Assignment 7

Due date: Monday, 26 February (12 noon)

Ex 56

Using the results stated in question 55 in the problem set, show that

$$
V(x)=-2 \mu^{2} \operatorname{sech}^{2}\left(\mu\left(x-x_{0}\right)\right)
$$

is an example of a reflectionless potential, for which $R(k)=0$. By adjusting the normalisation of the wavefunction $\psi(x)$ correctly, find the transmission coefficient $T(k)$ for this potential. Verify that $|T(k)|^{2}=1$, consistent with the idea that for such a potential an incident particle must certainly be transmitted.
[50 marks]
SOLUTION:
From question 55, we know that the solution to the Schroedinger problem is

$$
\psi(x)=e^{i k x}(2 k+i w(x))
$$

where $w(x)$ satisfies

$$
w^{\prime}(x)+\frac{1}{2} w^{2}(x)=2 \mu
$$

Substituting $w(x)=2 f^{\prime}(x) / f(x)$ as suggested in the hint of question 55 , we find

$$
2 \frac{f^{\prime \prime} f-\left(f^{\prime}\right)^{2}}{f}+2 \frac{\left(f^{\prime}\right)^{2}}{f}=2 \mu \quad \Longrightarrow \quad f^{\prime \prime}=\mu f
$$

which has general solution

$$
f=A e^{\mu x}+B e^{-\mu x}
$$

for some constants A, B. Then

$$
w=2 \frac{f^{\prime}}{f}=2 \mu \frac{A e^{\mu x}-B e^{-\mu x}}{A e^{\mu x}+B e^{-\mu x}}=2 \mu \tanh \left(\mu\left(x-x_{0}\right)\right)
$$

where in the last equality we traded A / B for x_{0} (this is not necessary). Substituting $w=2 \mu \tanh \left(\mu\left(x-x_{0}\right)\right)$ into the given equation for $\psi(x)$ and using the asymptotics of the hyperbolic tangent (or of the exponential) we have

$$
\psi(x)=2 e^{i k x}\left(k+i \mu \tanh \left(\mu\left(x-x_{0}\right)\right)\right) \approx \begin{cases}2 e^{i k x}(k-i \mu), & x \rightarrow-\infty \\ 2 e^{i k x}(k+i \mu), & x \rightarrow+\infty\end{cases}
$$

Dividing through by $2(k-i \mu)$ gives us the correctly normalised scattering solution:

$$
\psi_{\text {scattering }}(x)=e^{i k x} \frac{k+i \mu \tanh \left(\mu\left(x-x_{0}\right)\right)}{k-i \mu} \approx \begin{cases}e^{i k x} & x \rightarrow-\infty \\ \frac{k+i \mu}{k-i \mu} e^{i k x}, & x \rightarrow+\infty\end{cases}
$$

from which we can read off that $R(k)=0$ (so the potential is indeed reflectionless) and

$$
T(k)=\frac{k+i \mu}{k-i \mu} .
$$

Furthermore

$$
|T(k)|^{2}=\frac{|k+i \mu|^{2}}{|k-i \mu|^{2}}=\frac{k^{2}+\mu^{2}}{k^{2}+\mu^{2}}=1
$$

as expected, since k and μ are real.

Ex 60

Let $L(u)=D^{2}+u(x, t)$ and $M(u)=\alpha D$ for some constant α, where $D=\frac{\partial}{\partial x}$.

1. Check that

$$
L(u)_{t}=[M(u), L(u)] \quad \Longleftrightarrow \quad u_{t}=\alpha u_{x}
$$

[15 marks]

SOLUTION:

We have $L(u)_{t}=u_{t}$ (since the operator $D=\frac{\partial}{\partial x}$ does not depend on t), and

$$
[M(u), L(u)]=\alpha\left[D, D^{2}+u\right]=\alpha[D, u]=\alpha u_{x}
$$

Hence $L(u)_{t}=[M(u), L(u)] \Longleftrightarrow u_{t}=\alpha u_{x}$ as required.
2. Let $\psi(x, 0)$ be an eigenfunction of $L(u)$ at $t=0$ with eigenvalue λ, so that

$$
\left(D^{2}+u(x, 0)\right) \psi(x, 0)=\lambda \psi(x, 0) .
$$

If $u(x, t)$ evolves according to the equation of part 1 , find an eigenfunction $\psi(x, t)$ for each later time t, with the same eigenvalue λ, so that

$$
\left(D^{2}+u(x, t)\right) \psi(x, t)=\lambda \psi(x, t) .
$$

Verify that $\psi(x, t)$ can be arranged to satisfy $\psi_{t}=M(u) \psi$. (You can assume that the eigenfunction is non-degenerate, namely that there is a single eigenfunction with that eigenvalue. This is the case both for bound state solutions and for scattering solutions.)

SOLUTION:

If $u_{t}=\alpha u_{x}$ then $u(x, t)=f(x+\alpha t)$; matching to the initial condition at $t=0$, $u(x, t)=u(x+\alpha t, 0)$. Now suppose that

$$
\left(D^{2}+u(x, 0)\right) \psi(x, 0)=\lambda \psi(x, 0) .
$$

Replacing x by $x+\alpha t$ throughout,

$$
\left(D^{2}+u(x+\alpha t, 0)\right) \psi(x+\alpha t, 0)=\lambda \psi(x+\alpha t, 0)
$$

but since $u(x, t)=u(x+\alpha t, 0)$ this is the same as

$$
\left(D^{2}+u(x, t)\right) \psi(x+\alpha t, 0)=\lambda \psi(x+\alpha t, 0)
$$

and hence $\left(D^{2}+u(x, t)\right) \psi(x, t)=\lambda \psi(x, t)$ is solved by setting $\psi(x, t)=\psi(x+\alpha t, 0)$. For this solution we have

$$
\begin{aligned}
\psi(x, t)_{t} & =\frac{\partial}{\partial t} \psi(x+\alpha t, 0)=\frac{\partial(x+\alpha t)}{\partial t} \frac{\partial}{\partial x} \psi(x+\alpha t, 0) \\
& =\alpha \frac{\partial}{\partial x} \psi(x+\alpha t, 0)=\alpha \frac{\partial}{\partial x} \psi(x, t)=\alpha D \psi(x, t)=M(u) \psi(x, t)
\end{aligned}
$$

as required.

