Assignment 6

Due date: Monday, 12 February (12 noon)

Ex 54

Consider the time independent Schrödinger equation

$$
-\psi^{\prime \prime}(x)+V(x) \psi(x)=k^{2} \psi(x)
$$

where the potential $V(x)$ is the sum of two delta functions:

$$
V(x)=-a \delta(x)-b \delta(x-r)
$$

Taking $r>0$, the solution $\psi(x)$ can be split into three pieces, $\psi_{1}(x), \psi_{2}(x)$ and $\psi_{3}(x)$, defined on $(-\infty, 0),(0, r)$, and $(r,+\infty)$ respectively.

1. Write down the four matching conditions relating ψ_{1}, ψ_{2} and ψ_{3}, and their derivatives, at $x=0$ and $x=r$.

SOLUTION:

We have

$$
\psi(x)= \begin{cases}\psi_{1}(x), & x<0 \\ \psi_{2}(x), & 0<x<r, \\ \psi_{3}(x), & x>r\end{cases}
$$

With $\psi=\psi_{1}, \psi_{2}$ or ψ_{3} as above, at $x=0$ we have

$$
\psi_{1}\left(0^{-}\right)=\psi_{2}\left(0^{+}\right) \equiv \psi(0), \quad \psi_{2}^{\prime}\left(0^{+}\right)-\psi_{1}^{\prime}\left(0^{-}\right)=-a \psi(0),
$$

while at $x=r$,

$$
\psi_{2}\left(r^{-}\right)=\psi_{3}\left(r^{+}\right) \equiv \psi(r), \quad \psi_{3}^{\prime}\left(r^{+}\right)-\psi_{2}^{\prime}\left(r^{-}\right)=-b \psi(r) .
$$

2. For a scattering solution describing waves incident from the left, ψ_{1} and ψ_{3} are given by

$$
\psi_{1}(x)=e^{i k x}+R(k) e^{-i k x}, \quad \psi_{3}(x)=T(k) e^{i k x}
$$

Write down the general form of ψ_{2}, and then use the matching conditions found in part 1 to eliminate the unknowns and determine $R(k)$ and $T(k)$.
[40 marks]

SOLUTION:

$$
\psi(x)=\left\{\begin{array}{cl}
e^{i k x}+R(k) e^{-i k x}, & x<0 \\
A(k) e^{i k x}+B(k)(k) e^{-i k x}, & 0<x<r \\
T(k) e^{i k x}, & x>r
\end{array}\right.
$$

Imposing the matching conditions at $x=0$,

$$
1+R(k)=A(k)+B(k), \quad i k(A(k)-B(k))-i k(1-R(k))=-a(1+R(k))
$$

so

$$
\begin{align*}
& A(k)+B(k)=1+R(k), \\
& A(k)-B(k)=\left(1+i \frac{a}{k}\right)-R(k)\left(1-i \frac{a}{k}\right) .
\end{align*}
$$

Likewise, looking at $x=r$,

$$
\begin{aligned}
A(k) e^{i k r}+B(k) e^{-i k r} & =T(k) e^{i k r} \\
i k T(k) e^{i k r}-i k\left(A(k) e^{i k r}-B(k) e^{-i k r}\right) & =-b T(k) e^{i k r}
\end{aligned}
$$

so

$$
\begin{align*}
& A(k) e^{i k r}+B(k) e^{-i k r}=T(k) e^{i k r} \\
& A(k) e^{i k r}-B(k) e^{-i k r}=T(k) e^{i k r}\left(1-i \frac{b}{k}\right)
\end{align*}
$$

Solving these for $A(k)$ and $B(k)$,

$$
(\gamma)+(\delta): \quad A(k)=\left(1-i \frac{b}{2 k}\right) T(k) ; \quad(\gamma)-(\delta): \quad B(k)=i \frac{b}{2 k} e^{2 i k r} T(k)
$$

Thus (α) and (β) become:

$$
\begin{align*}
1+R(k) & =\left(1-i \frac{b}{2 k}+i \frac{b}{2 k} e^{2 i k r}\right) T(k) \\
\left(1-i \frac{b}{2 k}-i \frac{b}{2 k} e^{2 i k r}\right) T(k) & =\cdots=2-\left(1-i \frac{a}{k}\right)(1+R(k))
\end{align*}
$$

and substituting for $1+R(k)$ from $\left(\alpha^{\prime}\right)$ into $\left(\beta^{\prime}\right)$ and solving for $T(k)$ yields

$$
T(k)=\frac{4 k^{2} /(a b)}{e^{2 i k r}-\left(1+i \frac{2 k}{a}\right)\left(1+i \frac{2 k}{b}\right)}=\frac{4 k^{2}}{a b e^{2 i k r}-(a+2 i k)(b+2 i k)} .
$$

Finally we can use (α^{\prime}) once more to find

$$
R(k)=\frac{1+i \frac{2 k}{b}-\left(1-i \frac{2 k}{a}\right) e^{2 i k r}}{e^{2 i k r}-\left(1+i \frac{2 k}{a}\right)\left(1+i \frac{2 k}{b}\right)}=\frac{a(b+2 i k)-b(a-2 i k) e^{2 i k r}}{a b e^{2 i k r}-(a+2 i k)(b+2 i k)} .
$$

NOTE: problems like this can be solved more systematically using 'transfer matrices'. Ask me about them if you are interested.
3. Show from the answer to part 2 that, for there to be a bound state pole at $k=i \mu$ (with $\mu>0), \mu$ must satisfy

$$
\begin{equation*}
e^{-2 \mu r}=(1-2 \mu / a)(1-2 \mu / b) . \tag{***}
\end{equation*}
$$

SOLUTION:

Bound states occur at poles in $T(k)$ with $k=i \mu, \mu>0$. This needs the denominator of the above formula for $\left.T(k)\right|_{k=i \mu}$ to vanish, that is

$$
e^{-2 \mu r}=\left(1-\frac{2 \mu}{a}\right)\left(1-\frac{2 \mu}{b}\right)
$$

as required.
4. The solutions to $\left({ }^{* * *}\right)$ can be analysed using a graphical method. Show that:
(a) if both a and b are negative, then there are no bound states;
(b) if a and b have opposite signs, then there is at most one bound state, occurring when $a+b>r a b$ (note: since a and b have opposite signs, $r a b$ is negative);
(c) if a and b are positive, then the number of bound states is one if $r a b \leq a+b$, and two otherwise.

Sketch on the $a b$-plane the regions corresponding to zero, one and two bound states, and indicate the form of $\psi(x)$ for each of the two bound states found when $a b /(a+b)>r^{-1}$.
[40 marks]

SOLUTION:

The LHS of $\left({ }^{* * *}\right)$, plotted in red below, is a simple decaying exponential, while the RHS (plotted in blue) is a quadratic in μ with zeros at $\mu=a / 2$ and $\mu=b / 2$. The two curves always intersect at $\mu=0$; bound states will occur if there are further intersections with $\mu>0$. Going case by case,
(a) For $a<0, b<0$, both zeros of the RHS are negative and so there are no intersections with $\mu>0$:

(b) When a and b have opposite signs, there is one negative and one positive zero of the RHS, and the number of intersections with $\mu>0$ will be either zero or one:

Which one occurs depends on the relative gradients of the LHS and RHS at $\mu=0$. These gradients are

$$
G_{L}=\left.\frac{d}{d \mu} e^{-2 \mu r}\right|_{\mu=0}=-2 r
$$

and

$$
G_{R}=\left.\frac{d}{d \mu}\left(1-\frac{2 \mu}{a}\right)\left(1-\frac{2 \mu}{b}\right)\right|_{\mu=0}=-\frac{2}{a}-\frac{2}{b}=-2 \frac{(a+b)}{a b}
$$

and we are in the situation of the right-hand plot, with one bound state, when $G_{L}<G_{R}$, ie $-2 r<-2(a+b) /(a b)$, or $r>(a+b) /(a b)$, or (noting that $a b<0$ when rearranging the inequality)

$$
a+b>r a b
$$

as required. Note that this should indeed be a strict inequality: when $a+b=r a b$ the gradients at the origin are equal, and by considering the second derivatives (or otherwise) it can be shown that the only intersection is at $\mu=0$, which does not give a bound state.
(c) When a and b are both positive, both zeros of the RHS are positive, and the number of intersections with $\mu>0$ is either one or two:

Again, a comparison of the derivatives of the two curves at $\mu=0$ determines which situation arises, and calculating as above shows that there is one bound state for $r a b \leq$ $a+b$ and two otherwise. Also as above, extra arguments need to be made when $r a b=a+b$ to get the right answer in this case too.
For the last part, note that the transitions in the numbers of bound states occur on the curves $r a b=a+b$, or $r a b-a-b=0$, or $r(a-1 / r)(b-1 / r)=1 / r$. On the a, b plane
this is the hyperbola $b=1 / a$, but with the asymptotes shifted up and to the right, to $b=1 / r$ and $a=1 / r$. Here's a region plot in the (a, b)-plane for $r=1 / 2$:

Finally, here's a rough sketch of the forms that $\psi(x)$ takes in the zone where there are two bound states:

