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Self-Dual Yang-Mills Equations
The pure SU(2) Yang-Mills action for a gauge field 1-form A:

S = −
∫

R4

Tr(F ∧ ∗F )

leads via a Bogomolny argument

S = −
∫

R4

Tr(F ∧ F )− 1

2

∫
R4

Tr((F − ∗F ) ∧ ∗(F − ∗F ))

to SDYM:

F = ∗F

Finite action solutions to these are called ‘instantons’. The
instanton charge is given by:

N = − 1

8π2

∫
R4

Tr(F ∧ F )

SDYM is a ‘master equation’ for integrable systems.



The ADHM construction
SDYM are hard, non-linear PDEs. Fortunately, we have the ADHM
construction, which gives all instanton solutions in terms of
quaternionic matrices satisfying algebraic constraints. The data for
an SU(2) N-instanton is:

M̂ =

(
L
M

)
where L is a row of N quaternions, and M is a symmetric N × N
matrix of quaternions. Let x = x1 + x2i + x3j + x4k be an arbitrary
quaternion. Then define:

∆(x) = M̂ − x

(
0

1N

)
The data must satisfy, for all x :

∆(x)†∆(x) = R0(x)

where R0(x) is a non-singular real matrix.



The ADHM Construction (cont.)

To construct the gauge field from the ADHM data, one must find
a unit norm (N + 1)-component column vector Ψ(x) satisfying

Ψ†∆(x) = 0

The instanton gauge field is then given by:

Aµ = Ψ†∂µΨ



BPS Magnetic Monopoles

Let’s dimensionally reduce the pure Yang-Mills action down to 3
dimensions by setting all the fields to be independent of x4, and set
Φ = A4:

E = −1

2

∫
R3

Tr(F ∧ ∗F ) + Tr(DΦ ∧ ∗DΦ)

The SDYM equations become:

∗F = DΦ

One imposes that |Φ| → 1 at spatial infinity, defining a map
Φ∞ : S2

∞ → S2 whose winding number is the charge of the
monopole. Finite energy solutions to this equation are called ‘BPS
magnetic monopoles’.



The Nahm transform

The monopole version of the ADHM construction is called the
‘Nahm transform’. Every N-monopole is equivalent to a solution of
the ‘Nahm equations’:

dTi

ds
=

1

2
iεijk [Tj ,Tk ]

where Ti , i = 1, 2, 3 are N × N Hermitian matrix functions of
s ∈ [−1, 1]. Although slightly more tractable, these equations are
also very hard to solve and even if one has Nahm data the inverse
Nahm transform must usually be performed numerically.



The Ercolani-Sinha solution

There is only one known infinite family of monopoles for every
value of the topological charge N [Ercolani & Sinha ’89]. These
solutions are based on the N-dimensional irreducible
representations {Ji}i=1,2,3 of the Lie algebra su(2), with
commutation relations [Ji , Jj ] = iεijkJk . Plugging Ti = −fi (s)Ji

into the Nahm equations gives the spinning top equations:

df1
ds

= f2f3;
df2
ds

= f3f1;
df3
ds

= f1f2

These can be solved exactly in terms of elliptic functions. The
solutions correspond to N equally spaced monopoles strung out
along a line. The solution has axial symmetry for a special value of
the elliptic parameter.



The Spectral Curve

Monopoles were originally shown to be equivalent to Nahm data
via a third description: the spectral curve. The spectral curve is a
Riemann surface encoding the monopole. It lives in the tangent
bundle of S2, which is the same as the space of oriented lines in
R3. To define the spectral curve, take an oriented line γ and
consider the Hitchin equation:

(Dγ − iφ)v = 0

where Dγ is the covariant derivative along γ. The spectral curve is
the set of lines on which this equation has a normalisable solutions.



Pretty Pictures of Monopoles

Most of the few known examples of monopoles have been found by
imposing Platonic symmetries on the Nahm data.

A cubic and a dodecahedral monopole, from Houghton and
Sutcliffe CMP 180 (1996) 343-362, and Nonlinearity 9, 385



Hyperbolic Monopoles

One can generalise the Bogomolny equation to 3-manifolds with an
arbitrary metric hij :

1

2

√
det h εijkhjlhkmFlm = DiΦ

In the Euclidean case hij = δij . We will be interested in monopoles
on hyperbolic space, which are often simpler in some ways than
their Euclidean counterparts.

The two most commonly used models of hyperbolic space are the
half-space and ball models.



R4 \ R2 is conformal to H3 × S1

Let R4 have standard Cartesian coordinates x1, x2, x3, x4, and
Euclidean metric:

ds2 = dx2
1 + dx2

2 + dx2
3 + dx2

4

Now define x3 + ix4 = re iχ. The metric becomes:

ds2 = dx2
1 + dx2

2 + dr2 + r2dχ2

If we remove the 2-plane r = 0, this metric is conformal to:

ds2 =
1

r2
(dx2

1 + dx2
2 + dr2) + dχ2

which is the metric on H3 × S1. The removed plane is the
‘boundary’ of hyperbolic space.



Circle-Invariant Instantons are Hyperbolic Monopoles

Suppose we have an instanton which is invariant under the
standard rotation of χ. Since R4 \ R2 is conformally equivalent to
H3 × S1, and the SDYM equations are conformally invariant, we
can dimensionally reduce along the circle direction to give a
hyperbolic monopole. In this case the asymptotic magnitude of the
Higgs field must be a half-integer p. The instanton charge I and
the monopole charge N are related by:

I = 2pN

(One can take this further and say that since a Euclidean instanton
is equivalent to a hyperbolic periodic instanton, which is equivalent
to a hyperbolic monopole with a loop group as its gauge group,
there is a sense in which ‘instantons are monopoles’ [Garland &

Murray ’89]).



The Braam-Austin construction

Interestingly, one can write the ADHM data for circle-invariant
instantons in terms of a set of difference equations defined on a
lattice with 2p points, indexed by j [Braam & Austin ’90]. If Aj ,Bj ,Cj

and Dj are N × N matrices, then the equations are:

Aj+1 = DjAjD
−1
j

Bj+1 = C−1
j BjCj

Cj+1Dj+1 = DjCj + [Aj+1,Bj+1]

These are a discretisation of the Nahm equations. If we set
C = (2h)−1I + 1

2 iT3 = D where h is the lattice spacing, and
B = 1

2(T1 + iT2) = −A†, then let h→ 0, we get back the Nahm
equations.



Problems with Braam-Austin

I The Braam-Austin equations have difficult boundary
conditions.

I Braam-Austin uses a very abstract version of ADHM,
involving holomorphic bundles over twistor space etc., rather
than simple quaternionic matrices.

I No-one has solved the Braam-Austin equations beyond N = 1.

I It’s unclear if Braam-Austin provides any simplification at all
for low p.

I Braam-Austin is only adapted to the half-plane model of
hyperbolic space.



Platonic Hyperbolic Monopoles

[Manton & Sutcliffe ’12] gives a list of conditions which are sufficient
for an instanton to be circle invariant. These conditions are
adapted to the ball model of H3, which allows one to investigate
compatible symmetry subgroups of SO(3). The conditions for

ADHM data M̂ =

(
L
M

)
are:

I M is pure quaternion and symmetric,

I M̂†M̂ = 1N ,

I LM = µL, where µ is a pure quaternion, and L is
non-vanishing.

Unfortunately these only give hyperbolic monopoles with p = 1/2.



More Pretty Pictures

Pictures from Manton and
Sutcliffe, arXiv:1207.2636

An axially symmetric monopole,
with ADHM data

M̂ = 1
2

√2
√

2k
i j
j −i


A tetrahedrally symmetric
monopole, with ADHM data

M̂ = 1√
3


i j k
0 k j
k 0 i
j i 0





Solutions to discrete Nahm equations

I In [Ward ’90], Ward shows how the continuous Nahm equations
can be reduced to Toda lattice equations. Ward also shows in
[Ward ’98] that the same is true for discrete Nahm equations.

I Ward then specialises to the charge 2 case and solves the
resulting discrete Toda equations in terms of elliptic functions.



Ward’s N = 2 Solution

If we make the ansatz

C = diag(h−1
√

1 + 2hw , h−1
√

1− 2hw) = D

B =

(
0 u − v

u + v 0

)
= −AT

where u, v ,w are real-valued lattice functions, then the discrete
Nahm equations become

w+ = w + 2hu+v+

u+ = (u − 2hwv)/
√

1− 4h2w2

v+ = (v − 2hwu)/
√

1− 4h2w2

which are a discrete-time version of the spinning top equations.



Ward’s N = 2 Solution (cont.)

I Although it seems likely, it is not clear that these solutions
correspond to hyperbolic monopoles. We need to understand
the Braam-Austin construction better before we can claim
this.

I Note that B = uσ1 − ivσ2, where {σi}i=1,2,3 are the Pauli
matrices. This suggests that Ward’s solution should generalise
to all N, giving a hyperbolic version of the Ercolani-Sinha
family of monopoles.



Outlook

I We would like to make the Braam-Austin construction more
intelligible and give explicit solutions.

I Hopefully one can use Braam-Austin to construct Platonic
hyperbolic monopoles with p > 1/2.

I This work was partly motivated by a desire to understand
magnetic bags in hyperbolic space. It would be useful to find
examples of hyperbolic monopoles which allow us to take the
large charge limit.

I We would like to find some of the moduli space metrics for
hyperbolic monopoles.



Thank You
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