Background notes on Fourier transforms

Please read the following notes - they will help with the exercises for chapter 8 in the problem sheet. We will begin with a quick and dirty derivation of Fourier transforms, starting with the Fourier series for a periodic function $f(x)$ defined on the interval $[-L / 2, L / 2]$, as seen in AMV:

$$
\begin{align*}
f(x) & =\sum_{n=-\infty}^{+\infty} F_{n} e^{2 \pi i n x / L} \tag{1}\\
F_{n} & =\frac{1}{L} \int_{-L / 2}^{+L / 2} d x f(x) e^{-2 \pi i n x / L}
\end{align*}
$$

If we wish to consider a function that is not periodic we can take $L \rightarrow \infty$. In this limit the discrete variable n is replaced by a continuous variable k and the summation becomes an integral, with the correspondence

$$
\begin{align*}
\frac{n}{L} & \rightarrow \frac{k}{2 \pi} \\
L F_{n} & \rightarrow \tilde{f}(k) \tag{2}\\
\frac{1}{L} \sum_{n=-\infty}^{+\infty} & \rightarrow \int_{-\infty}^{+\infty} \frac{d k}{2 \pi} .
\end{align*}
$$

Substituting these definitions in (1) we get a pair of equations, giving the (inverse and direct) Fourier transforms

$$
\begin{align*}
& f(x)=\int_{-\infty}^{+\infty} \frac{d k}{2 \pi} \widetilde{f}(k) e^{i k x} \\
& \tilde{f}(k)=\int_{-\infty}^{+\infty} d x f(x) e^{-i k x} \tag{3}
\end{align*}
$$

Note there's a factor of 2π in the first equation but not the second. Sometimes (including in some previous version of the course) an alternative more symmetrical version is used, with a factor of $1 / \sqrt{2 \pi}$ in both equations instead of $1 /(2 \pi)$ in just one.

Connection with the Dirac delta function

Applying the previous formulae for the direct and inverse Fourier transform of a function we have

$$
\begin{align*}
f(x) & =\int_{-\infty}^{+\infty} \frac{d k}{2 \pi} \widetilde{f}(k) e^{i k x} \\
& =\int_{-\infty}^{+\infty} \frac{d k}{2 \pi} e^{i k x} \int_{-\infty}^{+\infty} d x^{\prime} f\left(x^{\prime}\right) e^{-i k x^{\prime}} \\
& =\iint_{-\infty}^{+\infty} \frac{d k d x^{\prime}}{2 \pi} f\left(x^{\prime}\right) e^{i k\left(x-x^{\prime}\right)} \tag{4}\\
& =\int_{-\infty}^{+\infty} d x^{\prime} f\left(x^{\prime}\right) \delta\left(x-x^{\prime}\right),
\end{align*}
$$

where in the last step we bravely assumed it was OK to swap the k and x^{\prime} integrals, and set

$$
\begin{equation*}
\delta\left(x-x^{\prime}\right)=\frac{1}{2 \pi} \int_{-\infty}^{+\infty} d k e^{i k\left(x-x^{\prime}\right)} \tag{5}
\end{equation*}
$$

The 'function' $\delta(x)$ that we've just defined has the property that

$$
\begin{equation*}
\int_{-\infty}^{+\infty} d x^{\prime} f\left(x^{\prime}\right) \delta\left(x-x^{\prime}\right)=f(x) \tag{6}
\end{equation*}
$$

under integration - it's the Dirac delta function that was introduced in AMV last year. Loosely it can be thought of as a function which is everywhere 0 except where its argument vanishes, where it is infinite, and whose integral is 1 . (Technically $\delta(x)$ is not a function, but rather a distribution.) Using the definition (5) and changing sign to the integration variable, it is immediate to see that $\delta(x)=\delta(-x)$. Similar representations for the derivatives of the delta function can be found by differentiating (5), or using (6) and integrating by parts:

$$
\begin{align*}
\frac{d^{n}}{d x^{n}} \delta(x) & =\frac{1}{2 \pi} \int_{-\infty}^{+\infty} d k(i k)^{n} e^{i k x} \tag{7}\\
\int_{-\infty}^{+\infty} d x f(x) \frac{d^{n}}{d x^{n}} \delta\left(x-x_{0}\right) & =(-1)^{n} \int_{-\infty}^{+\infty} d x \delta\left(x-x_{0}\right) \frac{d^{n}}{d x^{n}} f(x)=(-1)^{n} \frac{d^{n} f}{d x^{n}}\left(x_{0}\right)
\end{align*}
$$

Multidimensional version

The generalization to multiple dimensions is simple. Take a function $f\left(x_{1}, \ldots, x_{n}\right)$. For each dimension we can apply the FT separately defining a $k_{i=1, \ldots, n}$ for each transform. So we end up at

$$
\begin{equation*}
f\left(x_{1}, \ldots, x_{n}\right)=\int_{-\infty}^{+\infty} \frac{d k_{1}}{2 \pi} \cdots \int_{-\infty}^{+\infty} \frac{d k_{n}}{2 \pi} \widetilde{f}\left(k_{1}, \ldots, k_{n}\right) e^{i k_{1} x_{1}+\cdots+i k_{n} x_{n}} \tag{8}
\end{equation*}
$$

Gathering everything into a vector notation $\mathbf{x}=\left(x_{1}, \ldots x_{n}\right)$ and $\mathbf{k}=\left(k_{1}, \ldots k_{n}\right)$ we have

$$
\begin{align*}
& f(\mathbf{x})=\int \frac{d^{n} \mathbf{k}}{(2 \pi)^{n}} \widetilde{f}(\mathbf{k}) e^{i \mathbf{k} \cdot \mathbf{x}} \tag{9}\\
& \widetilde{f}(\mathbf{k})=\int d^{n} \mathbf{x} f(\mathbf{x}) e^{-i \mathbf{k} \cdot \mathbf{x}}
\end{align*}
$$

where all the integrals are understood to be over \mathbb{R}^{n}.

Fourier transform of derivatives

Consider

$$
\begin{equation*}
f(x)=\int_{-\infty}^{+\infty} \frac{d k}{2 \pi} \widetilde{f}(k) e^{i k x} \tag{10}
\end{equation*}
$$

Taking the derivative of this equation with respect to x we have

$$
\begin{align*}
f^{\prime}(x) & =\int_{-\infty}^{+\infty} \frac{d k}{2 \pi} \tilde{f}(k) \frac{d}{d x} e^{i k x} \tag{11}\\
& =\int_{-\infty}^{+\infty} \frac{d k}{2 \pi} i k \widetilde{f}(k) e^{i k x}
\end{align*}
$$

So $f^{\prime}(x)$ has Fourier transform $i k \widetilde{f}(k)$. Continuing in the same way,

$$
\begin{equation*}
\frac{d^{n}}{d x^{n}} f(x)=\int_{-\infty}^{+\infty} \frac{d k}{2 \pi}(i k)^{n} \widetilde{f}(k) e^{i k x} \tag{12}
\end{equation*}
$$

so $f^{(n)}(x)$ has Fourier transform $(i k)^{n} \widetilde{f}(k)$. This makes for a very useful tool in solving linear differential equations. The example in lectures was the Klein-Gordon wave equation

$$
\begin{equation*}
\frac{\partial^{2}}{\partial x^{2}} u-m^{2} u=\frac{\partial^{2}}{\partial t^{2}} u \tag{13}
\end{equation*}
$$

Assume the initial condition $u(x, 0)=\alpha(x)$ and $\dot{u}(x, 0)=\beta(x)$. We can always write this equation in terms of the Fourier transforms at some time t and equate those instead. We find

$$
\begin{equation*}
-\left(k^{2}+m^{2}\right) \widetilde{u}(k, t)=\frac{\partial^{2}}{\partial t^{2}} \widetilde{u}(k, t) \tag{14}
\end{equation*}
$$

This equation is easily solved for $\widetilde{u}(k, t)$, because it is an ODE for any fixed k. The general solution is

$$
\begin{equation*}
\widetilde{u}(k, t)=A(k) e^{i \omega(k) t}+B(k) e^{-i \omega(k) t} \tag{15}
\end{equation*}
$$

where

$$
\begin{equation*}
\omega(k)=\sqrt{k^{2}+m^{2}} \tag{16}
\end{equation*}
$$

and where $A(k)$ and $B(k)$ are constants of integration. They can be found from the initial values of u and u_{t} at $t=0$:

$$
\begin{align*}
& \alpha(x)=\int_{-\infty}^{+\infty} \frac{d k}{2 \pi}(A(k)+B(k)) e^{i k x} \\
& \beta(x)=\int_{-\infty}^{+\infty} \frac{d k}{2 \pi} i \omega(k)(A(k)-B(k)) e^{i k x} . \tag{17}
\end{align*}
$$

So we need to take the inverse FT to get them

$$
\begin{align*}
& A(k)+B(k)=\int_{-\infty}^{+\infty} d x \alpha(x) e^{-i k x} \\
& A(k)-B(k)=\frac{1}{i \omega(k)} \int_{-\infty}^{+\infty} d x \beta(x) e^{-i k x} \tag{18}
\end{align*}
$$

which can be solved for $A(k)$ and $B(k)$. Our final expression for the solution is then

$$
\begin{equation*}
u(x, t)=\int_{-\infty}^{+\infty} \frac{d k}{2 \pi}\left[A(k) e^{i(k x+\omega(k) t)}+B(k) e^{i(k x-\omega(k) t)}\right] \tag{19}
\end{equation*}
$$

with $A(k)$ and $B(k)$ given by solving the previous pair of equations.

