Anthony Yeates

Introduction

Magnetic helicity Topological flux function Hamiltonian viewpoint

Magnetic Braids

Anthony Yeates

with Gunnar Hornig (University of Dundee)

28th October 2011

Numerical Analysis Seminar, Durham

What is a magnetic braid?

► A magnetic braid is a magnetic field B(x, y, z) in the space 0 < z < 1 that satisfies B_z > 0.

 $\nabla \cdot \mathbf{B} = \mathbf{0}.$

Magnetic Braids

Anthony Yeates

Introduction Magnetic helicity

opological flux function

1. Magnetic loops in the solar corona.

NASA Solar Dynamics Observatory (23 Feb 11).

Magnetic Braids

Anthony Yeates

Introduction

Magnetic helicity Topological flux function Hamiltonian viewpoint

2. Thermonuclear confinement devices.

ITER (Internat'l Thermonuclear Experimental Reactor).

Plasma Plasma Plasma Helical Magnetic field

Inside the KSTAR tokamak.

• Correspond to periodic magnetic braids.

Magnetic Braids Anthony Yeates

Introduction

Topological equivalence

Two magnetic braids are topologically equivalent if they are related by an ideal deformation v vanishing on z = 0 and z = 1:

Magnetic Braids

Anthony Yeates

Introduction

Magnetic helicity

$$\frac{\partial \mathbf{B}}{\partial t} - \nabla \times \left(\mathbf{v} \times \mathbf{B} \right) = \mathbf{0}.$$

Topological equivalence

Two magnetic braids are topologically equivalent if they are related by an ideal deformation v vanishing on z = 0 and z = 1:

$$\frac{\partial \mathbf{B}}{\partial t} - \nabla \times \left(\mathbf{v} \times \mathbf{B} \right) = \mathbf{0}.$$

Theorem (Alfvén, 1942)

In an ideal evolution the magnetic flux through any co-moving surface is conserved.

 \implies conservation of field lines

Magnetic Braids

Anthony Yeates

Introduction

Magnetic helicity

Hannes Alfvén receiving the Nobel Prize in Physics, 1970.

Magnetic Braids

Anthony Yeates

Introduction

Magnetic helicity Topological flux function Hamiltonian viewpoint Summary

Physical importance

- Many plasmas are very highly-conducting.
- Changes in topology (magnetic reconnection) occur only in small regions of high ∇B.

Magnetic Braids

Anthony Yeates

Introduction

lagnetic helicity

opological flux function

Summary

Current sheets ($j = \nabla \times B$) from Servidio et al. (2010 Phys. Plasmas.).

Our problem

Magnetic Braids

Anthony Yeates

Introduction

Magnetic helicity Topological flux function Hamiltonian viewpoint

How do we tell if two magnetic braids are topologically equivalent? (necessary and sufficient conditions)

2. How do we quantify differences in their topology?

 To simplify the discussion, we consider a cylinder 0 < r < R, 0 < z < 1 with simple boundary conditions:

Magnetic Braids

Anthony Yeates

Introduction

Magnetic helicity

opological flux function amiltonian viewpoint

 To simplify the discussion, we consider a cylinder 0 < r < R, 0 < z < 1 with simple boundary conditions:

fagnetic helicity opological flux functior familtonian viewpoint

Summar

We parametrise the field lines by z so that

$$\frac{\mathrm{d} f_z(r_0,\phi_0)}{\mathrm{d} z} = \frac{\mathrm{B} \big(f_z(r_0,\phi_0) \big)}{\mathrm{B}_z \big(f_z(r_0,\phi_0) \big)}, \qquad f_0(r_0,\phi_0) = (r_0,\phi_0).$$

To simplify the discussion, we consider a cylinder 0 < r < R, 0 < z < 1 with simple boundary conditions:

Magnetic Braids

Anthony Yeates

Introduction

We parametrise the field lines by z so that

$$\frac{\mathrm{d} f_z(r_0,\phi_0)}{\mathrm{d} z} = \frac{\mathrm{B} \big(f_z(r_0,\phi_0) \big)}{\mathrm{B}_z \big(f_z(r_0,\phi_0) \big)}, \qquad f_0(r_0,\phi_0) = (r_0,\phi_0).$$

• So f_1 is the field line mapping from z = 0 to z = 1.

To simplify the discussion, we consider a cylinder 0 < r < R, 0 < z < 1 with simple boundary conditions:

Magnetic Braids

Anthony Yeates

Introduction

We parametrise the field lines by z so that

$$\frac{\mathrm{d} f_z(r_0,\phi_0)}{\mathrm{d} z} = \frac{\mathrm{B}(f_z(r_0,\phi_0))}{\mathrm{B}_z(f_z(r_0,\phi_0))}, \qquad f_0(r_0,\phi_0) = (r_0,\phi_0).$$

- So f_1 is the field line mapping from z = 0 to z = 1.
- ▶ With our assumptions, f₁ is a necessary and sufficient condition for topological equivalence.

To simplify the discussion, we consider a cylinder 0 < r < R, 0 < z < 1 with simple boundary conditions:

Magnetic Braids

Anthony Yeates

Introduction

We parametrise the field lines by z so that

$$\frac{\mathrm{d} f_z(r_0,\phi_0)}{\mathrm{d} z} = \frac{\mathrm{B}(f_z(r_0,\phi_0))}{\mathrm{B}_z(f_z(r_0,\phi_0))}, \qquad f_0(r_0,\phi_0) = (r_0,\phi_0).$$

- So f_1 is the field line mapping from z = 0 to z = 1.
- ▶ With our assumptions, f₁ is a necessary and sufficient condition for topological equivalence. Can we do better?

The magnetic helicity is

$$\mathbf{H} = \int_{\mathbf{V}} \mathbf{A} \cdot \mathbf{B} \, \mathbf{d}^3 \mathbf{x}, \qquad \text{where} \qquad \mathbf{B} = \nabla \times \mathbf{A}.$$

Magnetic Braids

Anthony Yeates

Introduction

Magnetic helicity

The magnetic helicity is

$$\mathbf{H} = \int_{\mathbf{V}} \mathbf{A} \cdot \mathbf{B} \, \mathbf{d}^3 \mathbf{x}, \quad \text{where} \quad \mathbf{B} = \nabla \times \mathbf{A}.$$

Measures the linking of magnetic flux:

e.g. two closed thin untwisted tubes,

$$\mathbf{H} = \Phi_1 \oint_{\mathbf{C}_1} \mathbf{A} \cdot \mathbf{dl} + \Phi_2 \oint_{\mathbf{C}_2} \mathbf{A} \cdot \mathbf{dl} = \pm 2\mathbf{n} \Phi_1 \Phi_2$$

where n is the linking number.

Magnetic Braids

Anthony Yeates

Introduction

Magnetic helicity

The magnetic helicity is

$$\mathbf{H} = \int_{\mathbf{V}} \mathbf{A} \cdot \mathbf{B} \, \mathbf{d}^3 \mathbf{x}, \quad \text{where} \quad \mathbf{B} = \nabla \times \mathbf{A}.$$

- Measures the linking of magnetic flux:
- e.g. two closed thin untwisted tubes,

$$\mathbf{H} = \Phi_1 \oint_{\mathbf{C}_1} \mathbf{A} \cdot \mathbf{dl} + \Phi_2 \oint_{\mathbf{C}_2} \mathbf{A} \cdot \mathbf{dl} = \pm 2\mathbf{n} \Phi_1 \Phi_2$$

where n is the linking number.

In an ideal evolution:

$$\frac{dH}{dt} = \oint_{\partial V} \left(B_n \big(A \cdot v + \Phi \big) - v_n \big(A \cdot B \big) \right) da$$

Magnetic Braids

Anthony Yeates

Introduction

Magnetic helicity

The magnetic helicity is

$$\mathbf{H} = \int_{\mathbf{V}} \mathbf{A} \cdot \mathbf{B} \, \mathbf{d}^3 \mathbf{x}, \qquad \text{where} \qquad \mathbf{B} = \nabla \times \mathbf{A}.$$

- Measures the linking of magnetic flux:
- e.g. two closed thin untwisted tubes,

$$\mathbf{H} = \Phi_1 \oint_{\mathbf{C}_1} \mathbf{A} \cdot \mathbf{dl} + \Phi_2 \oint_{\mathbf{C}_2} \mathbf{A} \cdot \mathbf{dl} = \pm 2\mathbf{n} \Phi_1 \Phi_2$$

where n is the linking number.

In an ideal evolution:

$$\frac{dH}{dt} = \oint_{\partial V} \left(B_n (A \cdot v + \Phi) - v_n (A \cdot B) \right) da$$

► If $B_n|_{\partial V} = v_n|_{\partial V} = 0$, then H would be an ideal invariant ⇒ necessary condition for same topology

Magnetic Braids

Anthony Yeates

Introduction

Magnetic helicity

• If $B_n|_{\partial V} \neq 0$, then H is not invariant.

Magnetic Braids

Anthony Yeates

Introduction

Magnetic helicity

opological flux function

- If $B_n|_{\partial V} \neq 0$, then H is not invariant.
- Can set $\Phi = 0$ by choosing an appropriate gauge:

$$A \to A + \nabla \chi \implies H \to H + \oint_{\partial V} \chi B_n da.$$

Magnetic Braids

Anthony Yeates

Introduction

Magnetic helicity

- If $B_n|_{\partial V} \neq 0$, then H is not invariant.
- Can set $\Phi = 0$ by choosing an appropriate gauge:

$$A \to A + \nabla \chi \implies H \to H + \oint_{\partial V} \chi B_n da.$$

For our cylinder, choose

$$\mathbf{A}|_{\partial \mathbf{V}} = \frac{\mathbf{r}}{2}\mathbf{e}_{\phi}.$$

Physically, H then corresponds to the relative helicity of Berger & Field (1984, J. Fluid. Mech.) with reference field e_z.

Magnetic Braids

Anthony Yeates

Introduction

Magnetic helicity

- If $B_n|_{\partial V} \neq 0$, then H is not invariant.
- Can set $\Phi = 0$ by choosing an appropriate gauge:

$$A \to A + \nabla \chi \implies H \to H + \oint_{\partial V} \chi B_n da.$$

For our cylinder, choose

$$\mathbf{A}|_{\partial \mathbf{V}} = \frac{\mathbf{r}}{2}\mathbf{e}_{\phi}.$$

Physically, H then corresponds to the relative helicity of Berger & Field (1984, J. Fluid. Mech.) with reference field e_z.

In the gauge $A|_{\partial V} = \frac{r}{2}e_{\phi}$, then H is a necessary condition for topological equivalence.

Magnetic Braids

Anthony Yeates

Introduction

Magnetic helicity

- Resistive-MHD simulation: initially "braided" magnetic field.
 - Wilmot-Smith, Hornig & Pontin (2010, Astron. Astrophys.);
 - Pontin, Wilmot-Smith, Hornig & Galsgaard (2011, Astron. Astrophys.).
- H = 0 throughout despite changing topology.

Magnetic Braids

Anthony Yeates

Introductio

Magnetic helicity

- Resistive-MHD simulation: initially "braided" magnetic field.
 - Wilmot-Smith, Hornig & Pontin (2010, Astron. Astrophys.);
 - Pontin, Wilmot-Smith, Hornig & Galsgaard (2011, Astron. Astrophys.).
- H = 0 throughout despite changing topology.

Magnetic Braids

Anthony Yeates

Introduction

Magnetic helicity

- Resistive-MHD simulation: initially "braided" magnetic field.
 - Wilmot-Smith, Hornig & Pontin (2010, Astron. Astrophys.);
 - Pontin, Wilmot-Smith, Hornig & Galsgaard (2011, Astron. Astrophys.).
- H = 0 throughout despite changing topology.

Magnetic Braids

Anthony Yeates

Introductio

Magnetic helicity

- Resistive-MHD simulation: initially "braided" magnetic field.
 - Wilmot-Smith, Hornig & Pontin (2010, Astron. Astrophys.);
 - Pontin, Wilmot-Smith, Hornig & Galsgaard (2011, Astron. Astrophys.).
- H = 0 throughout despite changing topology.

Magnetic Braids

Anthony Yeates

Introduction

Magnetic helicity

- Resistive-MHD simulation: initially "braided" magnetic field.
 - Wilmot-Smith, Hornig & Pontin (2010, Astron. Astrophys.);
 - Pontin, Wilmot-Smith, Hornig & Galsgaard (2011, Astron. Astrophys.).
- H = 0 throughout despite changing topology.

Magnetic Braids

Anthony Yeates

Introductio

Magnetic helicity

- Resistive-MHD simulation: initially "braided" magnetic field.
 - Wilmot-Smith, Hornig & Pontin (2010, Astron. Astrophys.);
 - Pontin, Wilmot-Smith, Hornig & Galsgaard (2011, Astron. Astrophys.).
- H = 0 throughout despite changing topology.

Magnetic Braids

Anthony Yeates

Introduction

Magnetic helicity

- Resistive-MHD simulation: initially "braided" magnetic field.
 - Wilmot-Smith, Hornig & Pontin (2010, Astron. Astrophys.);
 - Pontin, Wilmot-Smith, Hornig & Galsgaard (2011, Astron. Astrophys.).
- H = 0 throughout despite changing topology.

Magnetic Braids

Anthony Yeates

Introductio

Magnetic helicity

 Resistive-MHD simulation: initially "braided" magnetic field.

- Wilmot-Smith, Hornig & Pontin (2010, Astron. Astrophys.);
- Pontin, Wilmot-Smith, Hornig & Galsgaard (2011, Astron. Astrophys.).
- H = 0 throughout despite changing topology.

Magnetic Braids

Anthony Yeates

Introductio

Magnetic helicity

- Resistive-MHD simulation: initially "braided" magnetic field.
 - Wilmot-Smith, Hornig & Pontin (2010, Astron. Astrophys.);
 - Pontin, Wilmot-Smith, Hornig & Galsgaard (2011, Astron. Astrophys.).
- H = 0 throughout despite changing topology.

Magnetic Braids

Anthony Yeates

Introductio

Magnetic helicity

Alfvén \implies a function measuring fluxes through comoving loops will be an ideal invariant.

Magnetic Braids

Anthony Yeates

Introduction

Magnetic helicity

Topological flux function

Hamiltonian viewpoint

Alfvén \implies a function measuring fluxes through comoving loops will be an ideal invariant.

The topological flux function $\mathscr{A} : \mathbb{R}^2 \to \mathbb{R}$ is defined as

$$\mathscr{A}(\mathbf{r}_0,\phi_0) = \int_{z=0}^{z=1} \mathbf{A} \cdot \mathbf{dl},$$

where $\mathbf{B} = \nabla \times \mathbf{A}$ and the integral is along a magnetic field line.

Magnetic Braids

Anthony Yeates

Introductior

Magnetic helicity

Topological flux function

Hamiltonian viewpoint

Alfvén \implies a function measuring fluxes through comoving loops will be an ideal invariant.

The topological flux function $\mathscr{A} : \mathbb{R}^2 \to \mathbb{R}$ is defined as

$$\mathscr{A}(\mathbf{r}_0,\phi_0) = \int_{z=0}^{z=1} \mathbf{A} \cdot \mathbf{d}\mathbf{I},$$

where $B = \nabla \times A$ and the integral is along a magnetic field line.

Magnetic Braids

Anthony Yeates

Introduction

Magnetic helicity

Topological flux function

Hamiltonian viewpoint

Alfvén \implies a function measuring fluxes through comoving loops will be an ideal invariant.

The topological flux function $\mathscr{A} : \mathbb{R}^2 \to \mathbb{R}$ is defined as

$$\mathscr{A}(\mathbf{r}_0,\phi_0) = \int_{z=0}^{z=1} \mathbf{A} \cdot \mathbf{d}\mathbf{I},$$

where $B = \nabla \times A$ and the integral is along a magnetic field line.

Poloidal flux

$$\Phi(\phi_{R}) = \oint \mathbf{A} \cdot \mathbf{dl}$$
$$= \mathscr{A}(\mathbf{r}_{0}, \phi_{0}) + \int_{\mathbf{L}_{0}} \mathbf{A} \cdot \mathbf{dl} + \int_{\mathbf{L}_{1}} \mathbf{A} \cdot \mathbf{dl}$$
$$- \int_{0}^{1} \mathbf{A}_{z}(\mathbf{R}, \phi_{R}) \, \mathbf{dz}$$

• $\mathscr{A}(\mathbf{r}_0, \phi_0)$ is the mean $\Phi(\phi_R)$ over all angles ϕ_R .

Magnetic Braids

Anthony Yeates

Introduction

Magnetic helicity

Topological flux function

Hamiltonian viewpoint

Ideal invariance

• $\mathscr{A}(\mathbf{r}_0, \phi_0)$ is an ideal invariant for all (\mathbf{r}_0, ϕ_0) :

$$\begin{aligned} \frac{\mathbf{d}\mathscr{A}}{\mathbf{d}\mathbf{t}} &= \frac{\mathbf{d}}{\mathbf{d}\mathbf{t}} \int_{0}^{1} \mathbf{A} \cdot \mathbf{d}\mathbf{l} \\ &= \int_{0}^{1} \left(\frac{\partial \mathbf{A}}{\partial \mathbf{t}} - \mathbf{v} \times \nabla \times \mathbf{A} + \nabla(\mathbf{v} \cdot \mathbf{A}) \right) \cdot \mathbf{d}\mathbf{l} \\ &= \int_{0}^{1} \nabla (\Phi + \mathbf{v} \cdot \mathbf{A}) \cdot \mathbf{d}\mathbf{l} \\ &= \left(\Phi + \mathbf{v} \cdot \mathbf{A} \right) \Big|_{(\mathbf{r}_{0}, \phi_{0})}^{\mathbf{f}_{1}(\mathbf{r}_{0}, \phi_{0})} \\ &= \mathbf{0} \end{aligned}$$

Uses gauge restriction.

Magnetic Braids

Anthony Yeates

Introduction

Magnetic helicity

Topological flux function

Hamiltonian viewpoint

Relation to helicity

• Change variables to (r_0, ϕ_0, z) defined by $(r, \phi, z) = f_z(r_0, \phi_0)$ with Jacobian

$$\det(J) = \frac{r_0 B_z(r_0, \phi_0, 0)}{r B_z(r, \phi, z)}.$$

Then

$$\begin{split} H &= \int_{V} A \cdot B r \, dr d\phi dz. \\ &= \int_{0}^{1} \int_{z=0} A(f_{z}(r_{0},\phi_{0})) \cdot B(fz(r_{0},\phi_{0})) \frac{B_{z}(r_{0},\phi_{0},0)}{B_{z}(f_{z}(r_{0},\phi_{0}))} r_{0} dr_{0} d\phi_{0} dz \\ &= \int_{z=0} B_{z}(r_{0},\phi_{0},0) \mathscr{A}(r_{0},\phi_{0}) r_{0} dr_{0} d\phi_{0}. \end{split}$$

• So \mathscr{A} is a field line helicity¹.

¹Berger (1988, Astron. Astrophys.).

Magnetic Braids

Anthony Yeates

Introduction

Magnetic helicity

Topological flux function

Hamiltonian viewpoint

- A reveals that topology differs from the identity.
- Positive and negative regions cancel so H = 0.
- ► Ideal evolution near boundary ⇒ persistence of 2 interior critical points.

Magnetic Braids

Anthony Yeates

Introduction

Magnetic helicity

Topological flux function

Hamiltonian viewpoint

- A reveals that topology differs from the identity.
- Positive and negative regions cancel so H = 0.
- ► Ideal evolution near boundary ⇒ persistence of 2 interior critical points.

Magnetic Braids

Anthony Yeates

Introduction

Magnetic helicity

Topological flux function

Hamiltonian viewpoint

- A reveals that topology differs from the identity.
- Positive and negative regions cancel so H = 0.
- ► Ideal evolution near boundary ⇒ persistence of 2 interior critical points.

Magnetic Braids

Anthony Yeates

Introduction

Magnetic helicity

Topological flux function

Hamiltonian viewpoint

- A reveals that topology differs from the identity.
- Positive and negative regions cancel so H = 0.
- ► Ideal evolution near boundary ⇒ persistence of 2 interior critical points.

Magnetic Braids

Anthony Yeates

Introduction

Magnetic helicity

Topological flux function

Hamiltonian viewpoint

- A reveals that topology differs from the identity.
- Positive and negative regions cancel so H = 0.
- ► Ideal evolution near boundary ⇒ persistence of 2 interior critical points.

Magnetic Braids

Anthony Yeates

Introduction

Magnetic helicity

Topological flux function

Hamiltonian viewpoint

- A reveals that topology differs from the identity.
- Positive and negative regions cancel so H = 0.
- ► Ideal evolution near boundary ⇒ persistence of 2 interior critical points.

Magnetic Braids

Anthony Yeates

Introduction

Magnetic helicity

Topological flux function

Hamiltonian viewpoint

- A reveals that topology differs from the identity.
- Positive and negative regions cancel so H = 0.
- ► Ideal evolution near boundary ⇒ persistence of 2 interior critical points.

Magnetic Braids

Anthony Yeates

Introduction

Magnetic helicity

Topological flux function

Hamiltonian viewpoint

- A reveals that topology differs from the identity.
- Positive and negative regions cancel so H = 0.
- ► Ideal evolution near boundary ⇒ persistence of 2 interior critical points.

Magnetic Braids

Anthony Yeates

Introduction

Magnetic helicity

Topological flux function

Hamiltonian viewpoint

- A reveals that topology differs from the identity.
- Positive and negative regions cancel so H = 0.
- ► Ideal evolution near boundary ⇒ persistence of 2 interior critical points.

Magnetic Braids

Anthony Yeates

Introduction

Magnetic helicity

Topological flux function

Hamiltonian viewpoint

- A reveals that topology differs from the identity.
- Positive and negative regions cancel so H = 0.
- ► Ideal evolution near boundary ⇒ persistence of 2 interior critical points.

Magnetic Braids

Anthony Yeates

Introduction

Magnetic helicity

Topological flux function

Hamiltonian viewpoint

Another physical interpretation

• The magnetic field lines $f_1(r_0, \phi_0)$ are given by extremising the action²

$$\mathscr{A}(\mathbf{r}_0,\phi_0) = \int_{z=0}^{z=1} \mathbf{A} \cdot \mathbf{d} \mathbf{I}.$$

• Euler-Lagrange equations $\implies (\nabla \times A) \times \frac{df_i}{dl} = 0$

Magnetic Braids

Anthony Yeates

Introduction

lagnetic helicity

Sopological flux function

Hamiltonian viewpoint

²Cary & Littlejohn (1983, Ann. Phys.).

Another physical interpretation

• The magnetic field lines $f_1(r_0, \phi_0)$ are given by extremising the action²

$$\mathscr{A}(\mathbf{r}_0,\phi_0) = \int_{z=0}^{z=1} \mathbf{A} \cdot \mathbf{d} \mathbf{I}$$

- Euler-Lagrange equations $\implies (\nabla \times A) \times \frac{df_1}{dl} = 0$
- ► This is a Hamiltonian system ($z \leftrightarrow time$), but (r, ϕ) are non-canonical variables.

Magnetic Braids

Anthony Yeates

Introduction

lagnetic helicity

lopological flux function

Hamiltonian viewpoint

²Cary & Littlejohn (1983, Ann. Phys.).

Another physical interpretation

• The magnetic field lines $f_1(r_0, \phi_0)$ are given by extremising the action²

$$\mathscr{A}(\mathbf{r}_0,\phi_0) = \int_{z=0}^{z=1} \mathbf{A} \cdot \mathbf{d} \mathbf{l}.$$

- Euler-Lagrange equations $\implies (\nabla \times A) \times \frac{df_1}{dl} = 0$
- This is a Hamiltonian system (z ↔ time), but (r, φ) are non-canonical variables.
- Fixing the gauge $A_r = 0$ puts \mathscr{A} in the canonical form

$$\mathscr{A} = \int_0^1 \left(p dq - H(p, q, t) dt \right)$$

with canonical variables

$$\mathsf{t} \leftrightarrow \mathsf{z}, \quad \mathsf{p} \leftrightarrow \mathsf{r} \mathsf{A}_\phi, \quad \mathsf{q} \leftrightarrow \phi, \quad \mathsf{H} \leftrightarrow -\mathsf{A}_\mathsf{z}.$$

► f_z preserves phase-space area (magnetic flux).

Magnetic Braids

Anthony Yeates

Introduction

lagnetic helicity

Copological flux function

Hamiltonian viewpoint

²Cary & Littlejohn (1983, Ann. Phys.).

• Tautological/Liouville/canonical 1-form $\alpha = p dq$. $\Rightarrow \alpha = (r^2/2) d\phi$.

Magnetic Braids

Anthony Yeates

Introduction

Magnetic helicity

Copological flux function

Hamiltonian viewpoint

• Tautological/Liouville/canonical 1-form $\alpha = p dq$. $\implies \alpha = (r^2/2) d\phi$.

Lemma (see Haro, 2000, Nonlinearity)

Consider a magnetic braid with $\mathcal{A}(\mathbf{r},\phi)$ in the gauge $A_{\mathbf{r}}=0$, $A|_{\partial V}=(\mathbf{r}/2)\mathbf{e}_{\phi}$. Then

$$\mathbf{d}\mathscr{A} = \mathbf{f}_1^* \alpha - \alpha.$$

Magnetic Braids

Anthony Yeates

Introduction

Magnetic helicity

lopological flux function

Hamiltonian viewpoint

• Tautological/Liouville/canonical 1-form $\alpha = p dq$. $\implies \alpha = (r^2/2) d\phi$.

Lemma (see Haro, 2000, Nonlinearity)

Consider a magnetic braid with $\mathcal{A}(\mathbf{r},\phi)$ in the gauge $A_{\mathbf{r}}=0$, $A|_{\partial V}=(\mathbf{r}/2)e_{\phi}$. Then

$$\mathbf{d}\mathscr{A} = \mathbf{f}_1^* \alpha - \alpha.$$

This says that

$$\frac{\partial \mathscr{A}}{\partial r_0} = \left(\frac{(f_1^r)^2}{2}\right) \frac{\partial f_1^{\phi}}{\partial r_0}, \qquad \frac{\partial \mathscr{A}}{\partial \phi_0} = \left(\frac{(f_1^r)^2}{2}\right) \frac{\partial f_1^{\phi}}{\partial \phi_0} - \frac{r_0^2}{2}.$$

Magnetic Braids

Anthony Yeates

Introduction

Magnetic helicity

Copological flux function

Hamiltonian viewpoint

• Tautological/Liouville/canonical 1-form $\alpha = p dq$. $\implies \alpha = (r^2/2) d\phi$.

Lemma (see Haro, 2000, Nonlinearity)

Consider a magnetic braid with $\mathcal{A}(\mathbf{r},\phi)$ in the gauge $A_{\mathbf{r}}=0$, $A|_{\partial V}=(\mathbf{r}/2)\mathbf{e}_{\phi}$. Then

$$\mathbf{d}\mathscr{A} = \mathbf{f}_1^* \alpha - \alpha.$$

This says that

$$\frac{\partial \mathscr{A}}{\partial r_0} = \left(\frac{(f_1^r)^2}{2}\right) \frac{\partial f_1^{\phi}}{\partial r_0}, \qquad \frac{\partial \mathscr{A}}{\partial \phi_0} = \left(\frac{(f_1^r)^2}{2}\right) \frac{\partial f_1^{\phi}}{\partial \phi_0} - \frac{r_0^2}{2}.$$

Theorem

Take two magnetic braids on the cylinder, with \mathscr{A} , $\tilde{\mathscr{A}}$ both in the above gauge. Then

$$\mathcal{A} = \tilde{\mathcal{A}} \iff f_1 = \tilde{f}_1.$$

Magnetic Braids

Anthony Yeates

Introduction

Magnetic helicity

Fopological flux function

Hamiltonian viewpoint

Summary

- A magnetic braid is a magnetic field connecting two planes.
- We have introduced a scalar function A (on a cross-section) that uniquely quantifies the topology under our boundary conditions.
 - More generally, it gives the topology up to a mapping g with $g^* \alpha = \alpha$.
- ► The flux-weighted integral of *A* yields the magnetic helicity.

Magnetic Braids

Anthony Yeates

Introduction

Magnetic helicity Topological flux function Hamiltonian viewpoint Summary

Summary

- A magnetic braid is a magnetic field connecting two planes.
- We have introduced a scalar function A (on a cross-section) that uniquely quantifies the topology under our boundary conditions.
 - More generally, it gives the topology up to a mapping g with $g^* \alpha = \alpha$.
- ► The flux-weighted integral of *A* yields the magnetic helicity.

Future work

- ▶ Using *A* to measure reconnection (Yeates & Hornig, 2011).
- ▶ What properties of *A* are robust under reconnection?
- More general magnetic fields with $B_z \ge 0$?

References

 Yeates & Hornig, "A generalised flux function for 3-d magnetic reconnection", Phys. Plasmas (in press).

Magnetic Braids

Anthony Yeates

Introduction

Magnetic helicity Topological flux function Hamiltonian viewpoint Summary

Measuring reconnection with fixed points

 Yeates & Hornig, "A generalised flux function for 3-d magnetic reconnection", Phys. Plasmas (in press). Anthony Yeates

Anthony Yeates

Proof that $\mathscr{A} = \text{mean flux}$

Geometrical argument

Consider the quadrilateral in the z = 0 plane with vertices O, (r_0, ϕ_0), (R, ϕ_R), and (r_1, ϕ_1) $\equiv f_1(r_0, \phi_0)$. Since $B_z = 1$ and $A_r = 0$, equating flux through this quadrilateral to its area gives

$$\int_{L_0} \mathbf{A} \cdot \mathbf{dl} + \int_{L_1} \mathbf{A} \cdot \mathbf{dl} = \frac{\mathbf{R}}{2} \Big[\mathbf{r}_1 \sin(\phi_1 - \phi) + \mathbf{r}_0 \sin(\phi_0 - \phi) \Big],$$

which vanishes upon averaging ϕ_R from 0 to 2π .

Outline of proof

• Notation:
$$f \equiv f_1$$
, $\tilde{f} \equiv \tilde{f}_1$.

Theorem

$$\mathcal{A} = \tilde{\mathcal{A}} \iff f = \tilde{f}.$$

Magnetic Braids

Anthony Yeates

Outline of proof

• Notation:
$$f \equiv f_1$$
, $\tilde{f} \equiv \tilde{f}_1$.

Theorem

$$\mathcal{A} = \tilde{\mathcal{A}} \iff f = \tilde{f}.$$

1. Assume
$$f = \tilde{f}$$
, then Lemma $\implies d\tilde{\mathcal{A}} = d\mathcal{A}$.

Magnetic Braids

Anthony Yeates

Anthony Yeates

Outline of proof

• Notation:
$$f \equiv f_1$$
, $\tilde{f} \equiv \tilde{f}_1$.

Theorem

$$\mathcal{A} = \tilde{\mathcal{A}} \iff f = \tilde{f}.$$

1. Assume $f = \tilde{f}$, then Lemma $\implies d\tilde{\mathcal{A}} = d\mathcal{A}$. Boundary conditions $\implies \tilde{\mathcal{A}}(\mathbf{R}, \phi_0) = \mathcal{A}(\mathbf{R}, \phi_0) = 0$, so $\tilde{\mathcal{A}} = \mathcal{A}$.

Anthony Yeates

Outline of proof

• Notation:
$$f \equiv f_1$$
, $\tilde{f} \equiv \tilde{f}_1$.

Theorem

$$\mathcal{A} = \tilde{\mathcal{A}} \iff f = \tilde{f}.$$

- 1. Assume $f = \tilde{f}$, then Lemma $\implies d\tilde{\mathcal{A}} = d\mathcal{A}$. Boundary conditions $\implies \tilde{\mathcal{A}}(\mathbf{R}, \phi_0) = \mathcal{A}(\mathbf{R}, \phi_0) = 0$, so $\tilde{\mathcal{A}} = \mathcal{A}$.
- 2. Assume $\tilde{\mathscr{A}} = \mathscr{A}$ and define $g = \tilde{f} \circ f^{-1}$.

Anthony Yeates

Outline of proof

• Notation: $f \equiv f_1$, $\tilde{f} \equiv \tilde{f}_1$.

Theorem

$$\mathcal{A} = \tilde{\mathcal{A}} \iff f = \tilde{f}.$$

- 1. Assume $f = \tilde{f}$, then Lemma $\implies d\tilde{\mathcal{A}} = d\mathcal{A}$. Boundary conditions $\implies \tilde{\mathcal{A}}(\mathbf{R}, \phi_0) = \mathcal{A}(\mathbf{R}, \phi_0) = 0$, so $\tilde{\mathcal{A}} = \mathcal{A}$.
- 2. Assume $\tilde{\mathcal{A}} = \mathcal{A}$ and define $g = \tilde{f} \circ f^{-1}$. Lemma $\implies g^* \alpha = \alpha$.

Anthony Yeates

Outline of proof

• Notation:
$$f \equiv f_1$$
, $\tilde{f} \equiv \tilde{f}_1$.

Theorem

$$\mathcal{A} = \tilde{\mathcal{A}} \iff f = \tilde{f}.$$

- 1. Assume $f = \tilde{f}$, then Lemma $\implies d\tilde{\mathcal{A}} = d\mathcal{A}$. Boundary conditions $\implies \tilde{\mathcal{A}}(\mathbf{R}, \phi_0) = \mathcal{A}(\mathbf{R}, \phi_0) = 0$, so $\tilde{\mathcal{A}} = \mathcal{A}$.
- 2. Assume $\tilde{\mathcal{A}} = \mathcal{A}$ and define $g = \tilde{f} \circ f^{-1}$. Lemma $\implies g^* \alpha = \alpha$.

$$\implies \frac{(\mathbf{g}^{\mathrm{r}})^2}{2} \left(\frac{\partial \mathbf{g}^{\phi}}{\partial \mathbf{r}} \mathrm{d}\mathbf{r} + \frac{\partial \mathbf{g}^{\phi}}{\partial \phi} \mathrm{d}\phi \right) = \frac{\mathbf{r}^2}{2} \mathrm{d}\phi$$

Anthony Yeates

Outline of proof

• Notation:
$$f \equiv f_1$$
, $\tilde{f} \equiv \tilde{f}_1$.

Theorem

$$\mathcal{A} = \tilde{\mathcal{A}} \iff f = \tilde{f}.$$

- 1. Assume $f = \tilde{f}$, then Lemma $\implies d\tilde{\mathcal{A}} = d\mathcal{A}$. Boundary conditions $\implies \tilde{\mathcal{A}}(\mathbf{R}, \phi_0) = \mathcal{A}(\mathbf{R}, \phi_0) = 0$, so $\tilde{\mathcal{A}} = \mathcal{A}$.
- 2. Assume $\tilde{\mathcal{A}} = \mathcal{A}$ and define $g = \tilde{f} \circ f^{-1}$. Lemma $\implies g^* \alpha = \alpha$.

$$\implies \frac{(\mathbf{g}^{\mathbf{r}})^2}{2} \left(\frac{\partial \mathbf{g}^{\phi}}{\partial \mathbf{r}} d\mathbf{r} + \frac{\partial \mathbf{g}^{\phi}}{\partial \phi} d\phi \right) = \frac{\mathbf{r}^2}{2} d\phi.$$

The r and ϕ components respectively give

$$\mathbf{g}^{\phi} = \mathbf{G}(\phi), \qquad \mathbf{g}^{\mathrm{r}} = \mathbf{r} \left(\frac{\mathrm{d}\mathbf{G}}{\mathrm{d}\phi}\right)^{-1/2}$$

▶ back

Anthony Yeates

Outline of proof

• Notation:
$$f \equiv f_1$$
, $\tilde{f} \equiv \tilde{f}_1$.

Theorem

$$\mathcal{A} = \tilde{\mathcal{A}} \iff f = \tilde{f}.$$

- 1. Assume $f = \tilde{f}$, then Lemma $\implies d\tilde{\mathcal{A}} = d\mathcal{A}$. Boundary conditions $\implies \tilde{\mathcal{A}}(\mathbf{R}, \phi_0) = \mathcal{A}(\mathbf{R}, \phi_0) = 0$, so $\tilde{\mathcal{A}} = \mathcal{A}$.
- 2. Assume $\tilde{\mathcal{A}} = \mathcal{A}$ and define $g = \tilde{f} \circ f^{-1}$. Lemma $\implies g^* \alpha = \alpha$.

$$\implies \frac{(\mathbf{g}^{\mathrm{r}})^2}{2} \left(\frac{\partial \mathbf{g}^{\phi}}{\partial \mathbf{r}} \mathrm{d}\mathbf{r} + \frac{\partial \mathbf{g}^{\phi}}{\partial \phi} \mathrm{d}\phi \right) = \frac{\mathbf{r}^2}{2} \mathrm{d}\phi.$$

The r and ϕ components respectively give

$$\mathbf{g}^{\phi} = \mathbf{G}(\phi), \qquad \mathbf{g}^{\mathrm{r}} = \mathbf{r} \left(\frac{\mathrm{d}\mathbf{G}}{\mathrm{d}\phi}\right)^{-1/2}$$

Boundary conditions on $r = R \implies g = id$.

back