Drag Force in Quark-Gluon Plasma

By Suphakorn Chunlen

Durham University

21st February 2011

What is the quark-gluon plasma (QGP)?

• A plasma state of quarks and gluons.

 A high temperature phase of quantum chromodynamics (QCD).

http://web.mit.edu/newsoffice/2010/exp-quarkgluon-0609.html

Why do we study QGP?

- It is a clue to understand the early universe after the inflation.
- Quarks and gluons are deconfined in this state.
- It could lead to know more features of the QCD.

The Phase Diagram of QCD

http://www.lnf.infn.it/esperimenti/alice/QGP/qgp.php

Interesting Features of QGP

Near Zero Viscosity

• Elliptic Flow

• Jet Quenching

Near Zero Viscosity

- The QGP from heavyion collisions has a perfect fluid behaviour with a very low viscosity (Zajc, 2008).
- The strong coupled plasma constituents is the cause of this perfect fluidity (Wang, 2010).

http://newscenter.lbl.gov/featurestories/2010/01/14/jet/ S-Wave Interacting Fermionic Systems (Mekjian, 2010)

S-Wave Interacting Bosonic Systems (Mekjian, 2010)

Hard Sphere Gases (Mekjian, 2010)

QGP measured at RHIC (Lacey et al., 2007)

$$\frac{\eta}{s} \sim 10.14 \left(\frac{1}{4\pi}\right)$$

$$\frac{\eta}{s} \sim 7.67 \left(\frac{1}{4\pi}\right)$$

$$\frac{\eta}{s}\Big|_{min} \sim 2\left(\frac{1}{4\pi}\right)$$

$$\frac{\eta}{s} \sim 1.1 \left(\frac{1}{4\pi}\right)$$

Fluid	P (Pa)	T (K)	η (Pa s)	η/n (ħ)	$\eta/s~(\hbar/k_{\rm B})$
H ₂ O	0.1×10^{6}	370	$2.9 imes 10^{-4}$	85	8.2
⁴ He	0.1×10^{6}	2.0	1.2×10^{-6}	0.5	1.9
H_2O	22.6×10^{6}	650	$6.0 imes 10^{-5}$	32	2.0
⁴ He	0.22×10^{6}	5.1	1.7×10^{-6}	1.7	0.7
6 Li ($a = \infty$)	12×10^{-9}	23×10^{-6}	\leqslant 1.7 × 10 ⁻¹⁵	≼1	≼ 0.5
QGP	88×10^{33}	2×10^{12}	$\leq 5 \times 10^{11}$		≼ 0.4

Table1: Some Properties of Fluids (Schäfer and Teaney, 2009)

Elliptic Flow

- The QGP produced in the colliders has anisotropic momentum distribution (Adam et al., 2005).
- The elliptic flow parameter (v_2) is given http://www.interaction by the fourier expansion of the azimuthal particle distribution: $\frac{dN}{d\omega} \sim 1 + 2v_2 \cos 2\varphi + \cdots$

http://www.interactions.org/sgtw/2006/1025/

The elliptic flow parameter (v_2) versus the transverse momentum (p_1) from different particles measured at RHIC

http://www.interactions.org/sgtw/2006/1025/star_grid_more.html

Jet Quenching

The production of quark-antiquark pairs near the boundary of QGP does not lead to two back-to-back jets.

Rather, it gives rise to only one observed jet.

http://newscenter.lbl.gov/featurestories/2008/02/15/catching-the-jets-2/

Drag Force in the Jet Quenching

- In AdS/CFT correspondence
 - A classical picture of a string can describe the dynamics of strong coupling gauges (Gubser, 2006).
 - The ultra relativistic quark was modelled with an open string ending on the boundary of AdS space, hanging deep in the interior of an AdS black hole (Gubser, 2006; Yaffe et al., 2006).

The Drag Force (Continued)

- For infinite size (Gubser, 2006)
 - They use Poincaré patch of AdS₅-Schwarzschild.
 - The quark moves with a constant velocity along a timelike path.
 - The string gives a drag force to the quark.

The Drag Force (Continued)

- For finite size (in the work with Kasper and Marija)
 - We use AdS₅-Schwarzschild in global coordinates.
 - The quark moves with a constant velocity along a timelike path.
 - The string gives a drag force to the quark.

The Drag Force (Continued)

To compare each other,

$$x^1 \leftrightarrow L\theta \qquad v \leftrightarrow \omega L \qquad \pi_{\xi} \leftrightarrow \frac{\pi_f}{L}$$

In the limit of large black hole

$$\rho_H \gg L$$

Therefore,

$$\frac{1}{L}\frac{dp_{\theta}}{d\tau} = \frac{dp_1}{dt} \left[1 - \frac{1 + \sqrt{1 - v^2}}{2\pi^2\sqrt{1 - v^2}} \left(\frac{1}{TL}\right)^2 + \frac{1}{8\pi^4} \frac{3v^2 - 2}{(1 - v^2)} \left(\frac{1}{TL}\right)^4 + O\left(\left(\frac{1}{TL}\right)^8\right) \right]$$

Conclusion

- Three features of QGP mentioned in this presentation have some dynamics to be explained.
- There is an unusual finite-size effect for the jet quenching; the drag force decreases due to the finite size.
- It is interesting to check whether this effect occurs in other dual plasma systems.