Sector Decomposition

J. Carter

Institute for Particle Physics Phenomenology University of Durham

Student Seminar, 06/05/2009

- Introduction
 - What is Sector Decomposition?
 - Why is Sector Decomposition Important?
- The Algorithm Explained
 - Goal
 - Method
- State Sta
 - Linear Divergences
 - Phase Space
 - tt Production

- Introduction
 - What is Sector Decomposition?
 - Why is Sector Decomposition Important?
- The Algorithm Explained
 - Goal
 - Method
- 3 Future Work
 - Linear Divergences
 - Phase Space
 - t̄t Production

- A method of evaluating parameter integrals that occur in perturbative QFT
- Can be used to calculate virtual and real corrections to processes at higher orders

- Introduction
 - What is Sector Decomposition?
 - Why is Sector Decomposition Important?
- The Algorithm Explained
 - Goal
 - Method
- 3 Future Work
 - Linear Divergences
 - Phase Space
 - t̄t Production

- Current experimental accuracy 1%
- Future precision experiments will require theoretical predictions at 0.1%
- Computation of higher order corrections is vital to achieve this level of accuracy

μ Dependence (I)

- Evaluation of these high order corrections are formally infinite, so we use dimensional regularisation ($D=4-2\epsilon$) to describe these infinities. This introduces an energy scale μ_B
- Processes with partonic initial states are factorized so that above a certain energy scale μ_F , partonic interactions $(gg, qg, q\bar{q}...)$ are treated separately from the parton distribution function
- These μ_R , μ_F are put in by hand, and thus the true result should have no μ dependence (conventionally $\mu_R = \mu_F = \mu$)

μ Dependence (II)

Anastasiou, Dixon, Melnikov and Petriello, hep-ph/0312266 ~~

μ Dependence (III)

Anastasiou, Dixon, Melnikov and Petriello, hep-ph/0312266 ---

- Introduction
 - What is Sector Decomposition?
 - Why is Sector Decomposition Important?
- The Algorithm Explained
 - Goal
 - Method
- 3 Future Work
 - Linear Divergences
 - Phase Space
 - t̄t̄ Production

Getting From This...

Figure: A_{9,1} Massless Three-Loop Form Factor

To This

$$A_{9,1}=i\Gamma(3+3\epsilon)(-q^2-i\eta)^{-3-3\epsilon}(-0.027872/\epsilon^5+0.374876/\epsilon^4-3.492757/\epsilon^3+21.367526/\epsilon^2-104.122985/\epsilon+353.981135+O(\epsilon))$$

- Introduction
 - What is Sector Decomposition?
 - Why is Sector Decomposition Important?
- The Algorithm Explained
 - Goal
 - Method
- 3 Future Work
 - Linear Divergences
 - Phase Space
 - t̄t Production

Feynman Parameters

- Write down amplitude using Feynman rules
- Use Feynman parameters and integrate over loop momenta
- What is left is $I = \int_0^1 (\prod_{j=1}^N dx_j) \delta(1 \sum_{i=1}^N x_i) \frac{U(\mathbf{x})^{a+b\epsilon}}{F(\mathbf{x})^{c+d\epsilon}}$
- U is a function of \mathbf{x} , and F is a function of \mathbf{x} and external invariants (s, m^2 ,...), and have zeroes when all or some of $x_i \to 0$

As an example, I will consider the massless 1-loop box

•
$$I \sim \int d^D k \frac{1}{k^2(k+p_1)^2(k+p_1+p_3)^2(k-p_2)^2}$$

$$\int d^D k \int_0^1 d^4 x \frac{\delta(1 - \sum_{i=1}^4 x_i)}{(k^2(x_1 + x_2 + x_3 + x_4) + 2(x_2p_1 + x_3p_1 - x_4p_2 + x_3p_3) \cdot k + 2x_3p_1 \cdot p_3)^4}$$

$$\bullet \sim \int_0^1 d^4x \frac{\delta(1-\sum_{i=1}^4 x_i)(x_1+x_2+x_3+x_4)^{2\epsilon}}{(-s_{12}x_1x_3-s_{13}x_2x_4)^{2+\epsilon}}$$

Primary Decomposition

- Split $I = \sum_{k=1}^{N} I_k$, where I_k is restricted to the region $x_k > x_i \forall i$
- Rescaling, Relabelling and integrating out δ function wrt x_k gives $I_k = \int_0^1 (\prod_{j=1}^{N-1} dt_j) \frac{\tilde{U}(\mathbf{t})^{a+b\epsilon}}{\tilde{F}(\mathbf{t})^{c+d\epsilon}}$
- ullet $ilde{U}$ and $ilde{F}$ typically still have zeroes as some subset of $t_i o 0$

- Consider I₄:
- \bullet $x_1 = x_4t_1, x_2 = x_4t_2, x_3 = x_4t_3, x_4 = x_4$
- $I_4 = \int_0^1 d^3t \frac{(1+t_1+t_2+t_3)^{2\epsilon}}{(-s_{12}t_1t_3-s_{13}t_2)^{2+\epsilon}} \int_0^1 dx_4 \frac{\delta(1-x_4(1+t_1+t_2+t_3))}{x_4}$
- $I_4 = \int_0^1 d^3t \frac{(1+t_1+t_2+t_3)^{2\epsilon}}{(-s_{12}t_1t_3-s_{13}t_2)^{2+\epsilon}}$

Iterated Decomposition

- Search for a subset of the $\{t_{i_1},...t_{i_p}\}$ such that at least one of $\tilde{U}, \tilde{F} \to 0$ as $\{t_{i_1},...t_{i_p}\} \to 0$
- If no such subset exists then the iteration terminates
- Else $I_k = \sum_{q=1}^p I_{k,q}$, where $I_{k,q}$ has $t_{i,q} > t_{i,r} \forall r$
- Rescale $\{t_{i_1},...t_{i_p}\}$ and factor $t_{i,q}$ out of \tilde{U},\tilde{F} where possible.
- Repeat for each new subsector created.

- Consider $I_4 = \int_0^1 d^3t \frac{(1+t_1+t_2+t_3)^{2\epsilon}}{(-s_{12}t_1t_3-s_{13}t_2)^{2+\epsilon}}$:
- Numerator is already finite as $\mathbf{t} \to 0$. Denominator $\to 0$ as t_1 and t_2 both $\to 0$
- Consider $I_{4,2}$ (ie $t_2 > t_1$): $t_1 = t'_2 t'_1, t_2 = t'_2$
- $I_{4,2} = \int_0^1 dt_1' dt_2' dt_3 t_2'^{-1-\epsilon} \frac{(1+t_1't_2'+t_2'+t_3)^{2\epsilon}}{(-s_{12}t_1't_3-s_{13})^{2+\epsilon}}$
- $I_{4,2} = \int_0^1 t_2^{-1-\epsilon} d^3 t \frac{(1+t_1t_2+t_2+t_3)^{2\epsilon}}{(-s_{12}t_1t_3-s_{13})^{2+\epsilon}}$

Subtraction (I)

- After the iteration terminates and the subsectors are relabelled we have $I = \sum_{m=1}^{\#subsectors} I_m$
- Each I_m is of the form $\int_0^1 (\prod_{j=1}^{N-1} dt_j t_j^{e_j + f_j \epsilon}) \frac{\tilde{U}(\mathbf{t})^{a+b\epsilon}}{\tilde{F}(\mathbf{t})^{c+d\epsilon}}$
- $ilde{U}$ and $ilde{F}$ are O(1) at $\mathbf{t} \to 0$, so rewrite $\frac{ ilde{U}(\mathbf{t})^{a+b\epsilon}}{ ilde{F}(\mathbf{t})^{c+d\epsilon}} \equiv g(\mathbf{t},\epsilon) = O(1) + ...$

Subtraction (II)

- All the singularities are contained in the $\prod_{j=1}^{N-1} dt_j t_j^{e_j + f_j \epsilon}$
- If $e_j > -1$ then there is no singularity in t_j
- If $e_i = -1$, subtraction is needed
- Write $g(\mathbf{t}, \epsilon) \equiv g(t_i = 0, \epsilon) + (g(\mathbf{t}, \epsilon) g(t_i = 0, \epsilon))$
- $\int_0^1 t^{-1+f\epsilon} g(0,\epsilon) dt = \frac{g(0,\epsilon)}{f\epsilon} \int_0^1 dt$
- $\int_0^1 t^{-1+f\epsilon} (g(t,\epsilon) g(0,\epsilon)) = O(1)$
- If $e_j <= -2$ then the procedure still works, but with more terms of the Taylor expansion included

• Consider
$$I_{4,2} = \int_0^1 t_2^{-1-\epsilon} d^3t \frac{(1+t_1t_2+t_2+t_3)^{2\epsilon}}{(-s_{12}t_1t_3-s_{13})^{2+\epsilon}}$$
• $I_{4,2} = \int_0^1 dt_1 dt_3 (\frac{(1+t_3)^{2\epsilon}}{(-s_{12}t_1t_3-s_{13})^{2+\epsilon}} \int_0^1 dt_2 (t_2^{-1-\epsilon}) + \int_0^1 dt_2 (t_2^{-1-\epsilon} (\frac{(1+t_1t_2+t_2+t_3)^{2\epsilon}}{(-s_{12}t_1t_3-s_{13})^{2+\epsilon}} - \frac{(1+t_3)^{2\epsilon}}{(-s_{12}t_1t_3-s_{13})^{2+\epsilon}})))$
• $= \int_0^1 d^3t ((\frac{-1}{\epsilon} \frac{(1+t_3)^{2\epsilon}}{(-s_{12}t_1t_3-s_{13})^{2+\epsilon}}) + t_2^{-1-\epsilon} (\frac{(1+t_1t_2+t_2+t_3)^{2\epsilon}}{(-s_{12}t_1t_3-s_{13})^{2+\epsilon}} - \frac{(1+t_3)^{2\epsilon}}{(-s_{12}t_1t_3-s_{13})^{2+\epsilon}}))$

Numerical Integration

- $I(\epsilon) = \sum_{m} I_{m}(\epsilon)$
- Perform the Laurent Expansion in ϵ
- For each order of ϵ the coefficient is a sum of well-behaved integrals over the N-1 dimensional unit hypercube, each of which can be calculated via Monte Carlo integration to yield the full result

• For ease of notation I shall set $s_{12} = s_{13} = -1$

•
$$I_{4,2} = \int_0^1 d^3t \left(\left(\frac{-1}{\epsilon} \frac{(1+t_3)^{2\epsilon}}{(1+t_1t_3)^{2+\epsilon}} \right) \right)$$

$$+ t_2^{-1-\epsilon} \left(\frac{(1+t_1t_2+t_2+t_3)^{2\epsilon}}{(1+t_1t_3)^{2+\epsilon}} - \frac{(1+t_3)^{2\epsilon}}{(1+t_1t_3)^{2+\epsilon}} \right) \right)$$

•
$$I_{4,2} = \frac{-1}{\epsilon} \int_0^1 d^3t \frac{1}{(1+t_1t_3)^2} + \int_0^1 d^3t \frac{2\log(1+t_3) - \log(1+t_1t_3)}{(1+t_1t_3)^2} + O(\epsilon)$$

$$\bullet = \frac{-\log(2)}{\epsilon} + \frac{\pi^2 + 6\log(2)^2 - 3\log(16)}{12} + O(\epsilon)$$

• Full numerical result is $\frac{4}{\epsilon^2} - \frac{4}{\epsilon} - 12.449 + O(\epsilon)$

- Introduction
 - What is Sector Decomposition?
 - Why is Sector Decomposition Important?
- The Algorithm Explained
 - Goal
 - Method
- Future Work
 - Linear Divergences
 - Phase Space
 - t̄t Production

• Complicated loop diagrams yield a lot of variables with $t^{-2+f\epsilon}$

Figure: Four-Point Three-Loop Diagram

 These divergences rapidly increase computation time for the subtraction, and in many cases the numerical integration becomes unworkable, as eg.

$$\frac{1 - log(1+t) - \frac{1}{1+t}}{t^2} \rightarrow \frac{-1}{2} \text{ as } t \rightarrow 0$$

but this behaviour is not seen by the numerical integration

- Taylor Expansions in these variables provide one way around the problem, but this vastly increases both the time and memory required to complete the calculation. For more than 2 of these poles, this method is prohibitively expensive
- Test new methods to overcome this problem

- Introduction
 - What is Sector Decomposition?
 - Why is Sector Decomposition Important?
- The Algorithm Explained
 - Goal
 - Method
- 3 Future Work
 - Linear Divergences
 - Phase Space
 - t̄t̄ Production

- Apply the method to real unresolved radiation
- Divergences can come from soft/collinear massless particles

Figure: $\gamma\gamma \to q\bar{q}g$

- Introduction
 - What is Sector Decomposition?
 - Why is Sector Decomposition Important?
- The Algorithm Explained
 - Goal
 - Method
- Future Work
 - Linear Divergences
 - Phase Space
 - t̄t̄ Production

• We aim to produce the full NNLO cross-section for $t\bar{t}$ production at the LHC, including two-loop, 1-loop \times real radiation and double real radiation

Further Reading

For an indepth explaination of the method: 'Sector Decomposition' Gudrun Heinrich Arxiv:0803.4177

