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SDYM

• Yang-Mills action

S =

∫
R4

tr(F ∧ ∗F )

• Stationary points from Bogomolny argument ⇒ F (anti)-self-dual

F = ∗F =⇒ Fµν = 1
2εµναβFαβ

• Independence from x4 gives Bogomolny (monopole) equations,

F = ∗DΦ =⇒ Fij = εijk (∂kΦ + [Ak ,Φ]) ...

• dimensionally reduce again for Hitchin equations,

Ds̄Φ = 0 and Fss̄ = −1
4 [Φ,Φ†] ...

• and again for Nahm equations,

∂sAi = 1
2 εijk [Aj ,Ak ].



Periodic Monopole

• Â, Φ̂ ∈ su(2) - i.e. 2× 2 traceless anti-Hermitian matrices.

Topology

• Magnetic charge given by first Chern class,

k = lim
R→∞

∫
ρ=R

tr(F̂ Φ̂)

4π‖Φ̂‖
Boundary conditions

• Asymptotically Abelian, Â ∼ Â∞σ3, Φ̂ ∼ Φ̂∞σ3

• Resembles Dirac chain, ∇2Φ̂∞ = 0, Φ̂∞ ∼ log(ρ)

(Âz + iΦ̂)∞ ∼ ` log(ζ)︸ ︷︷ ︸
charge + s.b.

+ v︸︷︷︸
size

+O
(
ζ−1
)︸ ︷︷ ︸

moduli

• For monopoles in R3, charge is given by sub-leading term - interesting
implications for SU(3).



Nahm Transform

• Powerful tool to solve the Bogomolny equations, it is an adaptation
of the ADHM construction for instantons. [Corrigan & Goddard ’84]

• Nahm equations are easier to solve than Bogomolny - but inverse
transform hard: look for approximate or numerical solutions.

• Bijection between two systems satisfying the SDYM equations.

• Roughly, swap rank of gauge group and ‘soliton number’.

• The manifolds we’re interested in can be related by the example of
SDYM on a 4-torus, which is self-reciprocal under Nahm transform.
[Braam & van Baal ’89]



Nahm Transform

Arrange instantons or monopoles in a lattice. The Nahm transform allows
us to consider the self-duality equations on the reciprocal lattice. [Jardim ’04]

‘physical space’ ‘Nahm space’

instanton R4 •
caloron (periodic instanton) R3 × Ŝ1 S1

doubly periodic instanton R2 × T̂ 2 T 2

monopole R3 R
periodic monopole R2 × Ŝ1 R× S1

doubly periodic monopole R× T̂ 2 R× T 2

(N.B. the Nahm transform has only been proved for some of these!)



Inverse Nahm for Periodic Monopole

For an SU(2) charge k periodic monopole, solve rank k Hitchin equations
on R× S1,

Fss̄ = −1
4 [Φ,Φ†] Ds̄Φ = ∂s̄Φ + [As̄ ,Φ] = 0,

where det(Φ) is given by the spectral curve.

Solve the equation

∆Ψ =

(
1k ⊗ (2∂s̄ − z) + 2As̄ 1k ⊗ ζ − Φ

1k ⊗ ζ̄ − Φ† 1k ⊗ (2∂s + z) + 2As

)
Ψ = 0.

Construct the monopole fields from normalised solutions
∫∫

Ψ†Ψ = 12,

Φ̂ = i

∫ ∞
−∞

dr

∫ π/β

−π/β
dt (rΨ†Ψ) Âi =

∫ ∞
−∞

dr

∫ π/β

−π/β
dt (Ψ†∂iΨ).

Gauge transformations act as Ψ 7→ U(s)−1 Ψ ĝ(ζ, z) with U = h ⊗ g .



Spectral Curve

As for the monopole in R3, it is useful to consider solutions of

(∂z + Âz + iΦ̂)V (ζ, z) = 0 with V (ζ, 0) = 12.

V (ζ, β) defines the holonomy. Its characteristic equation is a polynomial
in w = eβs [Cherkis & Kapustin ’01, ’03]

w2 + Pk(ζ)w + 1 = 0.

This defines a curve in C× C∗. The same curve can be written

ζk − tr(Φ)ζk−1 + . . .+ (−1)kdet(Φ) = 0.

Pk(ζ) has 2k + 2 coefficients: 2 parameters (b.c.s), 2 for centre of mass,
and 2k − 2 moduli. This is half the number of moduli for a charge k
monopole in R3.



Charge 1

The spectral curves are

w2 − 2ζw/C + 1 = 0 ζ = det(Φ)

Hitchin data is smooth and Abelian [Ward ’05]

A = 0 Φ = C cosh(βs).

The Nahm equation

∆Ψ =

(
2∂s̄ − z ζ − Φ
ζ̄ − Φ† 2∂s + z

)
Ψ = 0

has two distinct solutions if ζ remains away from ζ = ±C . In this region,
the approximate monopole fields are

Âζ = Âζ̄ ≈ 0 − (Âz + iΦ̂) ≈ 1

β
cosh−1

(
ζ

C

)
σ3

Âζ has off-diagonal terms which decay exponentially away from ζ = ±C .

Note Φ̂ can be read off by solving the ‘w ’ spectral curve for s(ζ).



Charge 1

Energy density is given by E = ∇2‖Φ̂‖2. On a cross section of the chain,

• Energy peaks are located at ζ = ±C .

• Total energy diverges as log(ρ), but can still consider relative moduli
space. [Cherkis & Kapustin ’02]



Spectral Approximation

Results suggest a general pattern:

• We assume monopole fields can be read off from the spectral curve.

• Peaks in energy density are then found at the values of ζ where the
eigenvalues of V (ζ, β) coincide.

• There are 2k such spectral points, which come in pairs.

• This provides a way of studying higher charge chains, or larger gauge
groups, simply from the spectral curves.

• Approximation improves for monopole size C � period β, i.e. in the
limit of z independence.



Charge 2 - Spectral Approximation

The spectral curves are

w2 − (2ζ2 − K )w/C + 1 = 0 ζ2 = −det(Φ)

with spectral points at
ζ = ±

√
K/2± C .

K is a complex modulus.

Impose symmetries on the spectral curve, e.g. (w , ζ; K ) 7→ (w̄ , ζ̄; K̄ ) and
(w , ζ; K ) 7→ (−w , iζ;−K ) show that K ∈ R is a one-parameter family
where the spectral points undergo right angled scattering.

Similarly (w , ζ; K ) 7→ (−iw̄ , eiπ/4ζ̄; iK̄ ) shows that K ∈ iR is another
one-parameter family.

Note K = 0 has enhanced symmetry, while if K = ±2C two spectral
points coincide.



Charge 2 - Spectral Approximation



Charge 2 - Zeroes on the Cylinder

The Hitchin field has

−det(Φ) = C cosh(βs) + K/2.

The two zeroes of this function also undergo scattering as K is varied:

K ∈ R

−0.2 −0.1 0 0.1 0.2

−0.25

0

0.25



Charge 2 - Zeroes on the Cylinder

The Hitchin field has

−det(Φ) = C cosh(βs) + K/2.

The two zeroes of this function also undergo scattering as K is varied:

K ∈ iR
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Charge 2 - Moduli Space

The monopole field φ̂ = Âz + iΦ̂ is known explicitly in the spectral limit.

A metric on the moduli space can be obtained by varying the fields with
respect to the modulus K ,

g ∼ K̇ ˙̄K

∫
R2

tr
(
∂K φ̂ ∂K̄ φ̂

†
)
ρ dρ dθ

The gauge condition that variations are orthogonal to gauge orbits is
automatically satisfied (dim. red. of Dµ(∂K Âµ) = 0).

In terms of the spectral points ζi = ±
√

K/2± C ,

g ∼ K̇ ˙̄K

∫
R2

1

|ζ − ζ1||ζ − ζ2||ζ − ζ3||ζ − ζ4|
ρ dρ dθ

Perform integral for K = 0,±2C , otherwise numerically...



Charge 2 - Moduli Space

Conformal factor as function of K :

• K = 0 and K = ±2C are special!

• K ∈ R and K ∈ iR are indeed geodesics.

• Otherwise, numerically evolve geodesic equations...



Charge 2 - Moduli Space

Note different constituent behaviour according to whether or not the
geodesic crosses the line segment −2C ≤ K ≤ 2C .



Charge 2 - Moduli Space

Note different constituent behaviour according to whether or not the
geodesic crosses the line segment −2C ≤ K ≤ 2C .



Charge 2 - Nahm Transform

Recall we are to solve rank 2 Hitchin equations

Fss̄ = −1
4 [Φ,Φ†] Ds̄Φ = ∂s̄Φ + [As̄ ,Φ] = 0,

with −det(Φ) = C cosh(βs) + K/2.

Up to a gauge, we can write [Harland & Ward ’09]

Φ =

(
0 µ+eψ/2

µ−e−ψ/2 0

)
As̄ = aσ3 + αΦ

α encodes the other moduli (z-offset and relative phase).

Now, look at symmetries of the Hitchin equations and the Nahm operator.
Imposing invariance under (ζ, z) 7→ (ζ,−z) shows α = 0 is a geodesic
submanifold. Justifies looking for geodesics on K plane!



Charge 2 - Nahm Transform

Ansatz for Hitchin fields:

Φ =

(
0 µ+eψ/2

µ−e−ψ/2 0

)
⇒ µ+µ− = C cosh(βs) + K/2

Note det(Φ) has two zeroes. This gives two distinct smooth solutions for
Φ according to their allocation between the non-zero components.

• ‘zeroes together’ [Harland]

µ+ = C cosh(βs) + K/2 µ− = 1

• ‘zeroes apart’ [Harland & Ward ’09]

µ± =
√

C/2
(

eβs/2 + λ±1e−βs/2
)

2Cλ±1 = K ±
√

K 2 − 4C 2

Note that both solutions have the same spectral limit.



Charge 2 - Lumps on Cylinder

On the α = 0 geodesic, solve Hitchin equations numerically. Plot |F |,

• ‘zeroes together’
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size/period ratio now determined by 1/C



Charge 2 - Limits of C

C � 1

• monopole size � period (z independence)

• spectral approximation holds

• sharply localised lumps on cylinder

• lumps closely track zeroes of det(Φ)

C � 1

• chain of small monopoles

• wide peaks on cylinder, approach Nahm data
(singularities develop at finite r)

α 6= 0

• z offset → t-holonomy in central region

• relative phase → relative phase on lumps



Charge 2 - Metric from Cylinder - C � 1

• Simple solution to Hitchin equations.

• Gauge condition can be solved explicitly, Φ 7→ Φ′ =
√

det(Φ)σ1.

• Metric depends only on det(Φ)
⇒ same for ‘zeroes together’ and ‘zeroes apart’

g ∼ K̇ ˙̄K

∫
R×S1

|∂K det(Φ′)|2

|det(Φ′)|
∼ K̇ ˙̄K

∫
R×S1

dr dt

|C cosh(βs) + K/2|

• Conformal factor agrees with spectral approximation!

• Asymptotically log(K )/K
[agreement with Cherkis & Kapustin ’02]

• peaks ∼ log(|K ± 2C |)



Charge 2 - Metric from Cylinder - C � 1

• So far, only numerically.

• Approach rotational symmetry.

• Asymptotically log(K )/K .
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Summary & Outlook

• Bogomolny eqs on R2 × Ŝ1 Nahm transform−−−−−−−−−→ Hitchin eqs on R× S1.

• Chain of large monopoles → z independence → all information
contained in holonomy → spectral approximation.

• Nahm transform → motion of lumps on dual space.

• Moduli space: two solutions which coincide in spectral limit.

• Spectral approximation can be applied to e.g. charge 3 or SU(3).

• Can the constituents be studied in their own right?
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