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This is not typical of magnetic reconnection!
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Magnetic reconnection - process by which a magnetic field in an almost-
ideal plasma changes its topology (connectivity of magnetic field lines 
within domain or between boundaries).

Needs a non-ideal term in Ohm’s Law:

E + v ⇥ B = N ∂B
∂t

�r⇥
�
v ⇥ B

�
= �r⇥ N=)

Two types of reconnection:!

1.                         - 2D reconnection!

2.                         - 3D reconnection

E · B = 0
E · B 6= 0

Hornig & Schindler, Phys. Plasmas (1996)!
Birn & Priest (eds.), Reconnection of magnetic fields (2007)



!42D reconnection (E.B = 0)

We can write

w =
E ⇥ B

B2

so 2D reconnection occurs 
only at nulls (B = 0) where 
w is singular.

Here

E + v ⇥ B = u ⇥ B

where w = v - u is a 
field line velocity.

=) E + w ⇥ B = 0

Servidio et al., Nonlin.Proc.Geophys. (2011)
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Fig. 5. (Color online) Contour plot of the magnetic potential a
with the position of all the critical points: O-points (blue stars for
the maxima and red open-diamonds for the minima) and X-points
(black ×).

studying the Hessian matrix of a (Rana, 2004), defined as

Ha
i,j(x)=

∂2a

∂xi∂xj
, (5)

which we evaluate at the neutral points of the magnetic field.
Further details on the methodology are provided in Servidio
et al. (2010a). Here we briefly summarize the main steps of
the analysis:

1. Identify critical points at x∗, where∇a = 0

2. Compute the Hessian matrix, given by Eq. (5), at x∗

3. Compute eigenvalues λ1 and λ2 ofHa
i,j(x

∗), with λ1 >
λ2

4. Classify the critical point as maximum (both λi < 0),
minimum (both λi > 0) and saddle points (or X-points)
(λ1λ2 < 0).

5. Compute eigenvectors at each X-point. The associated
unit eigenvectors are ês and êl, where coordinate s is
associated with the minimum thickness δ of the current
sheet, while l is associated with the elongation ℓ. Note
that the local geometry of the diffusion region near each
X-point is related to the Hessian eigenvalues λ1 = ∂2a

∂s2

and λ2 = ∂2a
∂l2 .

6. According to Eq. (3), the reconnection rates are given
by the electric field at the X-points. These rates are then

Fig. 6. (Color online) Probability distribution function of reconnec-
tion rates in turbulence (lin-log scale). Vertical dotted line repre-
sents the mean value of the distribution.

normalized to the mean square fluctuation δb2
rms, ap-

propriate for Alfvènic turbulence.

In Fig. 5 we show the magnetic potential with the critical
point locations, obtained with the above procedure. In this
complex picture theX-points link islands with different size
and energy.
The distribution of reconnection rates PDF(|E×|) is re-

ported in Fig. 6 for Run 4. Different simulations give quali-
tatively same results. The PDF of the electric field at the X-
points is broad and peaked around zero value. For this partic-
ular simulation (Run 4), the mean value of the reconnection
rate is ≃ 0.04, with strong variations from the average, that
is values are found in the range |E×|∈ [10−6,0.3]. In terms
of the global parameters, this observed range of reconnection
rates varies from very slow to fast. In this sense the typical
reconnection rate in turbulence is found to be far higher than
what is expected based on a simple global application of the
Sweet-Parker rate E× ∼R−1/2

µ . We now examine more de-
tails of how these rates arise.
From a scaling analysis

ℓ

δ
≃

√

λR, (6)

where λR =
∣

∣

∣

λ1

λ2

∣

∣

∣
. In the case in which the reconnection is in

a stationary state, the rate depends on the above aspect ratio
λR, satisfying the scaling

E× ∼
ℓ

δ
∼

√

λR. (7)

In Fig. 7, a scatter plot of the reconnection rates against the
aspect ratio λR is shown. There is a clear trend in this figure,
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(black ⇥).
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priate for Alfvènic turbulence.

In Fig. 5 we show the magnetic potential with the critical
point locations, obtained with the above procedure. In this

Servidio et al.: Reconnection and Turbulence 5

Fig. 5. (Color online) Contour plot of the magnetic potential a
with the position of all the critical points: O-points (blue stars for
the maxima and red open-diamonds for the minima) and X-points
(black ×).

studying the Hessian matrix of a (Rana, 2004), defined as

Ha
i,j(x)=

∂2a

∂xi∂xj
, (5)

which we evaluate at the neutral points of the magnetic field.
Further details on the methodology are provided in Servidio
et al. (2010a). Here we briefly summarize the main steps of
the analysis:

1. Identify critical points at x∗, where∇a = 0

2. Compute the Hessian matrix, given by Eq. (5), at x∗

3. Compute eigenvalues λ1 and λ2 ofHa
i,j(x

∗), with λ1 >
λ2

4. Classify the critical point as maximum (both λi < 0),
minimum (both λi > 0) and saddle points (or X-points)
(λ1λ2 < 0).

5. Compute eigenvectors at each X-point. The associated
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complex picture the X-points link islands with different size
and energy.
The distribution of reconnection rates PDF(|E⇥|) is re-

ported in Fig. 6 for Run 4. Different simulations give quali-
tatively same results. The PDF of the electric field at the X-
points is broad and peaked around zero value. For this partic-
ular simulation (Run 4), the mean value of the reconnection
rate is ' 0.04, with strong variations from the average, that
is values are found in the range |E⇥| 2 [10�6,0.3]. In terms
of the global parameters, this observed range of reconnection
rates varies from very slow to fast. In this sense the typical
reconnection rate in turbulence is found to be far higher than
what is expected based on a simple global application of the
Sweet-Parker rate E⇥ ⇠ R

�1/2
µ . We now examine more de-

tails of how these rates arise.
From a scaling analysis

`

�
' p

�R, (6)

where �R =
����1
�2

���. In the case in which the reconnection is in
a stationary state, the rate depends on the above aspect ratio
�R , satisfying the scaling

E⇥ ⇠ `

�
⇠ p

�R. (7)

In Fig. 7, a scatter plot of the reconnection rates against the
aspect ratio �R is shown. There is a clear trend in this figure,
showing that Eq. (7) is satisfied. This suggests that locally
the reconnection processes depend on the geometry and that
they therefore are in a quasi steady-state regime.
The approximate power-law scaling seen in Fig. 7 at larger

values of �R suggests that Eq. (7) holds for the fastest recon-
nection events. The weaker reconnection events evidently

www.nonlin-processes-geophys.net/18/675/2011/ Nonlin. Processes Geophys., 18, 675–695, 2011



!5Flux ropes

‣ Strong guide field with no null points.

Gekelman et al, Astrophys.J. (2012)

The clearest choice of w 

E + w ⇥ B = ry
 … so there is a field line velocity w with

‣ Changes in topology mean changes in 
field line connectivity with respect to an 
ideal evolution.
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“In 2D, magnetic topology and field line structure coincide, but in 3D global 
topological structures and local field structures do not coincide.”!

Parnell et al., J.Geophys.Res. (2010)

Cannot just look for local 
regions of X-type field lines!



!8Single reconnection site
Schindler et al., J.Geophys.Res. (1988); Hornig & Priest, Phys. Plasmas (2003)!

Hesse et al., Astrophys.J. (2005)

‣ For a localised non-ideal region, there is a clear 
reconnection rate.

w ·r = 0‣ If v = 0 on the boundary, then                            .

E + w ⇥ B = ry



!9Our approach

‣ Need to measure changes in the field line connectivity.!

‣ Characterize this with ideal invariants.

Quantify the global field structure.!

e.g. magnetic helicity

H =

Z

V
A ·B d3x

In the winding gauge

A(x) =
1

2⇡

Z

Sz

B(y)⇥ (x� y)

|x� y|2 d2y.

H is the average pairwise winding number 
between field lines.
Prior & Yeates (submitted)



!10Topological flux function

With A in winding gauge, define the flux function

A(x) =

Z

Fz(x)
A · dl

‣It is the “helicity per field line”:

H =

Z

S0

A(x)Bz(x) d
2x

Berger, Astron.Astrophys. (1988)

Yeates & Hornig, Phys. Plasmas (2013)

The flux function is a necessary and sufficient condition for two flux 
ropes to have the same field line mapping.

Completeness Theorem

‣ This is the average winding number of one field line with all others.
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Flux function:
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‣ Recovers single-site reconnection rate where w = 0.!

‣ But contains all information about how the global topology is changing.

@A
@t

(x) =
⇣
�  +w ·A

⌘

Fh(x)

Time evolution

Single site:
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Topological effectiveness of a reconnection site depends on the 
background field structure.

Now add a background field:



!15A global reconnection rate?

Idea: Identify a discrete set of “topological” field lines.

1. Points where w = 0. (instantaneously un-reconnecting lines)!

2. Points where Fh(x) = x. (fixed points of the field line mapping)

The latter partition the flux but chaotic field 
lines lead to leakage of flux (partial barriers).

Yeates & Hornig, Phys. Plasmas (2011)-2 -1 0 1 2
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!16Summary

http://www.maths.dur.ac.uk/~bmjg46/

‣ Reconnection occurs in flux ropes even though there are no X-points.!

‣ It takes place locally but its effect should be measured globally.!

‣ A flux function captures the global field structure, and its rate of 
change may be related to reconnection events.

Ongoing work:!

‣ How are different types of evolution characterized in the flux function?!

‣ Applying these ideas to the LAPD experiments.
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