
Background notes on Fourier transforms

Please read the following notes - they will help with the exercises for chapter 8 in the prob-
lem sheet. We will begin with a quick and dirty derivation of Fourier transforms, starting
with the Fourier series for a periodic function f(x) defined on the interval [−L/2, L/2], as
seen in AMV:

f(x) =
+∞∑

n=−∞

Fn e2πinx/L

Fn =
1

L

∫ +L/2

−L/2

dx f(x) e−2πinx/L .

(1)

If we wish to consider a function that is not periodic we can take L → ∞. In this limit the
discrete variable n is replaced by a continuous variable k and the summation becomes an
integral, with the correspondence

n

L
→ k

2π

LFn → f̃(k) (2)

1

L

+∞∑
n=−∞

→
∫ +∞

−∞

dk

2π
.

Substituting these definitions in (1) we get a pair of equations, giving the (inverse and
direct) Fourier transforms

f(x) =

∫ +∞

−∞

dk

2π
f̃(k) eikx

f̃(k) =

∫ +∞

−∞
dx f(x) e−ikx .

(3)

Note there’s a factor of 2π in the first equation but not the second. Sometimes (including
in some previous version of the course) an alternative more symmetrical version is used,
with a factor of 1/

√
2π in both equations instead of 1/(2π) in just one.
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Connection with the Dirac delta function

Applying the previous formulae for the direct and inverse Fourier transform of a function
we have

f(x) =

∫ +∞

−∞

dk

2π
f̃(k) eikx

=

∫ +∞

−∞

dk

2π
eikx

∫ +∞

−∞
dx′ f(x′) e−ikx′

=

∫∫ +∞

−∞

dk dx′

2π
f(x′) eik(x−x′)

=

∫ +∞

−∞
dx′ f(x′) δ(x− x′) ,

(4)

where in the last step we bravely assumed it was OK to swap the k and x′ integrals, and
set

δ(x− x′) =
1

2π

∫ +∞

−∞
dk eik(x−x′) . (5)

The ‘function’ δ(x) that we’ve just defined has the property that∫ +∞

−∞
dx′ f(x′) δ(x− x′) = f(x) (6)

under integration – it’s the Dirac delta function that was introduced in AMV last year.
Loosely it can be thought of as a function which is everywhere 0 except where its argument
vanishes, where it is infinite, and whose integral is 1. (Technically δ(x) is not a function, but
rather a distribution.) Using the definition (5) and changing sign to the integration variable,
it is immediate to see that δ(x) = δ(−x). Similar representations for the derivatives of the
delta function can be found by differentiating (5), or using (6) and integrating by parts:

dn

dxn
δ(x) =

1

2π

∫ +∞

−∞
dk (ik)neikx∫ +∞

−∞
dx f(x)

dn

dxn
δ(x− x0) = (−1)n

∫ +∞

−∞
dx δ(x− x0)

dn

dxn
f(x) = (−1)n

dnf

dxn
(x0) .

(7)

Multidimensional version

The generalization to multiple dimensions is simple. Take a function f(x1, . . . , xn). For
each dimension we can apply the FT separately defining a ki=1,...,n for each transform. So
we end up at

f(x1, . . . , xn) =

∫ +∞

−∞

dk1
2π

. . .

∫ +∞

−∞

dkn
2π

f̃(k1, . . . , kn) e
ik1x1+···+iknxn . (8)
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Gathering everything into a vector notation x = (x1, . . . xn) and k = (k1, . . . kn) we have

f(x) =

∫
dnk

(2π)n
f̃(k) eik·x

f̃(k) =

∫
dnx f(x) e−ik·x

(9)

where all the integrals are understood to be over Rn.

Fourier transform of derivatives

Consider

f(x) =

∫ +∞

−∞

dk

2π
f̃(k) eikx . (10)

Taking the derivative of this equation with respect to x we have

f ′(x) =

∫ +∞

−∞

dk

2π
f̃(k)

d

dx
eikx

=

∫ +∞

−∞

dk

2π
ikf̃(k) eikx .

(11)

So f ′(x) has Fourier transform ikf̃(k). Continuing in the same way,

dn

dxn
f(x) =

∫ +∞

−∞

dk

2π
(ik)nf̃(k) eikx . (12)

so f (n)(x) has Fourier transform (ik)nf̃(k). This makes for a very useful tool in solving
linear differential equations. The example in lectures was the Klein-Gordon wave equation

∂2

∂x2
u−m2u =

∂2

∂t2
u . (13)

Assume the initial condition u(x, 0) = α(x) and u̇(x, 0) = β(x). We can always write this
equation in terms of the Fourier transforms at some time t and equate those instead. We
find

−(k2 +m2) ũ(k, t) =
∂2

∂t2
ũ(k, t) , (14)

This equation is easily solved for ũ(k, t), because it is an ODE for any fixed k. The general
solution is

ũ(k, t) = A(k)eiω(k)t +B(k)e−iω(k)t , (15)

where
ω(k) =

√
k2 +m2 (16)
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and where A(k) and B(k) are constants of integration. They can be found from the initial
values of u and ut at t = 0:

α(x) =

∫ +∞

−∞

dk

2π
(A(k) +B(k)) eikx

β(x) =

∫ +∞

−∞

dk

2π
iω(k)(A(k)−B(k)) eikx .

(17)

So we need to take the inverse FT to get them

A(k) +B(k) =

∫ +∞

−∞
dx α(x) e−ikx

A(k)−B(k) =
1

iω(k)

∫ +∞

−∞
dx β(x) e−ikx ,

(18)

which can be solved for A(k) and B(k). Our final expression for the solution is then

u(x, t) =

∫ +∞

−∞

dk

2π

[
A(k)ei(kx+ω(k)t) +B(k)ei(kx−ω(k)t)

]
(19)

with A(k) and B(k) given by solving the previous pair of equations.
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