### Domain Wall Skyrmions

#### Paul Jennings

Durham University

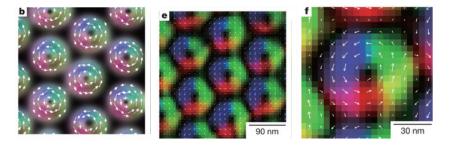
#### Monday 4th March 2013

Work in progress, in collaboration with P. Sutcliffe

- Motivation
- Baby Skyrmions
- Skyrmion-Like Lumps from Domain Walls
- Statics
- Dynamics
- Conclusions and Outlook

• Baby Skyrmions appear in Condensed Matter

[Yu, Onose et al. Nature 465, 901 (2010)]



- Domain Walls evident in lots of physical situations
  - Cosmology (Cosmic Strings)
  - Condensed matter
  - SUSY QCD

# • Computing applications of Domain walls– Racetrack memory

[Parkin, Roche et al., Magnetoelectronics and Spintronics and SpinAps]

• Consider time-independent fields. Then a field configuration which is a stationary point of the energy should be stationary against all variations.

#### Derrick's Theorem

[Derrick, J. Math. Phys. 5, 1252 (1964)]

Suppose that for an arbitrary, finite energy field configuration  $\Psi(\mathbf{x})$  which is not the vacuum, the function  $e(\mu)$ , the energy of the field configuration under rescaling  $\mathbf{x} \rightarrow \mu \mathbf{x}$ , has no stationary point. Then the theory has no static solutions of the field equation with finite energy, other than the vacuum.

### **Baby Skyrmion**

• The theory is a (2+1)-dimensional model is described by

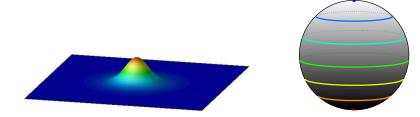
$$\mathcal{L} = rac{1}{2} \partial_\mu \phi \cdot \partial^\mu \phi - rac{\kappa^2}{4} \left( \partial_\mu \phi imes \partial_
u \phi 
ight) \cdot \left( \partial^\mu \phi imes \partial^
u \phi 
ight) - m^2 (1 - \phi_3),$$

where  $\phi = (\phi_1, \phi_2, \phi_3)$  is a unit vector field.

- Derrick's Theorem ensures the existence of static solitons
- Finite energy constraints mean  $\phi:S^2 \to S^2$  and has associated topological charge

$$B = -rac{1}{4\pi}\int oldsymbol{\phi}\cdot \left(\partial_1 oldsymbol{\phi} imes \partial_2 oldsymbol{\phi}
ight) \mathrm{d} x_1 \,\mathrm{d} x_2,$$

#### • We find that the covering of the sphere is in the following way



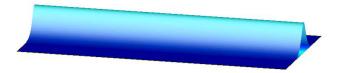
#### • Consider a theory described by the

$$\mathcal{L}=rac{1}{2}\partial_{\mu}oldsymbol{\phi}\cdot\partial^{\mu}oldsymbol{\phi}-rac{m^{2}}{2}(1-\phi_{3}^{2}).$$

for  $\boldsymbol{\phi} = (\phi_1, \phi_2, \phi_3)$  a unit vector field.

• We see we obtain a domain wall connecting from vacua related to  $\phi_3=\pm 1.$ 

#### • Plotting the energy density (with m = 1) we find



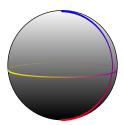
#### • Now consider a theory described by

$$\mathcal{L}=rac{1}{2}\partial_\mu \phi\cdot \partial^\mu \phi-rac{m^2}{2}(1-\phi_3^2)+rac{m^2g}{2}{\phi_2}^\ell.$$

for  $\phi = (\phi_1, \phi_2, \phi_3)$  a unit vector field,  $g \in (0, 1)$ , and with  $\ell \in 2\mathbb{Z} + 1$  fixed.

• Covering of the sphere. Traverse between the vacua  $\phi_3 = \pm 1$ , passing through the vacua of the other term of the potential.

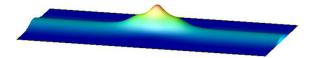




- For the  $\ell = 1$  case [M. Nitta arXiv:1211.4916, 1302.0989v1 ] we find that the minima of the potential is not at the poles of the target  $S^2$ , but actually at  $\phi = (0, \frac{g}{2}, \pm \sqrt{1 g^2/4})$ .
- We choose to take  $\ell = 3$ , which avoids this problem, with the poles of the unit sphere being the true vacua of the model. For the remainder of this talk we shall take  $\ell = 3$ .

- For the  $\ell = 1$  case [M. Nitta arXiv:1211.4916, 1302.0989v1 ] we find that the minima of the potential is not at the poles of the target  $S^2$ , but actually at  $\phi = (0, \frac{g}{2}, \pm \sqrt{1 g^2/4})$ .
- We choose to take  $\ell = 3$ , which avoids this problem, with the poles of the unit sphere being the true vacua of the model. For the remainder of this talk we shall take  $\ell = 3$ .

• Static solution found by an energy minimisation algorithm (here with m = 1 and g = 0.5).



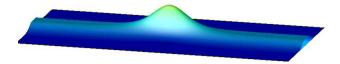
# Skyrmion-like lumps from Domain Walls

#### Now consider a theory described by

$$\mathcal{L} = rac{1}{2} \partial_\mu \phi \cdot \partial^\mu \phi - rac{m^2}{2} (1-\phi_3^2) + rac{m^2 g}{2} (1-\phi_3^2) \phi_2.$$

for  $\phi = (\phi_1, \phi_2, \phi_3)$  a unit vector field, and with  $g \in (0, 1)$ .

• Static solution found by an energy minimisation algorithm (here with m = 1 and g = 0.5).

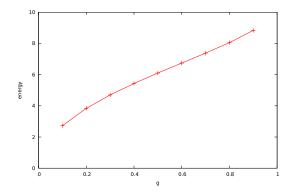


#### • Charge density localised around the Skyrmion.



### Parameter Dependence

- Can calculate the energy of the Skyrmion.
- The dependence of the energy varies with g as



• We place the Skyrmion on a perturbed domain wall and allow the system to evolve dynamically.

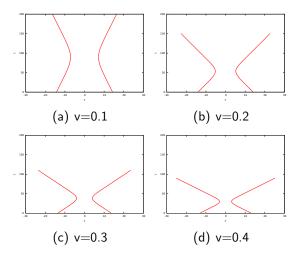
- We set up two Skyrmions on the domain wall and Lorentz boost them towards each other.
- v=0.1

- We set up two Skyrmions on the domain wall and Lorentz boost them towards each other.
- v=0.2

- We set up two Skyrmions on the domain wall and Lorentz boost them towards each other.
- v=0.4

# Soltion Scattering along wall

• Tracking the *x*-coordinate of the Skyrmions against time we find symmetric elastic collisions .



### One dimensional dynamics

• Restrict to the one-dimensional system along the domain wall.

$$\mathcal{L} = rac{1}{2} \partial_\mu \psi \partial^\mu \psi - rac{m^2}{2} (1 - g \cos(\psi))$$

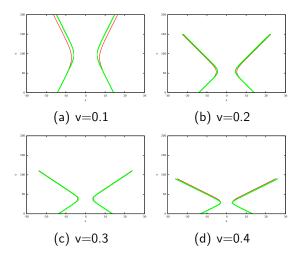
where  $\psi$  is the one-dimensional field. The Lagrangian describes a sine-Gordon kink.

• We can find the solution of this analytically since this theory is integrable, with solution

$$\psi(x) = 4 \arctan\left[\frac{v \sinh\left(\frac{\gamma \sqrt{m^2 g x}}{\sqrt{2}}\right)}{\cosh\left(\frac{\gamma v t \sqrt{m^2 g}}{\sqrt{2}}\right)}\right]$$

# One dimensional dynamics

• We now plot the *x*-coordinate of the kink against time (green) to compare with the two dimensional case (red).



### Other possible scatterings

- Multiple domain wall scattering
- Check: ADW, DW(S), ADW

# Other possible scatterings

- Multiple domain wall scattering
- ADW(S), DW, ADW

- Constructed Skyrmion-like lumps from domain walls
- Looked at their scattering behaviour
- Investigate the three-dimensional analogue of this model
- Impact of reintroducing Skyrme term
- Domain wall ring and investigate behaviour.