# Multiple M2-branes and Supergravity background fields 

James Allen<br>Supervised by Dr. Douglas Smith<br>Durham University

Student Seminar, 18th Oct. 2010

## String theory, M-theory and and supergravity

- String Theory
- D-branes
- 10D Supergravity


## String theory, M-theory and and supergravity

- String Theory
- D-branes
- 10D Supergravity
- M-theory
- M-branes
- 11D Supergravity



## D-branes

- For a single D2-brane the (bosonic) action:

$$
\mathcal{L}=-\frac{1}{\left(2 \pi \alpha^{\prime}\right)^{2} g_{\text {YM }}^{2}} \sqrt{-\operatorname{det}\left(g_{\mu \nu}+2 \pi \alpha^{\prime} F_{\mu \nu}\right)}
$$

## D-branes

- For a single D2-brane the (bosonic) action:

$$
\mathcal{L}=-\frac{1}{\left(2 \pi \alpha^{\prime}\right)^{2} g_{\text {YM }}^{2}} \sqrt{-\operatorname{det}\left(g_{\mu \nu}+2 \pi \alpha^{\prime} F_{\mu \nu}\right)}
$$

- For $N$ coincident D-branes the (low energy) action is:

$$
\begin{aligned}
\mathcal{L}=\frac{1}{g_{Y M}^{2}} & \operatorname{Tr}\left(\frac{1}{2} F_{\mu \nu} F^{\mu \nu}+D_{\mu} X^{i} D^{\mu} X^{i}+V(X)\right. \\
& \left.-i \bar{\Psi} \Gamma^{\mu} D_{\mu} \Psi-i \bar{\Psi} \Gamma^{i}\left[X^{i}, \bar{\Psi}\right]\right)
\end{aligned}
$$

where

$$
V(X)=\frac{1}{4}\left[X^{i}, X^{j}\right]\left[X^{i}, X^{j}\right]
$$

## Background fields

- In type IIA string theory and 10D supergravity we have anti-symmetric $C$ fields: $C_{a}, C_{a b c}, C_{a b c d e}$, etc.
- Each of these couples naturally to a single D-brane,

$$
S=\mu_{p} \int P\left[C_{(p+1)}\right]
$$

## Background fields

- In type IIA string theory and 10D supergravity we have anti-symmetric $C$ fields: $C_{a}, C_{a b c}, C_{a b c d e}$, etc.
- Each of these couples naturally to a single D-brane,

$$
S=\mu_{p} \int P\left[C_{(p+1)}\right]
$$

- With multiple D-branes, we need a more complicated coupling to preserve T-duality,

$$
S=\mu_{p} \int \operatorname{STr}\left(P\left[e^{i \lambda \mathbf{i} \times \mathbf{i}_{x}}\left(\sum C_{(n)} e^{B}\right)\right] e^{\lambda F}\right)
$$

For D2-branes, this will include terms like $C_{(3)}, X X C_{(5)}$, $X X C_{(3)} \wedge B$, etc.

## Branes in M-theory

- For an M2-brane action we need:
- 16 supersymmetries,
- 8 scalars,
- degrees of freedom to grow as $N^{\frac{3}{2}}$.


## Branes in M-theory

- For an M2-brane action we need:
- 16 supersymmetries,
- 8 scalars,
- degrees of freedom to grow as $N^{\frac{3}{2}}$.
- An important clue was provided by the Basu-Harvey equation,

$$
\partial_{\mu} X \propto[X, X, X] .
$$

Bagger and Lambert (and separately Gustavson) were motivated by this to come up with an action based on a three algebra.

## Three algebras

Generalize the idea of a Lie algebra to a three algebra.

$$
\begin{array}{rll}
{[X, Y]} & \rightarrow & {[X, Y, Z]} \\
{\left[T^{a}, T^{b}\right]=f^{a b}{ }_{c} T^{c}} & \rightarrow & {\left[T^{a}, T^{b}, T^{c}\right]=f_{d}^{a b c} T^{d} .}
\end{array}
$$

## Three algebras

Generalize the idea of a Lie algebra to a three algebra.

$$
\begin{array}{rll}
{[X, Y]} & \rightarrow & {[X, Y, Z]} \\
{\left[T^{a}, T^{b}\right]=f^{a b}{ }_{c} T^{c}} & \rightarrow & {\left[T^{a}, T^{b}, T^{c}\right]=f^{a b c}{ }_{d} T^{d} .}
\end{array}
$$

We also have

- Generalised Jacobi Identity
- A Trace (Tr)
- A metric $h^{a b}=\operatorname{Tr}\left(T^{a}, T^{b}\right)$


## The BLG Action

Using the three algebra, we can write down the following action ${ }^{1}$ describing multiple M2-branes:

$$
\begin{aligned}
\mathcal{L}= & \operatorname{Tr}
\end{aligned}\left(-\frac{1}{2}\left(D_{\mu} X^{\prime}\right)\left(D^{\mu} X_{l}\right)+\frac{i}{2} \bar{\Psi} \Gamma^{\mu} D_{\mu} \Psi-\frac{i}{4}\left[\bar{\Psi}, X^{\prime}, X^{J}\right] \Gamma_{ו J} \Psi\right), ~\left({ }^{2} \varepsilon^{\mu \nu \lambda}\left(f^{a b c d} A_{\mu a b} \partial_{\nu} A_{\lambda c d}+\frac{2}{3} f^{c d a}{ }_{g} f^{e f g b} A_{\mu a b} A_{\nu c d} A_{\lambda e f}\right),\right.
$$

where

$$
\begin{aligned}
D_{\mu} X_{a} & =\partial_{\mu} X_{a}-\tilde{A}_{\mu}{ }^{b}{ }_{a} X_{b}, \quad \tilde{A}_{\mu}{ }^{b}{ }_{a}=f^{c d b}{ }_{a} A_{\mu c d}, \\
V & =\frac{1}{12} \operatorname{Tr}\left(\left[X^{\prime}, X^{J}, X^{K}\right]\left[X^{\prime}, X^{J}, X^{K}\right]\right)
\end{aligned}
$$

[^0]
## The ABJM action

- Aharony, Bergman, Jafferis, and Maldacena wrote down another candidate action based with a $U(N) \times U(N)$ gauge symmetry.


## The ABJM action

- Aharony, Bergman, Jafferis, and Maldacena wrote down another candidate action based with a $U(N) \times U(N)$ gauge symmetry.
- This can be written in terms of a similar three-algebra structure but without the full anti-symmetry:

$$
\begin{aligned}
\mathcal{L}=- & \operatorname{Tr}\left(D^{\mu} \bar{Z}_{A} D_{\mu} Z^{A}+i \bar{\Psi}^{A} \Gamma^{\mu} D_{\mu} \Psi_{A}\right)-V \\
& -i \operatorname{Tr}\left(\bar{\Psi}^{A}\left[\Psi_{A}, Z^{B} ; \bar{Z}_{B}\right]-2 \bar{\Psi}^{A}\left[\Psi_{B}, Z^{B} ; \bar{Z}_{A}\right]\right) \\
& +\frac{i}{2} \varepsilon^{A B C D} \operatorname{Tr}\left(\bar{\Psi}_{A}\left[Z_{C}, Z_{D} ; \psi_{B}\right]-\bar{Z}_{D}\left[\bar{\psi}_{A} \psi_{B} ; \bar{Z}_{C}\right]\right) \\
& +\frac{k}{4 \pi} \operatorname{Tr}\left(A \wedge d A+\frac{2}{3} A \wedge A \wedge A-\tilde{A} \wedge d \tilde{A}-\frac{2}{3} \tilde{A} \wedge \tilde{A} \wedge \tilde{A}\right)
\end{aligned}
$$

$$
Z^{A}=X^{A}+i X^{A+4}
$$

## Back to D2-branes

- We want to be able to recover the multiple D2-brane action from the multiple M2-action
${ }^{2}$ Mukhi, Papageorgakis (2008) [hep-th:0803.3218]


## Back to D2-branes

- We want to be able to recover the multiple D2-brane action from the multiple M2-action
- We can do this via a 'Higgsing mechanism'2:
${ }^{2}$ Mukhi, Papageorgakis (2008) [hep-th:0803.3218]


## Back to D2-branes

- We want to be able to recover the multiple D2-brane action from the multiple M2-action
- We can do this via a 'Higgsing mechanism'2:
- Let one component of $X^{8}$ acquire a $\mathrm{VeV},\left\langle X_{a}^{8}\right\rangle=v$,

[^1]
## Back to D2-branes

- We want to be able to recover the multiple D2-brane action from the multiple M2-action
- We can do this via a 'Higgsing mechanism'2:
- Let one component of $X^{8}$ acquire a $\mathrm{VeV},\left\langle X_{a}^{8}\right\rangle=v$,
- Split up the gauge field(s) into $A^{-}$and $A^{+}$. Then $A^{-}$becomes an auxilarly field and can be integrated out.
${ }^{2}$ Mukhi, Papageorgakis (2008) [hep-th:0803.3218]


## Back to D2-branes

- We want to be able to recover the multiple D2-brane action from the multiple M2-action
- We can do this via a 'Higgsing mechanism'2:
- Let one component of $X^{8}$ acquire a $\mathrm{VeV},\left\langle X_{a}^{8}\right\rangle=v$,
- Split up the gauge field(s) into $A^{-}$and $A^{+}$. Then $A^{-}$becomes an auxilarly field and can be integrated out.
- Remaining gauge field 'eats' the Goldstone boson and acquires the necessary degrees of freedom.

[^2]
## Back to D2-branes

- We want to be able to recover the multiple D2-brane action from the multiple M2-action
- We can do this via a 'Higgsing mechanism'2:
- Let one component of $X^{8}$ acquire a $\mathrm{VeV},\left\langle X_{a}^{8}\right\rangle=v$,
- Split up the gauge field(s) into $A^{-}$and $A^{+}$. Then $A^{-}$becomes an auxilarly field and can be integrated out.
- Remaining gauge field 'eats' the Goldstone boson and acquires the necessary degrees of freedom.
- In the limit of $v \rightarrow \infty$, we recover the multiple D2-brane action!
${ }^{2}$ Mukhi, Papageorgakis (2008) [hep-th:0803.3218]


## Coupling to background fields

- 11D supergravity has a 3 -form $C_{a b c}$ and a 6 -form $C_{a b c d e f}$ that we'd like to include in the M2 action.

[^3]
## Coupling to background fields

- 11D supergravity has a 3 -form $C_{a b c}$ and a 6 -form $C_{a b c d e f}$ that we'd like to include in the M2 action.
- The following is a candidate coupling ${ }^{3}$,

$$
\ldots+\varepsilon^{\mu \nu \rho} \operatorname{Tr}\left(C_{\mu A \bar{B}}^{(1)} D_{\nu} Z^{A} D_{\rho} Z_{B}^{\dagger}\right)+\ldots
$$

[^4]
## Coupling to background fields

- 11D supergravity has a 3 -form $C_{a b c}$ and a 6 -form $C_{a b c d e f}$ that we'd like to include in the M2 action.
- The following is a candidate coupling ${ }^{3}$,

$$
\ldots+\varepsilon^{\mu \nu \rho} \operatorname{Tr}\left(C_{\mu A \bar{B}}^{(1)} D_{\nu} Z^{A} D_{\rho} Z_{B}^{\dagger}\right)+\ldots
$$

- This correctly reproduces some of the expected terms in the D2 action:

$$
\ldots+\varepsilon^{\mu \nu \rho} \operatorname{Tr}\left(C_{\mu i j} D_{\nu} X^{i} D_{\rho} X^{j}\right)+\ldots
$$

[^5]
## Current and future work

- Look at a $C_{(3)} \wedge C_{(3)}$ term to hopefully get a $C_{(3)} \wedge B$ term in the D2 action,
- Reduce this form of the action back to the BLG action,
- Consider supersymmetry of this new action.


[^0]:    ${ }^{1}$ Bagger, Lambert (2007) [hep-th:0711.0955]

[^1]:    ${ }^{2}$ Mukhi, Papageorgakis (2008) [hep-th:0803.3218]

[^2]:    ${ }^{2}$ Mukhi, Papageorgakis (2008) [hep-th:0803.3218]

[^3]:    ${ }^{3}$ Kim, Kwon, Nakajima, Tolla (2010) [hep-th:0905.4840]

[^4]:    ${ }^{3}$ Kim, Kwon, Nakajima, Tolla (2010) [hep-th:0905.4840]

[^5]:    ${ }^{3}$ Kim, Kwon, Nakajima, Tolla (2010) [hep-th:0905.4840]

