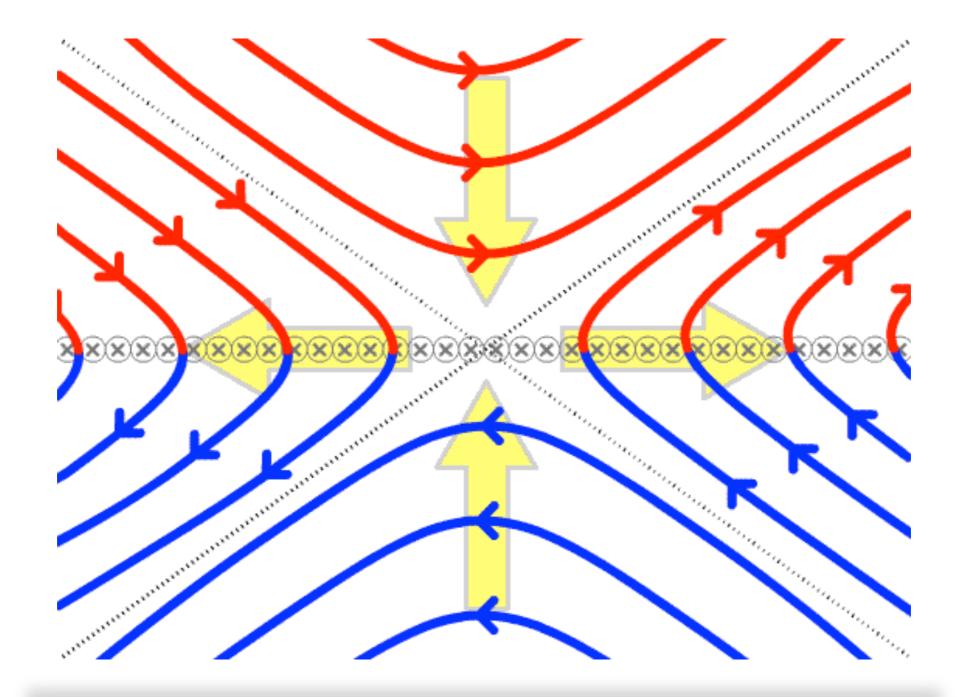
Quantifying Reconnection in Magnetic Flux Ropes

Anthony Yeates with G. Hornig, A. Wilmot-Smith, A. Russell (University of Dundee) & C. Prior (Durham University)

Durham

University

Flux rope workshop, UCLA, 12-Feb-2014



This is **not** typical of magnetic reconnection!

Magnetic reconnection - process by which a magnetic field in an almostideal plasma changes its topology (connectivity of magnetic field lines within domain or between boundaries).

Needs a non-ideal term in Ohm's Law:

$$\mathbf{E} + \mathbf{v} \times \mathbf{B} = \mathbf{N} \qquad \Longrightarrow \qquad \frac{\partial \mathbf{B}}{\partial t} - \nabla \times (\mathbf{v} \times \mathbf{B}) = -\nabla \times \mathbf{N}$$

Two types of reconnection:

- 1. $\mathbf{E} \cdot \mathbf{B} = 0$ 2D reconnection
- 2. $\mathbf{E} \cdot \mathbf{B} \neq 0$ 3D reconnection

Hornig & Schindler, *Phys. Plasmas* (1996) Birn & Priest (eds.), *Reconnection of magnetic fields* (2007)

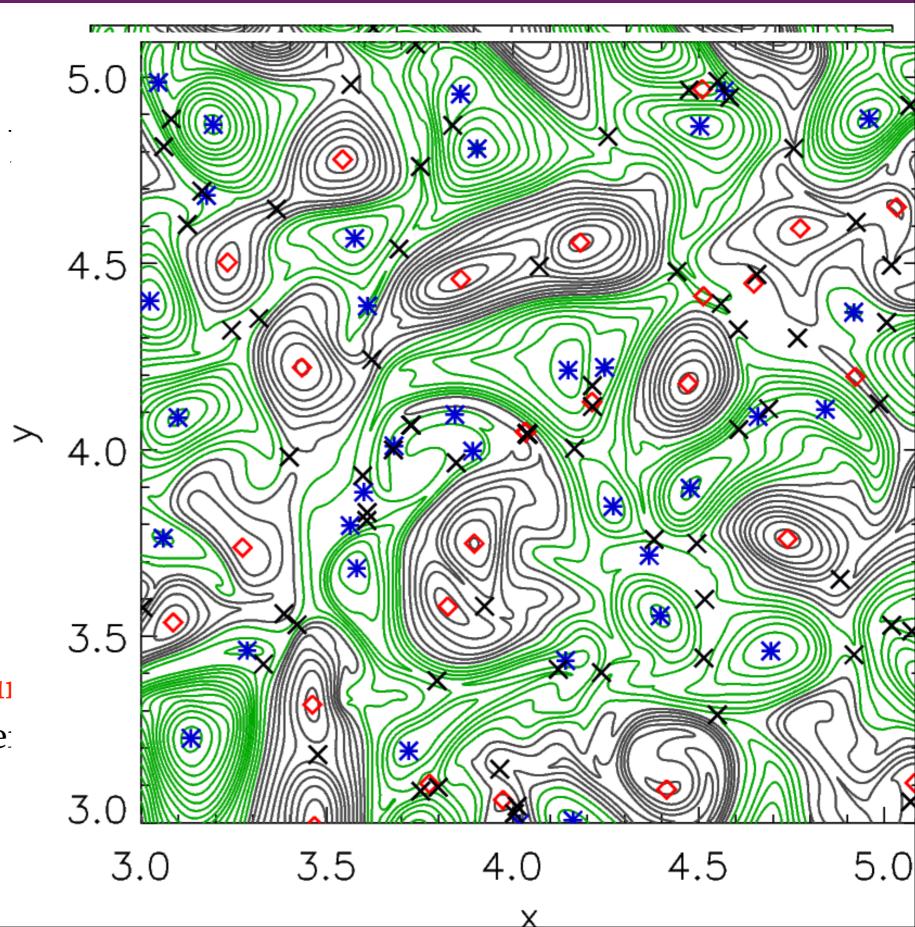
2D reconnection (\mathbf{E} : $\mathbf{B} \stackrel{\text{def}}{=} \mathcal{O}$)^d Turbulence

Here $\mathbf{E} + \mathbf{v} \times \mathbf{B} = \mathbf{u} \times \mathbf{I}$ $\implies \mathbf{E} + \mathbf{w} \times \mathbf{B} =$ where $\mathbf{w} = \mathbf{v} - \mathbf{u}$ is a **field line velocity.**

We can write

$$\mathbf{w} = \frac{\mathbf{E} \times \mathbf{B}}{B^2}$$

so **2D reconnection occu only at nulls** (**B** = 0) whe: **w** is singular.

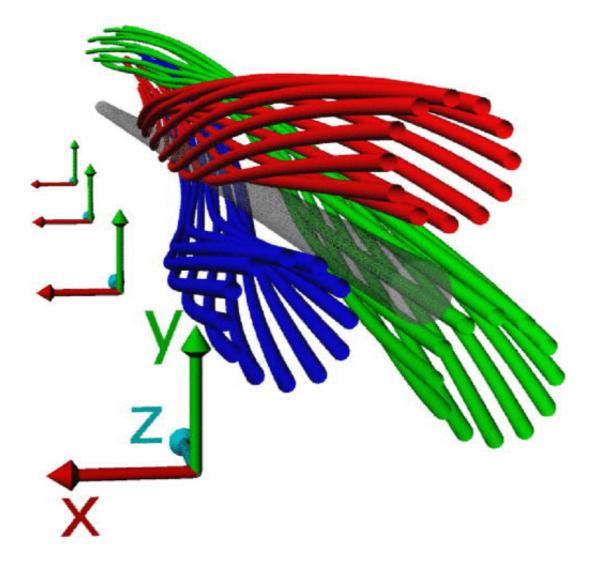


Flux ropes

Strong guide field with no null points.

... so there is a field line velocity **w** with $\mathbf{E} + \mathbf{w} imes \mathbf{B} =
abla \psi$

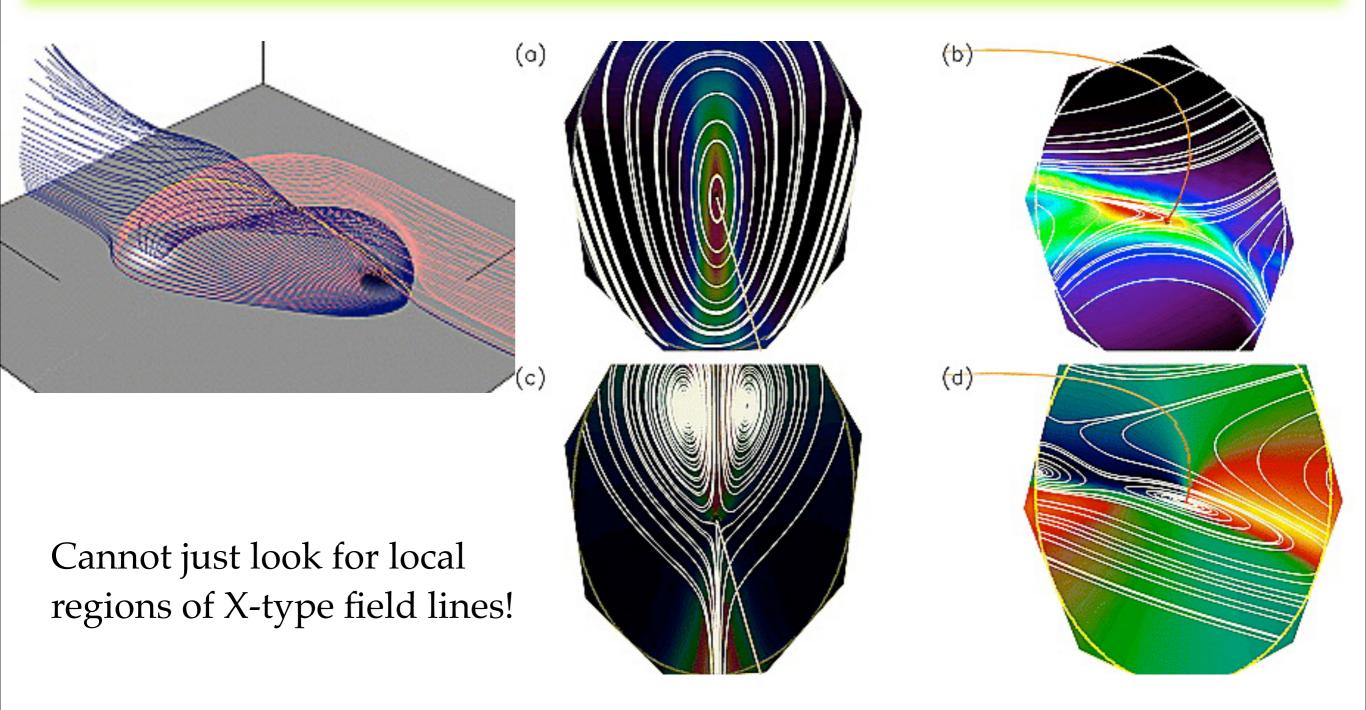
• Changes in topology mean changes in field line connectivity *with respect to an ideal evolution*.



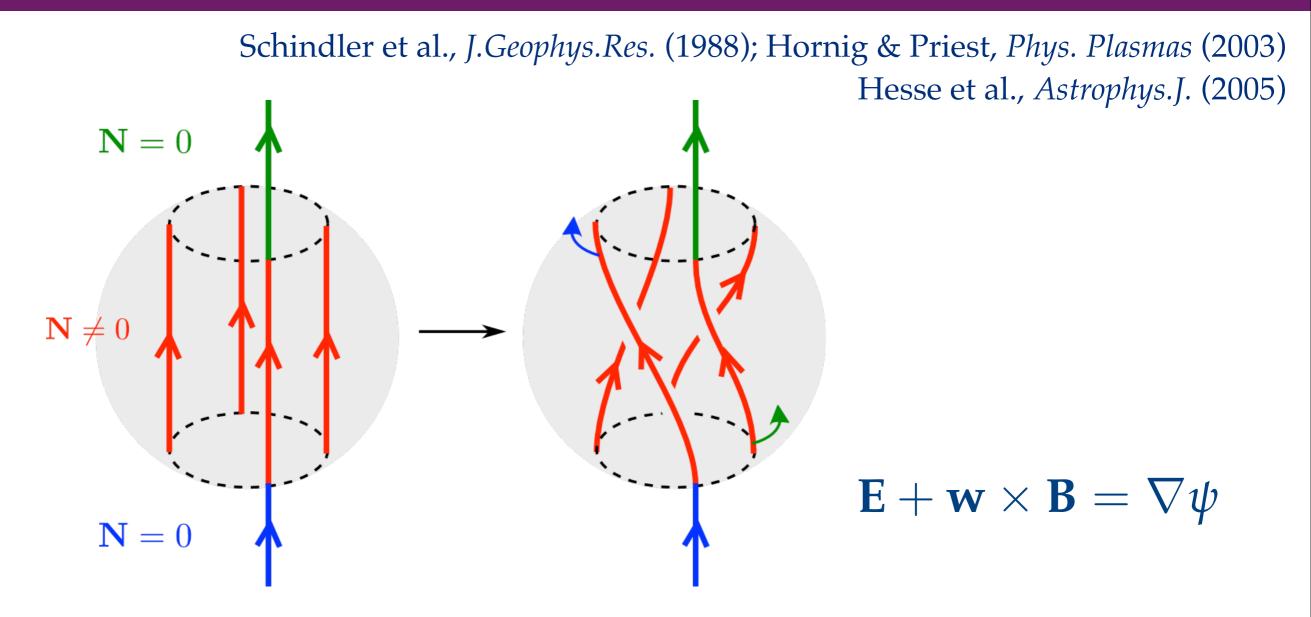
Gekelman et al, Astrophys.J. (2012)

Parnell et al., J.Geophys.Res. (2010)

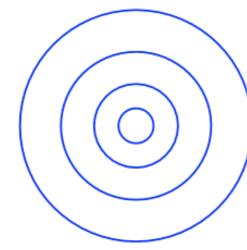
"In 2D, magnetic topology and field line structure coincide, but in 3D global topological structures and local field structures do not coincide."



Single reconnection site



 $\psi = \text{const}$



• If $\mathbf{v} = 0$ on the boundary, then $\mathbf{w} \cdot \nabla \psi = 0$.

▶ For a localised non-ideal region, there is a clear reconnection rate.

Our approach

Quantify the global field structure.

- Need to measure changes in the field line connectivity.
- Characterize this with **ideal invariants**.

e.g. magnetic helicity

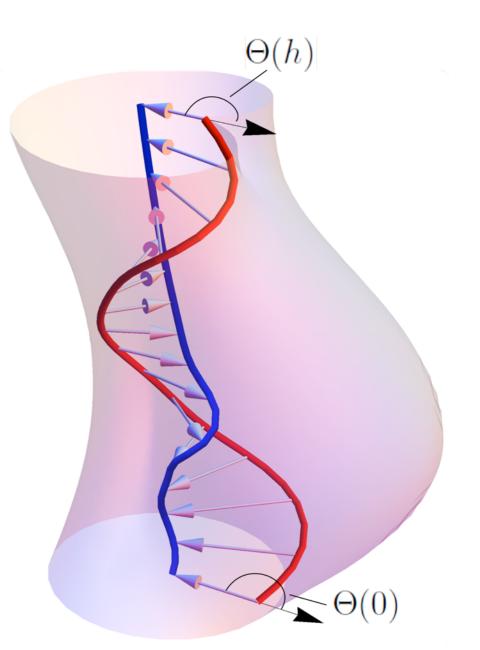
$$H = \int_V \mathbf{A} \cdot \mathbf{B} \, d^3 x$$

In the **winding gauge**

$$\mathbf{A}(\mathbf{x}) = \frac{1}{2\pi} \int_{S_z} \frac{\mathbf{B}(\mathbf{y}) \times (\mathbf{x} - \mathbf{y})}{|\mathbf{x} - \mathbf{y}|^2} d^2 y.$$

H is the average pairwise winding number between field lines.

Prior & Yeates (submitted)



Topological flux function

With **A** in winding gauge, define the **flux function**
$$\mathcal{A}(\mathbf{x}) = \int_{F_z(\mathbf{x})} \mathbf{A} \cdot d\mathbf{l}$$

• This is the average winding number of **one** field line with all others.

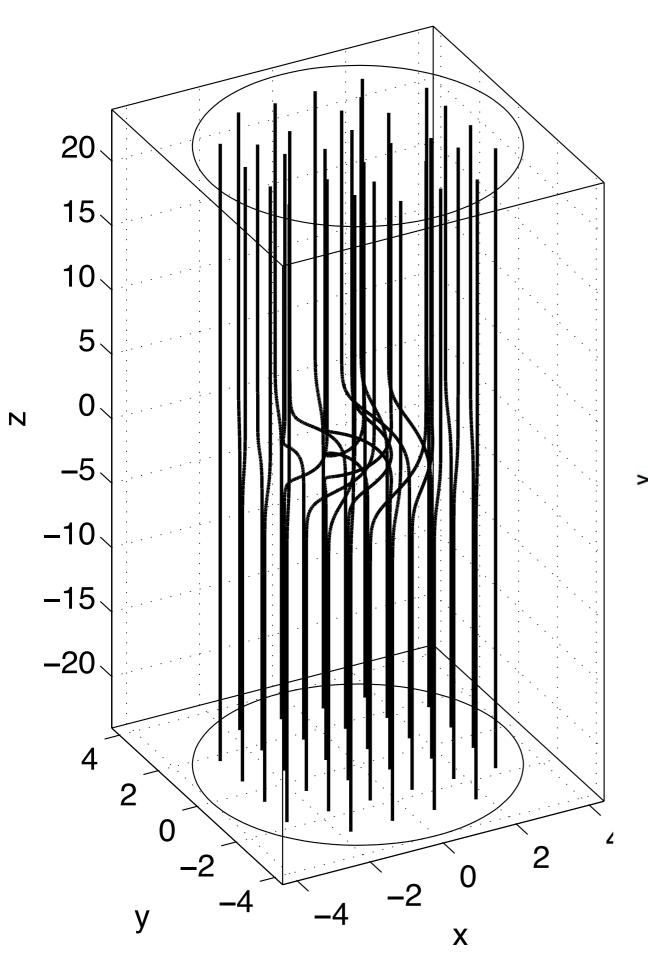
► It is the "helicity per field line": Berger, Astron. Astrophys. (1988)

$$H = \int_{S_0} \mathcal{A}(\mathbf{x}) B_z(\mathbf{x}) \, d^2 x$$

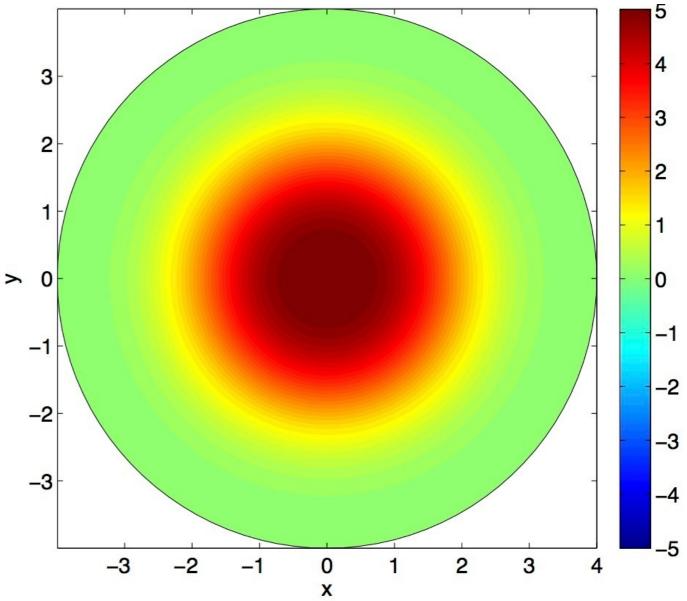
Completeness Theorem

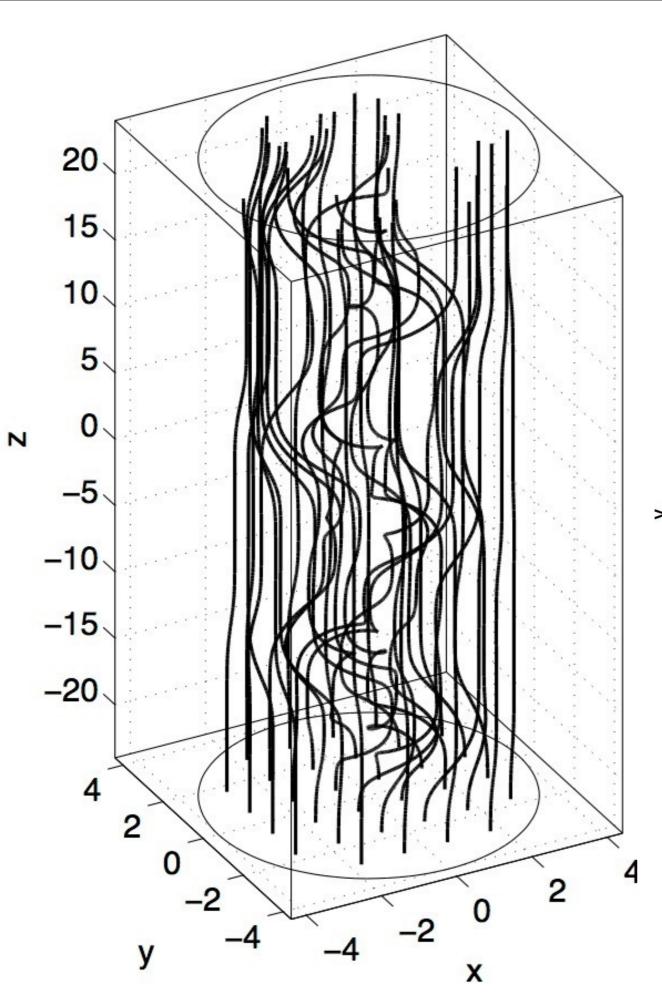
The flux function is a **necessary and sufficient condition** for two flux ropes to have the same field line mapping.

Yeates & Hornig, Phys. Plasmas (2013)

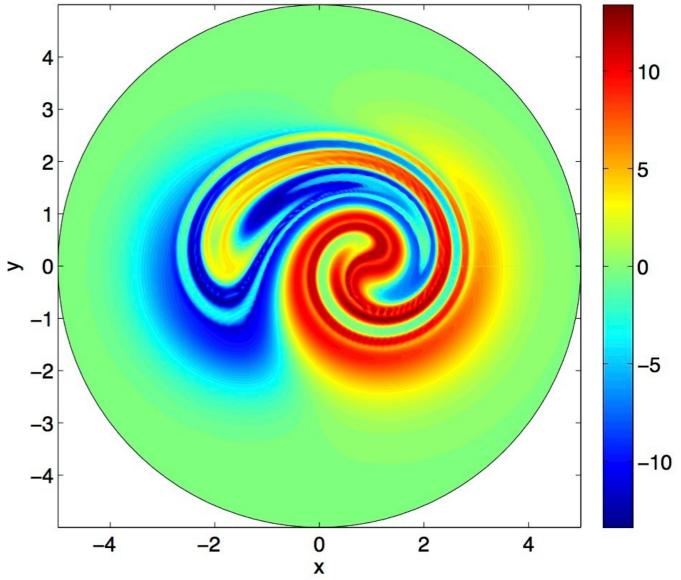


Flux function:





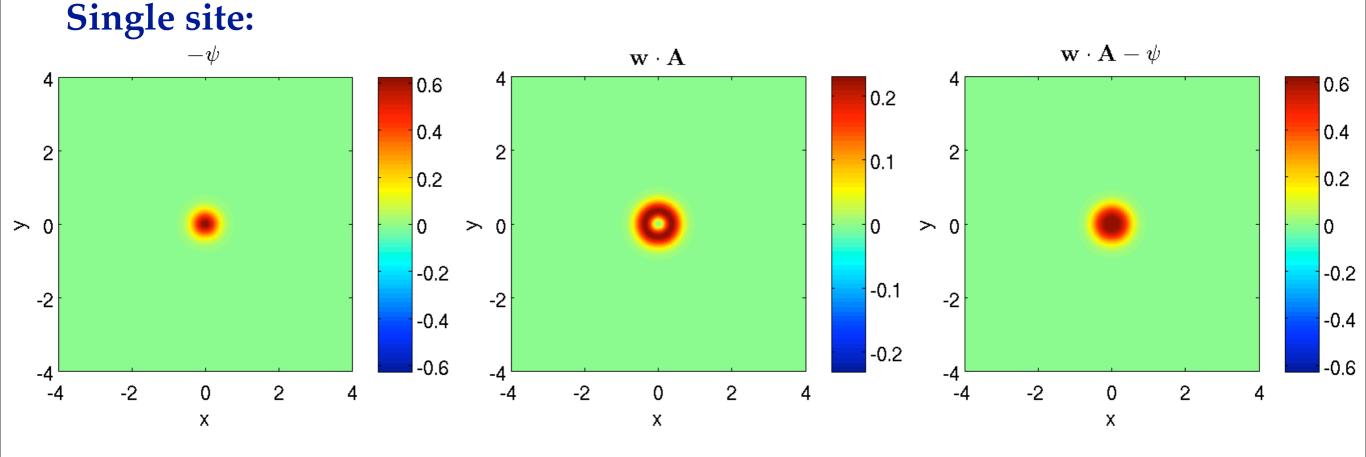
Flux function:



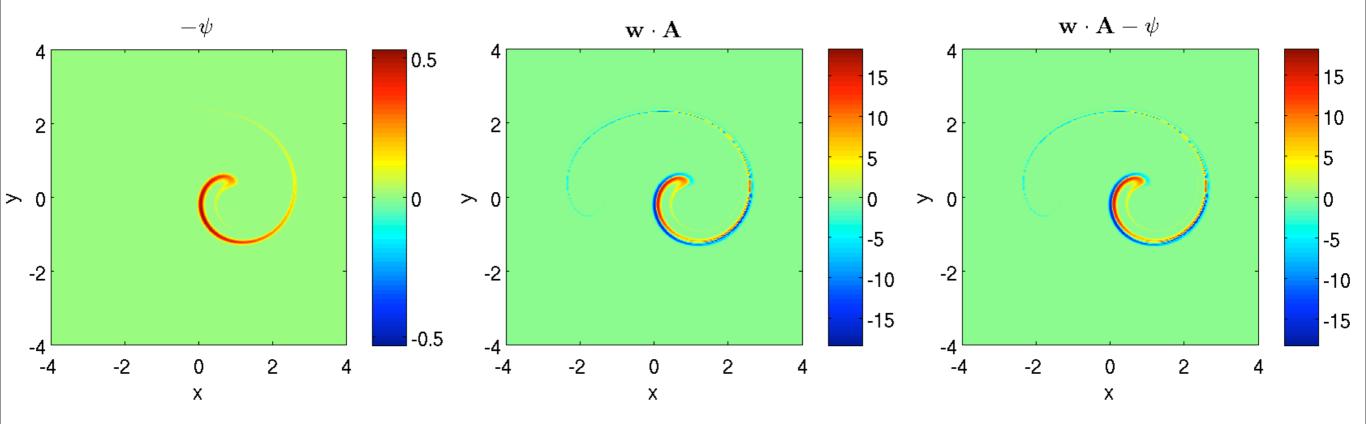
Time evolution

$$\frac{\partial \mathcal{A}}{\partial t}(\mathbf{x}) = \left(-\psi + \mathbf{w} \cdot \mathbf{A}\right)_{F_h(\mathbf{x})}$$

- Recovers single-site reconnection rate where w = 0.
- But contains **all** information about how the global topology is changing.



Now add a background field:

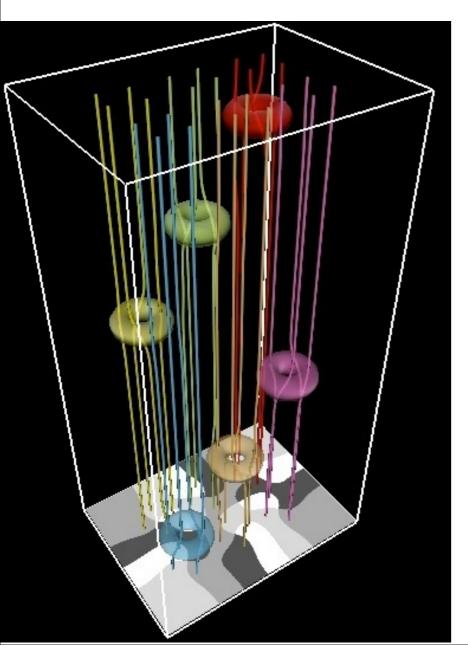


Topological effectiveness of a reconnection site depends on the background field structure.

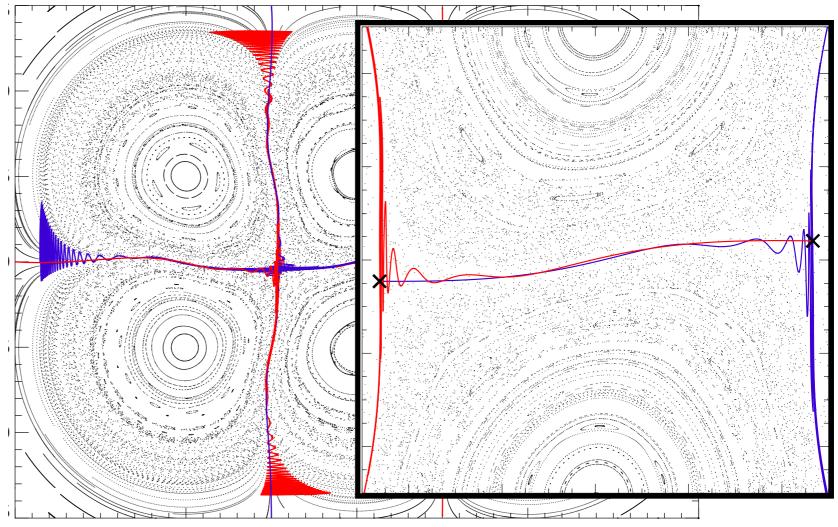
A global reconnection rate?

Idea: Identify a discrete set of "topological" field lines.

- 1. Points where w = 0. (instantaneously un-reconnecting lines)
- 2. Points where $F_h(\mathbf{x}) = \mathbf{x}$. (fixed points of the field line mapping)



The latter **partition** the flux but chaotic field lines lead to leakage of flux (partial barriers).



Yeates & Hornig, Phys. Plasmas (2011)

Summary

- Reconnection occurs in flux ropes even though there are no X-points.
- It takes place **locally** but its effect should be measured **globally**.
- A **flux function** captures the global field structure, and its rate of change may be related to reconnection events.

Ongoing work:

- How are different types of evolution characterized in the flux function?
- Applying these ideas to the LAPD experiments.

References:

Yeates & Hornig, *Phys. Plasmas* (2011, 2013) Yeates & Hornig (arxiv.org/abs/1304.8064) Prior & Yeates (submitted)

http://www.maths.dur.ac.uk/~bmjg46/

