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SDYM

e Yang-Mills action

S—/ tr(F A =F)
R4

Stationary points from Bogomolny argument = F (anti)-self-dual

F =xF = Fuv = 3€uapFap

Independence from x* gives Bogomolny (monopole) equations,
F = xDo = F,'j = €jjk (8k<b+[Ak,¢])...

dimensionally reduce again for Hitchin equations,

Dsd =0 and  Fis=—1[®, 7.

and again for Nahm equations,

9sA; = Le[Aj, Adl




Periodic Monopole

o A de su(2) - i.e. 2 x 2 traceless anti-Hermitian matrices.

Topology
o Magnetic charge given by first Chern class,

Fo
k = Iim/ tr(F9)
R Jyer 4B

e Asymptotically Abelian, A~ /2\0003, S ~ &>0003

e Resembles Dirac chain, V2., =0, &, ~ log(p)
A, +id)o ~ Llo + 0 +0O (¢t
( ) g(¢) + v_+0(¢Y)

size

Boundary conditions

charge + s.b. moduli

e For monopoles in R3, charge is given by sub-leading term - interesting
implications for SU(3).



Nahm Transform

e Powerful tool to solve the Bogomolny equations, it is an adaptation
of the ADHM construction for instantons. [Corrigan & Goddard '84]

e Nahm equations are easier to solve than Bogomolny - but inverse
transform hard: look for approximate or numerical solutions.

e Bijection between two systems satisfying the SDYM equations.
e Roughly, swap rank of gauge group and ‘soliton number'.

e The manifolds we're interested in can be related by the example of
SDYM on a 4-torus, which is self-reciprocal under Nahm transform.
[Braam & van Baal "89]



Nahm Transform

Arrange instantons or monopoles in a lattice. The Nahm transform allows
us to consider the self-duality equations on the reciprocal lattice. [Jardim '04]

‘physical space’ ‘Nahm space’

instanton R4 °
caloron (periodic instanton) R3 x §1 st
doubly periodic instanton R2 x T2 i
monopole R3 R
periodic monopole R2 x §1 R x St
doubly periodic monopole R x T2 R x T?

(N.B. the Nahm transform has only been proved for some of these!)




Inverse Nahm for Periodic Monopole

For an SU(2) charge k periodic monopole, solve rank k Hitchin equations
on R x S,

Fis = —1[®, o] Ds® = 95:¢ + [As, ®] = 0,
where det(®) is given by the spectral curve.

Solve the equation

(1, ® (205 — z) + 2As ly,@¢-9 _
M"( 1,0i—0 1,00+2)+24) ¢ =Y

Construct the monopole fields from normalised solutions ff vy = 1,,

. () /B R oo /B
¢ = i/ dr/ dt (rvw) A = / dr/ dt (WTow).
—0o0 —n/B —0o0 —n/p

Gauge transformations act as W +— U(s) 1 W g(¢, z) with U= h® g.



Spectral Curve

As for the monopole in R3, it is useful to consider solutions of
(0, + A, +i®)V(¢,z) =0  with  V(¢,0) = 1.

V(¢, 3) defines the holonomy. Its characteristic equation is a polynomial
in w = €55 [Cherkis & Kapustin '01, 03]

w? + P (Ow+1 = 0.
This defines a curve in C x C*. The same curve can be written
¢k —tr(®)C 1 + ... 4 (~1) det(®) = 0.
Px(¢) has 2k + 2 coefficients: 2 parameters (b.c.s), 2 for centre of mass,

and 2k — 2 moduli. This is half the number of moduli for a charge k
monopole in R3.



Charge 1

The spectral curves are
w? —2¢w/C+1=0 ¢ = det(®)
Hitchin data is smooth and Abelian [ward '05]
A=0 ® = Ccosh(fs).

The Nahm equation

_ (20s—z (-0 B
A"’—<5_¢T 235+z)w_0

has two distinct solutions if ( remains away from ¢ = +C. In this region,
the approximate monopole fields are

/2\<:,2\5%0 —(Az—l—ia))%cosh_l(C)ag

AC has off-diagonal terms which decay exponentially away from { = +C.
Note ® can be read off by solving the ‘w' spectral curve for s(().



Charge 1

Energy density is given by £ = V2H&>||2. On a cross section of the chain,

e Energy peaks are located at ( = +C.

e Total energy diverges as log(p), but can still consider relative moduli
Space. [Cherkis & Kapustin '02]



Spectral Approximation

Results suggest a general pattern:

We assume monopole fields can be read off from the spectral curve.

Peaks in energy density are then found at the values of { where the
eigenvalues of V/((, 3) coincide.

There are 2k such spectral points, which come in pairs.

This provides a way of studying higher charge chains, or larger gauge
groups, simply from the spectral curves.

Approximation improves for monopole size C > period [, i.e. in the
limit of z independence.



Charge 2 - Spectral Approximation

The spectral curves are
w? — (2> - Kw/C+1 =0 ¢? = —det(®)
with spectral points at
¢ = +VK/2+C.
K is a complex modulus.

Impose symmetries on the spectral curve, e.g. (w,(; K) — (w,(; K) and
(w,(; K) — (—w,i(; —K) show that K € R is a one-parameter family
where the spectral points undergo right angled scattering.

Similarly (w, ¢; K) — (—iw, e™/4C;iK) shows that K € iR is another
one-parameter family.

Note K = 0 has enhanced symmetry, while if K = +2C two spectral
points coincide.



Charge 2 - Spectral Approximation
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Charge 2 - Zeroes on the Cylinder

The Hitchin field has

—det(®) = Ccosh(fs) + K/2.

The two zeroes of this function also undergo scattering as K is varied:
KeR




Charge 2 - Zeroes on the Cylinder

The Hitchin field has

—det(®) = Ccosh(fs) + K/2.

The two zeroes of this function also undergo scattering as K is varied:
K eiR
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Charge 2 - Moduli Space

The monopole field ggz A, +i® is known explicitly in the spectral limit.

A metric on the moduli space can be obtained by varying the fields with
respect to the modulus K,

g~ KR/ tr (aKqBaRg%T)pdpde
RZ

The gauge condition that variations are orthogonal to gauge orbits is
automatically satisfied (dim. red. of D,(0xA.) = 0).

In terms of the spectral points (; = £/K/2 £+ C,

D 1
~ KK dpdf
& /R C—allC—Glic=alic—cl "

Perform integral for K = 0, £2C, otherwise numerically...



Charge 2 - Moduli Space

Conformal factor as function of K:

e K=0and K = £+2C are special!
e K€ R and K € iR are indeed geodesics.

e Otherwise, numerically evolve geodesic equations...



Charge 2 - Moduli Space
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Charge 2 - Moduli Space
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Note different constituent behaviour according to whether or not the
geodesic crosses the line segment —2C < K < 2C.



Charge 2 - Nahm Transform

Recall we are to solve rank 2 Hitchin equations
Fis = —1[, 0] Ds® = 9:% + [As, ®] = 0,
with —det(®) = Ccosh(fs) + K/2.

Up to a gauge, we can write [Harland & Ward '09]

0 ew/2
¢:(M_e_w/2 M+O > As = ao3 + ad

a encodes the other moduli (z-offset and relative phase).

Now, look at symmetries of the Hitchin equations and the Nahm operator.
Imposing invariance under (¢, z) — (¢, —z) shows a = 0 is a geodesic
submanifold. Justifies looking for geodesics on K plane!



Charge 2 - Nahm Transform
Ansatz for Hitchin fields:

0 e¥/2
¢ = (,u_ew2 M+O ) = pypi— = Ccosh(fBs)+ K/2

Note det(®P) has two zeroes. This gives two distinct smooth solutions for
® according to their allocation between the non-zero components.

e ‘zeroes together’ [Harland]

pu+ = Ccosh(fBs) + K/2 o =1 |

e ‘zeroes apart’ [Harland & Ward '09]

pe = /C2 (52 4 N P2) 20N = K+ VK2 - 4C? J

Note that both solutions have the same spectral limit.



Charge 2 - Lumps on Cylinder

On the a = 0 geodesic,

e ‘zeroes together’
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solve Hitchin equations numerically. Plot |F|,
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size/period ratio now determined by 1/C



Charge 2 - Limits of C

C>1
monopole size >> period (z independence)

spectral approximation holds

sharply localised lumps on cylinder

lumps closely track zeroes of det(®)

k1

e chain of small monopoles

e wide peaks on cylinder, approach Nahm data
(singularities develop at finite r)

a#0

e z offset — t-holonomy in central region

e relative phase — relative phase on lumps



Charge 2 - Metric from Cylinder - C > 1

Simple solution to Hitchin equations.
Gauge condition can be solved explicitly, ® — ¢’ = | /det(®) 7.
Metric depends only on det(®)

= same for 'zeroes together' and ‘zeroes apart’

- |0k det(d')|? . ;/ drdt
~ KK — " ~ KK
g /RXSl ’det(¢,)| RxS?t ’CCOSh(ﬂS) + K/2‘

Conformal factor agrees with spectral approximation!
Asymptotically log(K)/K

[agreement with Cherkis & Kapustin '02]
peaks ~ log(|K £ 2C|)




Charge 2 - Metric from Cylinder - C < 1

e So far, only numerically.
e Approach rotational symmetry.
o Asymptotically log(K)/K.

‘zeroes together’ ‘zeroes apart’
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smooth peak ~ (K —2C)1
scatter in plane double scattering along z
A-H cone? A-H trumpet?



Summary & Outlook

1 Nahm transform
_—

e Bogomolny eqs on R2 x § Hitchin egs on R x St

e Chain of large monopoles — z independence — all information
contained in holonomy — spectral approximation.

e Nahm transform — motion of lumps on dual space.
e Moduli space: two solutions which coincide in spectral limit.
e Spectral approximation can be applied to e.g. charge 3 or SU(3).

e Can the constituents be studied in their own right?
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