
 

Assignment 7 

Due date: Monday, 26 February (12 noon) 

Ex 56 

Using the results stated in question 55 in the problem set, show that 

V ( x ) = − 2 µ2sech2( µ ( x − x0)) 

is an example of a reflectionless potential, for which R ( k ) = 0 . By adjusting the normalisation 

of the wavefunction ψ ( x ) correctly, find the transmission coefficient T ( k ) for this potential. 

Verify that | T ( k ) |2 = 1 , consistent with the idea that for such a potential an incident particle 

must certainly be transmitted. [50 marks] 

SOLUTION:

 

From question 55, we know that the solution to the Schroedinger problem is 

ψ ( x ) = eik x (2 k + iw ( x )) , 

where w ( x ) satisfies 

w 

′( x ) + 

1

 

2 

w2( x ) = 2 µ . 

Substituting w ( x ) = 2 f 

′( x ) /f ( x ) as suggested in the hint of question 55, we find 

2 

f 

′′ f − ( f 

′)2

 

f 

+ 2
( f 

′)2

 

f 

= 2 µ = ⇒ f 

′′ = µf , 

which has general solution 

f = Aeµx + B e− µx 

for some constants A, B . Then 

w = 2 

f 

′

 

f 

= 2 µ 

Aeµx − B e− µx

 

Aeµx + B e− µx 

= 2 µ tanh( µ ( x − x0)) , 

where in the last equality we traded A/B for x0 

(this is not necessary). Substituting 

w = 2 µ tanh( µ ( x − x0)) into the given equation for ψ ( x ) and using the asymptotics of the 

hyperbolic tangent (or of the exponential) we have

  \psi (x)=2e^{ikx}(k+i\mu \tanh (\mu (x-x_0))) \approx \begin {cases} 2e^{ikx}(k-i\mu )~, & x\to -\infty \\[2pt] 2e^{ikx}(k+i\mu )~, & x\to +\infty \,. \end {cases} 

       



     

      

 

1



 

2 

Dividing through by 2( k − iµ ) gives us the correctly normalised scattering solution:

  \psi _{\rm scattering}(x)=e^{ikx}\,\frac {k+i\mu \tanh (\mu (x-x_0))}{k-i\mu } \approx \begin {cases} e^{ikx} & x\to -\infty ~, \\[2pt] \frac {k+i\mu }{k-i\mu }\,e^{ikx}~, & x\to +\infty \end {cases} 

 

    



 





   







   

 

from which we can read off that R ( k ) = 0 (so the potential is indeed reflectionless) and

  T(k)=\frac {k+i\mu }{k-i\mu }\,. 

 

 



 



 

Furthermore

  |T(k)|^2=\frac {|k+i\mu |^2}{|k-i\mu |^2} =\frac {k^2+\mu ^2}{k^2+\mu ^2}=1 

 

 



 



 



 



 

as expected, since k and µ are real. 

Ex 60 

Let L ( u ) = D2 + u ( x, t ) and M ( u ) = α D for some constant α , where D = 

∂

 

∂ x
. 

1. Check that

  L(u)_t=[M(u),L(u)] \quad \Longleftrightarrow \quad u_t=\alpha u_x~. 



   





 

[15 marks] 

SOLUTION:

 

We have L ( u )t 

= ut 

(since the operator D = 

∂

 

∂ x 

does not depend on t ), and

  [M(u),L(u)]=\alpha [D,D^2+u]=\alpha [D,u]=\alpha u_x\,. 

          



 

Hence L ( u )t 

= [ M ( u ) , L ( u )] ⇐⇒ ut 

= α ux 

as required. 

2. Let ψ ( x, 0) be an eigenfunction of L ( u ) at t = 0 with eigenvalue λ , so that

  (D^2+u(x,0))\psi (x,0)=\lambda \psi (x,0)~. 

       

 

If u ( x, t ) evolves according to the equation of part 1, find an eigenfunction ψ ( x, t ) for 

each later time t , with the same eigenvalue λ , so that

  (D^2+u(x,t))\psi (x,t)=\lambda \psi (x,t)~. 

       

 

Verify that ψ ( x, t ) can be arranged to satisfy ψt 

= M ( u ) ψ . (You can assume that the 

eigenfunction is non-degenerate, namely that there is a single eigenfunction with that 

eigenvalue. This is the case both for bound state solutions and for scattering solutions.) 

[35 marks]



 

3 

SOLUTION:

 

If ut 

= α ux 

then u ( x, t ) = f ( x + α t ) ; matching to the initial condition at t = 0 , 

u ( x, t ) = u ( x + α t, 0) . Now suppose that

  (D^2+u(x,0))\psi (x,0)=\lambda \psi (x,0)\,. 

       

 

Replacing x by x + α t throughout,

  (D^2+u(x+\alpha t,0))\psi (x+\alpha t,0)=\lambda \psi (x+\alpha t,0) 

            

 

but since u ( x, t ) = u ( x + α t, 0) this is the same as

  (D^2+u(x,t))\psi (x+\alpha t,0)=\lambda \psi (x+\alpha t,0) 

          

 

and hence ( D2 + u ( x, t )) ψ ( x, t ) = λψ ( x, t ) is solved by setting ψ ( x, t ) = ψ ( x + α t, 0) . 

For this solution we have

  \begin {split} \psi (x,t)_t &=\frac {\partial }{\partial t}\psi (x+\alpha t,0) =\frac {\partial (x+\alpha t)}{\partial t}\frac {\partial }{\partial x}\psi (x+\alpha t,0)\\ &=\alpha \frac {\partial }{\partial x}\psi (x+\alpha t,0) =\alpha \frac {\partial }{\partial x}\psi (x,t)=\alpha D\psi (x,t)=M(u)\psi (x,t) \end {split} 











   

 











  









    







      

 

as required.


