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What is Sector Decomposition?
Why is Sector Decomposition Important?

A method of evaluating parameter integrals that occur in
perturbative QFT
Can be used to calculate virtual and real corrections to
processes at higher orders
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What is Sector Decomposition?
Why is Sector Decomposition Important?

Current experimental accuracy 1%
Future precision experiments will require theoretical
predictions at 0.1%
Computation of higher order corrections is vital to achieve
this level of accuracy
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Why is Sector Decomposition Important?

µ Dependence (I)

Evaluation of these high order corrections are formally
infinite, so we use dimensional regularisation (D = 4− 2ε)
to describe these infinities. This introduces an energy
scale µR

Processes with partonic initial states are factorized so that
above a certain energy scale µF , partonic interactions
(gg,qg,qq̄...) are treated separately from the parton
distribution function
These µR, µF are put in by hand, and thus the true result
should have no µ dependence (conventionally
µR = µF = µ)
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µ Dependence (II)

Anastasiou, Dixon, Melnikov and Petriello, hep-ph/0312266
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µ Dependence (III)

Anastasiou, Dixon, Melnikov and Petriello, hep-ph/0312266
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Getting From This...

Figure: A9,1 Massless Three-Loop Form Factor
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To This

A9,1 = iΓ(3 + 3ε)(−q2 − iη)−3−3ε(−0.027872/ε5 +
0.374876/ε4 − 3.492757/ε3 + 21.367526/ε2 − 104.122985/ε+
353.981135 + O(ε))
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Feynman Parameters

Write down amplitude using Feynman rules
Use Feynman parameters and integrate over loop
momenta
What is left is I =

∫ 1
0 (

∏N
j=1 dxj)δ(1−

∑N
i=1 xi)

U(x)a+bε

F (x)c+dε

U is a function of x, and F is a function of x and external
invariants (s,m2,...), and have zeroes when all or some of
xi → 0
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Example

As an example, I will consider the massless 1-loop box

J. Carter Sector Decomposition



Introduction
The Algorithm Explained

Future Work

Goal
Method

Example

N = 4
I ∼

∫
dDk 1

k2(k+p1)2(k+p1+p3)2(k−p2)2∫
dDk

∫ 1
0 d4x δ(1−

P4
i=1 xi )

(k2(x1+x2+x3+x4)+2(x2p1+x3p1−x4p2+x3p3)·k+2x3p1·p3)4

∼
∫ 1

0 d4x δ(1−
P4

i=1 xi )(x1+x2+x3+x4)2ε

(−s12x1x3−s13x2x4)2+ε

J. Carter Sector Decomposition
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Primary Decomposition

Split I =
∑N

k=1 Ik , where Ik is restricted to the region
xk > xi∀i
Rescaling, Relabelling and integrating out δ function wrt xk

gives Ik =
∫ 1

0 (
∏N−1

j=1 dtj)
Ũ(t)a+bε

F̃ (t)c+dε

Ũ and F̃ typically still have zeroes as some subset of ti → 0
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Example

Consider I4:
x1 = x4t1, x2 = x4t2, x3 = x4t3, x4 = x4

I4 =
∫ 1

0 d3t (1+t1+t2+t3)2ε

(−s12t1t3−s13t2)2+ε

∫ 1
0 dx4

δ(1−x4(1+t1+t2+t3))
x4

I4 =
∫ 1

0 d3t (1+t1+t2+t3)2ε

(−s12t1t3−s13t2)2+ε

J. Carter Sector Decomposition
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Iterated Decomposition

Search for a subset of the {ti1 , ...tip} such that at least one
of Ũ, F̃ → 0 as {ti1 , ...tip} → 0
If no such subset exists then the iteration terminates
Else Ik =

∑p
q=1 Ik ,q, where Ik ,q has ti,q > ti,r∀r

Rescale {ti1 , ...tip} and factor ti,q out of Ũ, F̃ where possible.
Repeat for each new subsector created.

J. Carter Sector Decomposition
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Example

Consider I4 =
∫ 1

0 d3t (1+t1+t2+t3)2ε

(−s12t1t3−s13t2)2+ε :

Numerator is already finite as t→ 0. Denominator→ 0 as
t1 and t2 both→ 0
Consider I4,2 (ie t2 > t1): t1 = t ′2t ′1, t2 = t ′2

I4,2 =
∫ 1

0 dt ′1dt ′2dt3t ′2
−1−ε (1+t ′1t ′2+t ′2+t3)2ε

(−s12t ′1t3−s13)2+ε

I4,2 =
∫ 1

0 t−1−ε
2 d3t (1+t1t2+t2+t3)2ε

(−s12t1t3−s13)2+ε
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Subtraction (I)

After the iteration terminates and the subsectors are
relabelled we have I =

∑#subsectors
m=1 Im

Each Im is of the form
∫ 1

0 (
∏N−1

j=1 dtj t
ej +fjε
j ) Ũ(t)a+bε

F̃ (t)c+dε

Ũ and F̃ are O(1) at t→ 0, so rewrite
Ũ(t)a+bε

F̃ (t)c+dε
≡ g(t, ε) = O(1) + ...
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Subtraction (II)

All the singularities are contained in the
∏N−1

j=1 dtj t
ej +fjε
j

If ej > −1 then there is no singularity in tj
If ej = −1, subtraction is needed
Write g(t, ε) ≡ g(tj = 0, ε) + (g(t, ε)− g(tj = 0, ε))∫ 1

0 t−1+f εg(0, ε)dt = g(0,ε)
f ε

∫ 1
0 dt∫ 1

0 t−1+f ε(g(t , ε)− g(0, ε)) = O(1)

If ej <= −2 then the procedure still works, but with more
terms of the Taylor expansion included

J. Carter Sector Decomposition
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Example

Consider I4,2 =
∫ 1

0 t−1−ε
2 d3t (1+t1t2+t2+t3)2ε

(−s12t1t3−s13)2+ε

I4,2 =
∫ 1

0 dt1dt3( (1+t3)2ε

(−s12t1t3−s13)2+ε

∫ 1
0 dt2(t−1−ε

2 )

+
∫ 1

0 dt2(t−1−ε
2 ( (1+t1t2+t2+t3)2ε

(−s12t1t3−s13)2+ε −
(1+t3)2ε

(−s12t1t3−s13)2+ε )))

=
∫ 1

0 d3t((−1
ε

(1+t3)2ε

(−s12t1t3−s13)2+ε )

+ t−1−ε
2 ( (1+t1t2+t2+t3)2ε

(−s12t1t3−s13)2+ε −
(1+t3)2ε

(−s12t1t3−s13)2+ε ))
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Numerical Integration

I(ε) =
∑

m Im(ε)

Perform the Laurent Expansion in ε
For each order of ε the coefficient is a sum of well-behaved
integrals over the N − 1 dimensional unit hypercube, each
of which can be calculated via Monte Carlo integration to
yield the full result

J. Carter Sector Decomposition
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Example

For ease of notation I shall set s12 = s13 = −1

I4,2 =
∫ 1

0 d3t((−1
ε

(1+t3)2ε

(1+t1t3)2+ε )

+ t−1−ε
2 ( (1+t1t2+t2+t3)2ε

(1+t1t3)2+ε − (1+t3)2ε

(1+t1t3)2+ε ))

I4,2 = −1
ε

∫ 1
0 d3t 1

(1+t1t3)2 +
∫ 1

0 d3t 2log(1+t3)−log(1+t1t3)
(1+t1t3)2 + O(ε)

= −log(2)
ε + π2+6log(2)2−3log(16)

12 + O(ε)

Full numerical result is 4
ε2
− 4

ε − 12.449 + O(ε)
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Complicated loop diagrams yield a lot of variables with
t−2+f ε

Figure: Four-Point Three-Loop Diagram
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These divergences rapidly increase computation time for
the subtraction, and in many cases the numerical
integration becomes unworkable, as eg.
1−log(1+t)− 1

1+t
t2 → −1

2 as t → 0
but this behaviour is not seen by the numerical integration
Taylor Expansions in these variables provide one way
around the problem, but this vastly increases both the time
and memory required to complete the calculation. For
more than 2 of these poles, this method is prohibitively
expensive
Test new methods to overcome this problem
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Apply the method to real unresolved radiation
Divergences can come from soft/collinear massless
particles

Figure: γγ → qq̄g
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We aim to produce the full NNLO cross-section for t t̄
production at the LHC, including two-loop, 1-loop × real
radiation and double real radiation
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Further Reading

For an indepth explaination of the method:
’Sector Decomposition’
Gudrun Heinrich
Arxiv:0803.4177
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