Periodic Monopoles - Dynamics and the Dual Picture

Rafael Maldonado

CPT Student Seminar

28th January 2013

[based on RM 1212.4481 and RM & Ward 130x.xxxx]

Contents

- introduction
 - SDYM & dimensional reductions
 - Nahm transform
- charge 1
- spectral approximation
- charge 2
 - spectral approximation
 - Nahm transform
 - motion on cylinder
 - moduli space
- summary

SDYM

• Yang-Mills action

$$S = \int_{\mathbb{R}^4} \operatorname{tr}(F \wedge *F)$$

• Stationary points from Bogomolny argument \Rightarrow *F* (anti)-self-dual

$$F = *F \implies F_{\mu\nu} = \frac{1}{2}\epsilon_{\mu\nu\alpha\beta}F_{\alpha\beta}$$

• Independence from x^4 gives Bogomolny (monopole) equations,

$$F = *D\Phi \implies F_{ij} = \epsilon_{ijk} \left(\partial_k \Phi + [A_k, \Phi] \right) \dots$$

• dimensionally reduce again for Hitchin equations,

$$D_{\bar{s}}\Phi = 0$$
 and $F_{s\bar{s}} = -\frac{1}{4}[\Phi, \Phi^{\dagger}] \dots$

and again for Nahm equations,

$$\partial_{s}A_{i} = \frac{1}{2}\epsilon_{ijk}[A_{j},A_{k}].$$

Periodic Monopole

• \hat{A} , $\hat{\Phi} \in \mathfrak{su}(2)$ - i.e. 2 × 2 traceless anti-Hermitian matrices.

Topology

• Magnetic charge given by first Chern class,

$$k = \lim_{R \to \infty} \int_{\rho=R} \frac{\operatorname{tr}(\hat{F}\hat{\Phi})}{4\pi \|\hat{\Phi}\|}$$

Boundary conditions

- Asymptotically Abelian, $\hat{A} \sim \hat{A}_{\infty}\sigma_3$, $\hat{\Phi} \sim \hat{\Phi}_{\infty}\sigma_3$
- Resembles Dirac chain, $abla^2 \hat{\Phi}_\infty = 0$, $\hat{\Phi}_\infty \sim \log(
 ho)$

$$(\hat{A}_z + i\hat{\Phi})_{\infty} \sim \underbrace{\ell \log(\zeta)}_{\text{charge} + \text{s.b.}} + \underbrace{\mathfrak{v}}_{\text{size}} + \underbrace{\mathcal{O}\left(\zeta^{-1}\right)}_{\text{moduli}}$$

For monopoles in ℝ³, charge is given by *sub-leading* term - interesting implications for SU(3).

- Powerful tool to solve the Bogomolny equations, it is an adaptation of the ADHM construction for instantons. [Corrigan & Goddard '84]
- Nahm equations are easier to solve than Bogomolny but inverse transform hard: look for approximate or numerical solutions.
- Bijection between two systems satisfying the SDYM equations.
- Roughly, swap rank of gauge group and 'soliton number'.
- The manifolds we're interested in can be related by the example of SDYM on a 4-torus, which is self-reciprocal under Nahm transform. [Braam & van Baal '89]

Arrange instantons or monopoles in a lattice. The Nahm transform allows us to consider the self-duality equations on the reciprocal lattice. [Jardim '04]

	'physical space'	'Nahm space'	
instanton	\mathbb{R}^4	•	
caloron (periodic instanton)	$\mathbb{R}^3 imes \hat{S}^1$	S^1	
doubly periodic instanton	$\mathbb{R}^2 imes \hat{T}^2$	T^2	
monopole	\mathbb{R}^3	\mathbb{R}	
periodic monopole	$\mathbb{R}^2 imes \hat{S}^1$	$\mathbb{R} imes S^1$	
doubly periodic monopole	$\mathbb{R} imes \hat{T}^2$	$\mathbb{R} imes T^2$	

(N.B. the Nahm transform has only been proved for some of these!)

Inverse Nahm for Periodic Monopole

For an SU(2) charge k periodic monopole, solve rank k Hitchin equations on $\mathbb{R} \times S^1$,

$$F_{s\bar{s}} = -\frac{1}{4}[\Phi, \Phi^{\dagger}]$$
 $D_{\bar{s}}\Phi = \partial_{\bar{s}}\Phi + [A_{\bar{s}}, \Phi] = 0,$

where det(Φ) is given by the spectral curve.

Solve the equation

$$\Delta \Psi = \begin{pmatrix} \mathbf{1}_k \otimes (2\partial_{\bar{s}} - z) + 2A_{\bar{s}} & \mathbf{1}_k \otimes \zeta - \Phi \\ \mathbf{1}_k \otimes \bar{\zeta} - \Phi^{\dagger} & \mathbf{1}_k \otimes (2\partial_s + z) + 2A_s \end{pmatrix} \Psi = 0.$$

Construct the monopole fields from normalised solutions $\int\int \Psi^{\dagger}\Psi = \mathbf{1}_{2}$,

$$\hat{\Phi} = i \int_{-\infty}^{\infty} dr \int_{-\pi/\beta}^{\pi/\beta} dt (r \Psi^{\dagger} \Psi) \qquad \qquad \hat{A}_i = \int_{-\infty}^{\infty} dr \int_{-\pi/\beta}^{\pi/\beta} dt (\Psi^{\dagger} \partial_i \Psi).$$

Gauge transformations act as $\Psi \mapsto U(s)^{-1} \Psi \hat{g}(\zeta, z)$ with $U = h \otimes g$.

Spectral Curve

As for the monopole in \mathbb{R}^3 , it is useful to consider solutions of

$$(\partial_z + \hat{A}_z + \mathrm{i}\hat{\Phi})V(\zeta, z) = 0$$
 with $V(\zeta, 0) = \mathbf{1}_2.$

 $V(\zeta, \beta)$ defines the holonomy. Its characteristic equation is a polynomial in $w = e^{\beta s}$ [Cherkis & Kapustin '01, '03]

$$w^2 + P_k(\zeta)w + 1 = 0.$$

This defines a curve in $\mathbb{C} \times \mathbb{C}^*$. The same curve can be written

$$\zeta^k - \operatorname{tr}(\Phi)\zeta^{k-1} + \ldots + (-1)^k \operatorname{det}(\Phi) = 0.$$

 $P_k(\zeta)$ has 2k + 2 coefficients: 2 parameters (b.c.s), 2 for centre of mass, and 2k - 2 moduli. This is half the number of moduli for a charge k monopole in \mathbb{R}^3 .

Charge 1

The spectral curves are

$$w^2 - 2\zeta w/C + 1 = 0 \qquad \qquad \zeta = \det(\Phi)$$

Hitchin data is smooth and Abelian [Ward '05]

$$A = 0 \qquad \Phi = C \cosh(\beta s).$$

The Nahm equation

$$\Delta \Psi = \begin{pmatrix} 2\partial_{\overline{s}} - z & \zeta - \Phi \\ \overline{\zeta} - \Phi^{\dagger} & 2\partial_{s} + z \end{pmatrix} \Psi = 0$$

has two distinct solutions if ζ remains away from $\zeta = \pm C$. In this region, the approximate monopole fields are

$$\hat{A}_{\zeta} = \hat{A}_{ar{\zeta}} pprox 0 \qquad -(\hat{A}_z + \mathrm{i}\hat{\Phi}) pprox rac{1}{eta} \cosh^{-1}\left(rac{\zeta}{C}
ight) \sigma_3$$

 \hat{A}_{ζ} has off-diagonal terms which decay exponentially away from $\zeta = \pm C$. Note $\hat{\Phi}$ can be read off by solving the 'w' spectral curve for $s(\zeta)$.

Charge 1

Energy density is given by $\mathcal{E} = \nabla^2 \| \hat{\Phi} \|^2$. On a cross section of the chain,

- Energy peaks are located at $\zeta = \pm C$.
- Total energy diverges as $\log(\rho)$, but can still consider relative moduli space. [Cherkis & Kapustin '02]

Results suggest a general pattern:

- We assume monopole fields can be read off from the spectral curve.
- Peaks in energy density are then found at the values of ζ where the eigenvalues of V(ζ, β) coincide.
- There are 2k such spectral points, which come in pairs.
- This provides a way of studying higher charge chains, or larger gauge groups, simply from the spectral curves.
- Approximation improves for monopole size C ≫ period β, i.e. in the limit of z independence.

Charge 2 - Spectral Approximation

The spectral curves are

$$w^2 - (2\zeta^2 - K)w/C + 1 = 0$$
 $\zeta^2 = -\det(\Phi)$

with spectral points at

$$\zeta = \pm \sqrt{K/2 \pm C}.$$

K is a complex modulus.

Impose symmetries on the spectral curve, e.g. $(w, \zeta; K) \mapsto (\bar{w}, \bar{\zeta}; \bar{K})$ and $(w, \zeta; K) \mapsto (-w, i\zeta; -K)$ show that $K \in \mathbb{R}$ is a one-parameter family where the spectral points undergo right angled scattering.

Similarly $(w, \zeta; K) \mapsto (-i\overline{w}, e^{i\pi/4}\overline{\zeta}; i\overline{K})$ shows that $K \in i\mathbb{R}$ is another one-parameter family.

Note K = 0 has enhanced symmetry, while if $K = \pm 2C$ two spectral points coincide.

Charge 2 - Spectral Approximation

Charge 2 - Zeroes on the Cylinder

The Hitchin field has

$$-\det(\Phi) = C \cosh(\beta s) + K/2.$$

The two zeroes of this function also undergo scattering as K is varied: $K \in \mathbb{R}$

Charge 2 - Zeroes on the Cylinder

The Hitchin field has

$$-\det(\Phi) = C \cosh(\beta s) + K/2.$$

The two zeroes of this function also undergo scattering as K is varied: $K\in\mathrm{i}\mathbb{R}$

The monopole field $\hat{\phi} = \hat{A}_z + i\hat{\Phi}$ is known explicitly in the spectral limit.

A metric on the moduli space can be obtained by varying the fields with respect to the modulus K,

$$\mathsf{g} ~\sim~ \dot{\mathsf{K}} \dot{ar{\mathsf{K}}} \int_{\mathbb{R}^2} \mathsf{tr} \left(\partial_{\mathsf{K}} \hat{\phi} \, \partial_{ar{\mathsf{K}}} \hat{\phi}^\dagger
ight)
ho \, \mathsf{d}
ho \, \mathsf{d} heta$$

The gauge condition that variations are orthogonal to gauge orbits is automatically satisfied (dim. red. of $D_{\mu}(\partial_{\kappa}\hat{A}_{\mu}) = 0$).

In terms of the spectral points $\zeta_i = \pm \sqrt{K/2 \pm C}$,

$$g ~\sim~ \dot{K} \dot{ar{K}} \int_{\mathbb{R}^2} rac{1}{|\zeta-\zeta_1||\zeta-\zeta_2||\zeta-\zeta_3||\zeta-\zeta_4|} \,
ho \, \mathrm{d}
ho \, \mathrm{d} heta$$

Perform integral for $K = 0, \pm 2C$, otherwise numerically...

Conformal factor as function of K:

- K = 0 and $K = \pm 2C$ are special!
- $K \in \mathbb{R}$ and $K \in \mathbb{R}$ are indeed geodesics.
- Otherwise, numerically evolve geodesic equations...

Note different constituent behaviour according to whether or not the geodesic crosses the line segment $-2C \le K \le 2C$.

Recall we are to solve rank 2 Hitchin equations

 $F_{s\bar{s}} = -\frac{1}{4} [\Phi, \Phi^{\dagger}] \qquad D_{\bar{s}} \Phi = \partial_{\bar{s}} \Phi + [A_{\bar{s}}, \Phi] = 0,$

with $-\det(\Phi) = C \cosh(\beta s) + K/2$.

Up to a gauge, we can write [Harland & Ward '09]

$$\Phi = \begin{pmatrix} 0 & \mu_+ e^{\psi/2} \\ \mu_- e^{-\psi/2} & 0 \end{pmatrix} \qquad A_{\bar{s}} = a\sigma_3 + \alpha \Phi$$

 α encodes the other moduli (*z*-offset and relative phase).

Now, look at symmetries of the Hitchin equations and the Nahm operator. Imposing invariance under $(\zeta, z) \mapsto (\zeta, -z)$ shows $\alpha = 0$ is a geodesic submanifold. Justifies looking for geodesics on K plane! Ansatz for Hitchin fields:

$$\Phi = egin{pmatrix} 0 & \mu_+ \mathrm{e}^{\psi/2} \ \mu_- \mathrm{e}^{-\psi/2} & 0 \end{pmatrix} \quad \Rightarrow \quad \mu_+ \mu_- = C \cosh(eta s) + K/2$$

Note det(Φ) has two zeroes. This gives two distinct smooth solutions for Φ according to their allocation between the non-zero components.

• 'zeroes together' [Harland]

$$\mu_+ = C \cosh(\beta s) + K/2 \qquad \qquad \mu_- = 1$$

• 'zeroes apart' [Harland & Ward '09]

$$\mu_{\pm} = \sqrt{C/2} \left(\mathrm{e}^{\beta s/2} + \lambda^{\pm 1} \mathrm{e}^{-\beta s/2} \right) \qquad 2C\lambda^{\pm 1} = K \pm \sqrt{K^2 - 4C^2}$$

Note that both solutions have the same spectral limit.

Charge 2 - Lumps on Cylinder

On the $\alpha = 0$ geodesic, solve Hitchin equations numerically. Plot |F|,

• 'zeroes together'

• 'zeroes apart'

size/period ratio now determined by 1/C

Charge 2 - Limits of C

$C \gg 1$

- monopole size \gg period (z independence)
- spectral approximation holds
- sharply localised lumps on cylinder
- lumps closely track zeroes of $det(\Phi)$

$C \ll 1$

- chain of small monopoles
- wide peaks on cylinder, approach Nahm data (singularities develop at finite *r*)

$\alpha \neq \mathbf{0}$

- z offset \rightarrow t-holonomy in central region
- relative phase \rightarrow relative phase on lumps

Charge 2 - Metric from Cylinder - $C \gg 1$

- Simple solution to Hitchin equations.
- Gauge condition can be solved explicitly, $\Phi \mapsto \Phi' = \sqrt{\det(\Phi)} \sigma_1$.
- Metric depends only on det(Φ)

 \Rightarrow same for 'zeroes together' and 'zeroes apart'

$$g \sim \dot{K}\dot{K}\int_{\mathbb{R} imes S^1}rac{|\partial_{\mathcal{K}}\det(\Phi')|^2}{|\det(\Phi')|} \sim \dot{K}\dot{K}\int_{\mathbb{R} imes S^1}rac{\mathrm{d}r\,\mathrm{d}t}{|C\cosh(eta s)+K/2|}$$

- Conformal factor agrees with spectral approximation!
- Asymptotically log(K)/K

[agreement with Cherkis & Kapustin '02]

• peaks $\sim \log(|K \pm 2C|)$

Charge 2 - Metric from Cylinder - ${\it C} \ll 1$

- So far, only numerically.
- Approach rotational symmetry.
- Asymptotically $\log(K)/K$.

- Bogomolny eqs on $\mathbb{R}^2 \times \hat{S}^1 \xrightarrow{\text{Nahm transform}}$ Hitchin eqs on $\mathbb{R} \times S^1$.
- Chain of large monopoles → z independence → all information contained in holonomy → spectral approximation.
- Nahm transform \rightarrow motion of lumps on dual space.
- Moduli space: two solutions which coincide in spectral limit.
- Spectral approximation can be applied to e.g. charge 3 or SU(3).
- Can the constituents be studied in their own right?

END