresponding to zero, one and two bound states, and 

indicate the form of ψ ( x ) for each of the two bound states found when ab/ ( a + b ) > r 

− 1. 

[40 marks] 

SOLUTION:

 

The LHS of (***), plotted in red below, is a simple decaying exponential, while the RHS 

(plotted in blue) is a quadratic in µ with zeros at µ = a/ 2 and µ = b/ 2 . The two curves 

always intersect at µ = 0 ; bound states will occur if there are further intersections with 

µ > 0 . Going case by case, 

(a) For a < 0 , b < 0 , both zeros of the RHS are negative and so there are no intersections 

with µ > 0 :
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(b) When a and b have opposite signs, there is one negative and one positive zero of 

the RHS, and the number of intersections with µ > 0 will be either zero or one:

 

Which one occurs depends on the relative gradients of the LHS and RHS at µ = 0 . 

These gradients are

  G_L=\frac {d}{d\mu }e^{-2\mu r}\bigg |_{\mu =0}=-2r 



















 

and

  G_R= \frac {d}{d\mu }\left (1-\frac {2\mu }{a}\right )\left (1-\frac {2\mu }{b}\right )\bigg |_{\mu =0} =-\frac {2}{a}-\frac {2}{b} =-2\frac {(a{+}b)}{ab} 


























































 

and we are in the situation of the right-hand plot, with one bound state, when GL 

< GR, 

ie − 2 r < − 2( a + b ) / ( ab ) , or r > ( a + b ) / ( ab ) , or (noting that ab < 0 when rearranging 

the inequality)

  a+b>rab\,, 

    

 

as required. Note that this should indeed be a strict inequality: when a + b = r ab 

the gradients at the origin are equal, and by considering the second derivatives (or 

otherwise) it can be shown that the only intersection is at µ = 0 , which does not give 

a bound state. 

(c) When a and b are both positive, both zeros of the RHS are positive, and the number 

of intersections with µ > 0 is either one or two:

 

Again, a comparison of the derivatives of the two curves at µ = 0 determines which 

situation arises, and calculating as above shows that there is one bound state for r ab ≤ 

a + b and two otherwise. Also as above, extra arguments need to be made when 

r ab = a + b to get the right answer in this case too. 

For the last part, note that the transitions in the numbers of bound states occur on the 

curves r ab = a + b , or r ab − a − b = 0 , or r ( a − 1 /r )( b − 1 /r ) = 1 /r . On the a , b plane
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this is the hyperbola b = 1 /a , but with the asymptotes shifted up and to the right, to 

b = 1 /r and a = 1 /r . Here’s a region plot in the ( a, b ) -plane for r = 1 / 2 :

 

Finally, here’s a rough sketch of the forms that ψ ( x ) takes in the zone where there are 

two bound states:


