Background notes on Fourier transforms

Please read the following notes - they will help with the exercises for chapter 8 in the prob-
lem sheet. We will begin with a quick and dirty derivation of Fourier transforms, starting
with the Fourier series for a periodic function f(z) defined on the interval [—L/2, L/2], as
seen in AMV:
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If we wish to consider a function that is not periodic we can take L — oo. In this limit the
discrete variable n is replaced by a continuous variable k£ and the summation becomes an
integral, with the correspondence

n ok
L 2~7r
LF, — f(k) (2)
1 & +oo g
;;;—+/mg-

Substituting these definitions in (1) we get a pair of equations, giving the (inverse and
direct) Fourier transforms
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Note there’s a factor of 27 in the first equation but not the second. Sometimes (including
in some previous version of the course) an alternative more symmetrical version is used,
with a factor of 1/4/27 in both equations instead of 1/(27) in just one.



Connection with the Dirac delta function

Applying the previous formulae for the direct and inverse Fourier transform of a function
we have
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where in the last step we bravely assumed it was OK to swap the k and 2’ integrals, and
set
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The ‘function’ §(z) that we’ve just defined has the property that
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under integration — it’s the Dirac delta function that was introduced in AMV last year.
Loosely it can be thought of as a function which is everywhere 0 except where its argument
vanishes, where it is infinite, and whose integral is 1. (Technically §(z) is not a function, but
rather a distribution.) Using the definition (5) and changing sign to the integration variable,
it is immediate to see that 0(z) = §(—x). Similar representations for the derivatives of the
delta function can be found by differentiating (5), or using (6) and integrating by parts:
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Multidimensional version
The generalization to multiple dimensions is simple. Take a function f(z,...,z,). For

each dimension we can apply the FT separately defining a k;—; ., for each transform. So

we end up at
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Gathering everything into a vector notation x = (x1,...x,) and k = (ki,...k,) we have
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where all the integrals are understood to be over R".

Fourier transform of derivatives
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Taking the derivative of this equation with respect to x we have
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So f'(z) has Fourier transform ik f(k). Continuing in the same way,
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so f™(z) has Fourier transform (ik)"f(k). This makes for a very useful tool in solving
linear differential equations. The example in lectures was the Klein-Gordon wave equation
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Assume the initial condition u(x,0) = a(x) and u(x,0) = f(x). We can always write this
equation in terms of the Fourier transforms at some time ¢ and equate those instead. We
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This equation is easily solved for u(k,t), because it is an ODE for any fixed k. The general
solution is
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where
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and where A(k) and B(k) are constants of integration. They can be found from the initial
values of v and u; at t = 0:
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So we need to take the inverse FT to get them
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which can be solved for A(k) and B(k). Our final expression for the solution is then
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with A(k) and B(k) given by solving the previous pair of equations.



