
 

Assignment 7 

Due date: Monday, 26 February (12 noon) 

Ex 56 

Using the results stated in question 55 in the problem set, show that 

V ( x ) = − 2 µ2sech2( µ ( x − x0)) 

is an example of a reflectionless potential, for which R ( k ) = 0 . By adjusting the normalisation 

of the wavefunction ψ ( x ) correctly, find the transmission coefficient T ( k ) for this potential. 

Verify that | T ( k ) |2 = 1 , consistent with the idea that for such a potential an incident particle 

must certainly be transmitted. [50 marks] 

SOLUTION:

 

From question 55, we know that the solution to the Schroedinger problem is 

ψ ( x ) = eik x (2 k + iw ( x )) , 

where w ( x ) satisfies 

w 

′( x ) + 

1

 

2 

w2( x ) = 2 µ . 

Substituting w ( x ) = 2 f 

′( x ) /f ( x ) as suggested in the hint of question 55, we find 

2 

f 

′′ f − ( f 

′)2

 

f 

+ 2
( f 

′)2

 

f 

= 2 µ = ⇒ f 

′′ = µf , 

which has general solution 

f = Aeµx + B e− µx 

for some constants A, B . Then 

w = 2 

f 

′

 

f 

= 2 µ 

Aeµx − B e− µx

 

Aeµx + B e− µx 

= 2 µ tanh( µ ( x − x0)) , 

where in the last equality we traded A/B for x0 

(this is not necessary). Substituting 

w = 2 µ tanh( µ ( x − x0)) into the given equation for ψ ( x ) and using the asymptotics of the 

hyperbolic tangent (or of the exponential) we have

 

ψ ( x ) = 2 eik x( k + iµ tanh( µ ( x − x0))) ≈ 

{ 

2 eik x( k − iµ ) , x → −∞ 

2 eik x( k + iµ ) , x → + ∞ .

 

1



 

2 

Dividing through by 2( k − iµ ) gives us the correctly normalised scattering solution:

 

ψscattering( x ) = eik x 

k + iµ tanh( µ ( x − x0))

 

k − iµ 

≈ 

{ 

eik x x → −∞ , 

k + iµ

 

k − iµ 

eik x , x → + ∞

 

from which we can read off that R ( k ) = 0 (so the potential is indeed reflectionless) and

 

T ( k ) = 

k + iµ

 

k − iµ 

.

 

Furthermore

 

| T ( k ) |2 = 

| k + iµ |2

 

| k − iµ |2 

= 

k2 + µ2

 

k2 + µ2 

= 1

 

as expected, since k and µ are real. 

Ex 60 

Let L ( u ) = D2 + u ( x, t ) and M ( u ) = α D for some constant α , where D = 

∂

 

∂ x
. 

1. Check that

 

L ( u )t 

= [ M ( u ) , L ( u )] ⇐⇒ ut 

= α ux 

.

 

[15 marks] 

SOLUTION:

 

We have L ( u )t 

= ut 

(since the operator D = 

∂

 

∂ x 

does not depend on t ), and

 

[ M ( u ) , L ( u )] = α [ D , D2 + u ] = α [ D , u ] = α ux 

.

 

Hence L ( u )t 

= [ M ( u ) , L ( u )] ⇐⇒ ut 

= α ux 

as required. 

2. Let ψ ( x, 0) be an eigenfunction of L ( u ) at t = 0 with eigenvalue λ , so that

 

( D2 + u ( x, 0)) ψ ( x, 0) = λψ ( x, 0) .

 

If u ( x, t ) evolves according to the equation of part 1, find an eigenfunction ψ ( x, t ) for 

each later time t , with the same eigenvalue λ , so that

 

( D2 + u ( x, t )) ψ ( x, t ) = λψ ( x, t ) .

 

Verify that ψ ( x, t ) can be arranged to satisfy ψt 

= M ( u ) ψ . (You can assume that the 

eigenfunction is non-degenerate, namely that there is a single eigenfunction with that 

eigenvalue. This is the case both for bound state solutions and for scattering solutions.) 

[35 marks]



 

3 

SOLUTION:

 

If ut 

= α ux 

then u ( x, t ) = f ( x + α t ) ; matching to the initial condition at t = 0 , 

u ( x, t ) = u ( x + α t, 0) . Now suppose that

 

( D2 + u ( x, 0)) ψ ( x, 0) = λψ ( x, 0) .

 

Replacing x by x + α t throughout,

 

( D2 + u ( x + α t, 0)) ψ ( x + α t, 0) = λψ ( x + α t, 0)

 

but since u ( x, t ) = u ( x + α t, 0) this is the same as

 

( D2 + u ( x, t )) ψ ( x + α t, 0) = λψ ( x + α t, 0)

 

and hence ( D2 + u ( x, t )) ψ ( x, t ) = λψ ( x, t ) is solved by setting ψ ( x, t ) = ψ ( x + α t, 0) . 

For this solution we have

 

ψ ( x, t )t 

= 

∂

 

∂ t 

ψ ( x + α t, 0) = 

∂ ( x + α t )

 

∂ t 

∂

 

∂ x 

ψ ( x + α t, 0) 

= α 

∂

 

∂ x 

ψ ( x + α t, 0) = α 

∂

 

∂ x 

ψ ( x, t ) = α D ψ ( x, t ) = M ( u ) ψ ( x, t )

 

as required.


