Black Holes, Vortices and Thermodynamics

Luke Barclay
Durham, CPT
luke.barclay@durham.ac.uk
Supervisor: Ruth Gregory

Outline

- Black Hole Thermodynamics
- Vortices
- Black Holes with Vortices
- Solving the Hierarchy Problem??

Black Hole Thermodynamics

Hawking and Bekenstein in the early 70's conjectured that black holes have thermodynamic properties.

- Black holes have entropy *S*.
- Black holes have Hawking temperature T_H , consistent with thermodynamic relation between energy, entropy and temperature.

$\mathsf{Thermodynamics}$

- $S = \frac{A}{4}$ where A is the area of the event horizon.
- $T_H = \frac{\kappa}{2\pi}$ where κ in the surface gravity of the black hole.

Path Integral Formulation

- In 1976 Hawking and Gibbons demonstrated that these thermodynamic results could be attained via a path integral approach to quantum gravity.
- In this approach one considers expressions of the form

$$\langle \Phi_2, t_2 | \Phi_1, t_1 \rangle = \left\langle \Phi_1 | e^{-iH(t_2 - t_1)} | \Phi_2 \right\rangle = \int \mathcal{D}[\Phi] e^{iS[\Phi])}$$
 if $t_2 - t_1 = i\beta$ and $\Phi_1 = \Phi_2$ then

$$\langle \Phi, t_2 | \Phi, t_1 \rangle = \textit{Tre}^{-\beta \textit{H}} = \textit{Z} = \int \mathcal{D}[\Phi] e^{i S[\Phi]}$$

• Here Z is the partition function of an ensemble at temperature $T = \beta^{-1}$, $\mathcal{D}[\Phi]$ is the measure of the space of all fields.

Euclideanisation and Temperature

• In quantum gravity this is the same

$$Z = \int d[g]d[\phi]e^{iS[g][\phi]}$$

- For ease of calculation the metric is Euclideanised i.e. $t \rightarrow i \tau$ and the metric becomes positive definite.
- ullet Now, a periodicity can be associated with au meaning $eta=\Delta au.$
- Then, by including all metrics that are asymptotically flat and have periodicity of the imaginary time coordinate $\beta=\Delta \tau$, the path integral gives the partition function for a system at temperature $T=\beta^{-1}$.

Topology of Euclidean Black Holes

Euclidean Schwarzschild black hole metric

$$ds^{2} = \left(1 - \frac{r_{s}}{r}\right)d\tau^{2} + \left(1 - \frac{r_{s}}{r}\right)^{-1}dr^{2} + r^{2}(d\theta^{2} + \sin^{2}\theta d\phi^{2})$$

- Singular at $r = r_s$.
- A change variables of $\rho^2 = (2r_s)^2(1 \frac{r_s}{r})$, gives

$$ds^2 =
ho^2 (rac{ au}{2r_s})^2 + d
ho^2 + r_s^2 d\Omega_{II}^2$$
 as $r o r_s$.

- $\rightarrow \tau$ must be periodic with period $\beta = 4\pi r_s$
- Singularity is coordinate singularity
- Metric is only defined on $r_s \le r < \infty$
- The metric has topology $\mathbb{R}^2 \times S^2$.

Black Hole Partition function

- For black holes the key contributions to the path integral come from geometries that have topology such as this i.e. $\mathbb{R}^2 \times \mathbb{S}^2$.
- For the Schwarzschild black hole including this geometry alone results in the partition function from which the famous results can be derived.

Outline

- Black Hole Thermodynamics
- Vortices
- Black Holes with Vortices
- Solving the Hierarchy Problem?

Vortices

- A vortex is a non-perturbative, non-trivial solution of the field equations.
- This talk will consider only local Abelian Higgs vortices.
- They can be created during phase transitions.

Abelian Higgs Lagrangian

$$\mathcal{L} = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} + \mathcal{D}^{\mu} \phi (\mathcal{D}_{\mu} \phi)^* - \frac{\lambda}{4} (\phi \phi^* - \eta^2)^2,$$

$$\phi(x)' = e^{i.e.\Lambda(x)}\phi(x),$$
 $A_{\mu}(x)' = A_{\mu}(x) - \partial_{\mu}\Lambda(x),$ $\mathcal{D}_{\mu}\phi = \partial_{\mu}\phi + ieA_{\mu}\phi.$

Vortex Formation

$$\mathcal{L} = -rac{1}{4} F_{\mu
u} F^{\mu
u} + \mathcal{D}^{\mu} \phi (\mathcal{D}_{\mu} \phi)^* - rac{\lambda}{4} (\phi \phi^* - \eta^2)^2$$

- If $\eta > 0$ then it is the symmetry breaking scale, an energy scale below which $\phi(x)$ acquires a vev $\neq 0$, the symmetry breaks and the theory undergoes a phase transition.
- It is likely that during a transition a non-trivial winding of the phase will appear about some point.
- ullet For this winding to be reconciled at the origin, ϕ must rise up the potential barrier to $\phi=0$, thus a stable, localised, non-zero energy density appears which forms the vortex core.

Field Configuration

• Finite energy considerations imply that $\phi \to \eta$ as $r \to \infty$ (it's vacuum value) and A_μ must asymptotically be a pure gauge rotation.

Simplest Field Configuration for Vortices

$$\phi = \eta X(r)e^{ik heta}, \qquad egin{cases} X(0) = 0, \ X(r)
ightarrow 1, \quad r
ightarrow \infty. \ A_{\mu} = rac{1}{e}(P(r)-k)\partial_{\mu} heta, \qquad egin{cases} P(0) = k, \ P(r)
ightarrow 0, \quad r
ightarrow \infty. \end{cases}$$

Field Equations

• This form simplifies the field equations for variables X(r) and P(r).

Field Equations In Minkowski Background

$$X'' = \frac{-X'}{r} + \frac{P^2X}{r^2} + \frac{\lambda\eta^2}{2}(X^2 - 1)X,$$

 $P'' = \frac{P'}{r} + 2e^2\eta^2X^2P.$

 These coupled, second order, ordinary differential equations can be solved numerically.

Field Distributions

Figure: Field distribution for k=1 and k=2 vortices

Vortices and Gravity

To include gravity:

- ullet The Minkowski metric must be replaced by $g_{\mu
 u}$, the general metric.
- The field equations must now include components of the metric and be coupled to the Einstein equations. Giving more differential equations of more variables.

These equations have been solved for a vortex in an otherwise flat spacetime and give an interesting result.

- The geometry of the spacetime outside the core is locally identical to Minkowski but not globally.
- The effect of the vortex is to introduce a 'deficit angle' making the spacetime that of a snub-nosed cone.

$$\Delta = 8\pi G\mu$$

where Δ is the deficit angle, G is Newtons constant and μ is the vortex mass per unit length.

Outline

- Black Hole Thermodynamics
- Vortices
- Black Holes with Vortices
- Solving the Hierarchy Problem?

Vortex on a Black Hole

- The temperature of a black hole depends on the periodicity, β , of the imaginary temporal coordinate.
- The gravitational effect of a vortex on the surrounding space time is to reduce the period of the dimension in which its phase lies.
- Therefore, one might expect that a vortex on a black hole configured such that its phase lies in the temporal direction may effect the temperature of a black hole.

Set up

We now consider an Abelian Higgs Lagrangian with General Euclidean Schwarzschild metric

Lagrangian and Metric

$$\mathcal{L} = rac{1}{4}F_{\mu
u}F^{\mu
u} + \mathcal{D}^{\mu}\phi(\mathcal{D}_{\mu}\phi)^* + rac{\lambda}{4}(\phi\phi^* - \eta^2)^2,$$

 $ds^2 = A^2d\tau^2 + A^{-2}dr^2 + C^2(d\theta^2 + sin^2\theta d\phi^2).$

Field Configuration

$$\phi = \eta X(r)e^{ikrac{2\pi au}{eta}}, \ A_{\mu} = rac{2\pi}{eta e}(P(r)-k)\partial_{\mu} au = rac{2\pi}{eta e}(P_{\mu}-k\partial_{\mu}).$$

This configuration ensures cylindrical symmetry about τ which leads to A = A(r) and C = C(r).

Field Equations

Field Equations

Varying ϕ and A_{μ} gives

$$\frac{1}{C^2}(C^2P')' = 2e^2\eta^2 \frac{X^2P}{A^2}$$
$$\frac{1}{C^2}(C^2A^2X')' = \frac{P^2X4\pi^2}{A^2\beta^2} + \frac{\lambda\eta^2}{2}X(X^2 - 1).$$

Varying $g^{\mu\nu}$ gives the Einstein equations, which for this case are:

$$C'' = 4\pi G \frac{C}{A^2} (T_0^0 - T_r^r)$$
$$((A^2)'C^2)' = 8\pi G C^2 (2T_\theta^\theta + T_r^r - T_0^0)$$
$$\frac{(A^2)'C'}{C} - \frac{1}{C^2} (1 - A^2C'^2) = 8\pi G T_r^r$$

Where T_i^i are components of the energy-momentum tensor.

Boundary conditions

These coupled, ordinary differential equations must be solved simultaneously along with the boundary conditions specified by finite energy constraints and regularity of the metric at the horizon.

Boundary Conditions

$$C(r_s) = r_s$$

$$A(r_s) = 0 \qquad A(r_s)^2 = \frac{1}{r_s}$$

$$X(r_s) = 0 \qquad X(\infty) = 1$$

$$P(r_s) = 1 \qquad P(\infty) = 0.$$

- The problem complicated by the 'mixed type' boundary conditions.
- The method used involves a Runge-Kutta algorithm on the equations for the gravity fields and successive under-relaxation on the matter fields, repeated on successive iterations.

Figure: Field distribution for G=0.0 and G=0.02 vortices

 Caveat: There is a small numerical artefact in these solutions (not shown here) which needs some further investigation to ascertaining its origin.

Results

Figure: Field distribution for G=0.0 (close up), G=0.0 and G=0.02 vortices (coordinates appear flat at the horizon).

Conclusions

Key observations:

- Gravity fields are asymptotically Schwarzschild.
- A²'s asymptotic value is increased by the presence of the gravitating vortex.

If we look at the asymptotic Schwarzschild where A^2 has been multiplied by a constant λ .

$$ds^2=\lambda^2A^2d au^2+rac{1}{\lambda^2}A^{-2}dr^2+rac{1}{\lambda^2}C^2(d heta^2+\sin^2\! heta d\phi^2).$$

This factor can only be absorbed by a rescaling of $d au o frac{d au}{\lambda}$ and $dr o \lambda dr$

• Therefore the period at infinity, $\tilde{\beta} = \frac{\Delta \tau}{\lambda} = \frac{\beta}{\lambda}$, is reduced and the temperature of the black hole $\tilde{T}_H = \frac{1}{\tilde{\beta}}$ is increased.

Summary

- Verified numerically that the presence of a vortex on a Euclidean Schwarzschild black hole increased the temperature of the system.
- This supports previous work of my supervisor and collaborators when looking analytically at the extreme case of a thin weakly gravitating vortex on a black hole.
- These results apply to the more general case of thicker and stronger gravitating vortices.
- This may well have important implications on other current work in the field.

Outline

- Black Hole Thermodynamics
- Vortices
- Black Holes with Vortices
- Solving the Hierarchy Problem?

Discrete Local Symmetry

 In the 70's the idea of discrete local symmetry was used as a way of endowing black holes with 'hair' despite the no hair theorems.

Consider a theory of two complex scalar fields ϕ and φ invariant under a local U(1) gauge transformation.

$$\phi(x)' = e^{ie\Lambda(x)}\phi$$
 $\varphi(x)' = e^{\frac{ie\Lambda(x)}{N}}\varphi$
 $A_{\mu}(x)' = A_{\mu}(x) - \partial_{\mu}\Lambda(x),$

for some integer N. Now consider the Lagrangian density

$$\mathcal{L} = -\frac{1}{4}F^2 + (\mathcal{D}\phi)^2 + (\mathcal{D}\varphi)^2 - \frac{\lambda}{4}(\phi^2 - \eta^2)^2 + V(|\varphi|).$$

Discrete Local Symmetry

- \bullet Suppose η is some energy scale at which ϕ condenses and φ does not.
- ϕ will be invariant under additions of $k\frac{2\pi}{e}$ to the phase whist φ will not, being multiplied by the nth root of unity.
- The possible actions of these transformations generate a Z_N symmetry.

Solving the Hierarchy Problem?

Gia Dvali (2007) postulated a novel solution to the hierarchy problem using black hole physics and the idea of discrete quantum charges.

- Consider N bosonic fields each of mass λ and charged under an individual Z_2 symmetry as just described.
- Imagine a black hole constructed of one of each of these species of field. The mass of such a black hole will be

$$M_{BH} = N\lambda$$
.

- The black hole will emit particles as Hawking radiation.
- These are gauge conserved charges and must be revealed after evaporation.

Solving the Hierarchy Problem?

- ullet The black hole will only emit particles of mass λ when $T_H pprox \lambda$
- At this point the mass of the black hole is given by

$$\tilde{M_{BH}} = \frac{M_P^2}{T_H} \approx \frac{M_P^2}{\lambda}$$

 Only at this point can the black hole start to reveal the N particles. By conservation of energy it must reveal them all, thus

$$\tilde{M_{BH}} = N\lambda$$

 $\to M_P^2 \approx N\lambda^2$.

• Therefore the postulation of $N = 10^{32}$ beyond the standard quantum field species will resolve the hierarchy problem.

Criticisms

- Symmetry breaking is required to form these discrete charged fields, and therefore vortices are permitted.
- The presence of vortices increases the temperature of a black hole; by an amount at least proportional to the number of vortices.

$$egin{aligned} T_{NoVortex} &= rac{1}{8\pi\,GM} = rac{M_P^2}{M_{BH}} pprox \lambda \ T_{NVortices} &= rac{1}{8\pi\,GM}(N) = rac{M_P^2}{M_{BH}}(N) pprox \lambda \ &
ightarrow M_P^2 pprox rac{N\lambda^2}{(N)} = \lambda^2. \end{aligned}$$

Questions about Criticism

- What is the true significance of the discrete charge in relation to the path integral?
 - i.e. Does the presence of a vortex in the theory affect the temperature of the black hole irrespective of discrete charge in the black hole?
- Are N voracities truly necessary to have N different field species?
- To answer these questions we must look closely at how the discretely charged fields relate to the 'no hair' theorems.