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What is a magnetic braid?

Ï A magnetic braid is a magnetic field

B(x,y,z) in the space 0 < z < 1 that

satisfies Bz > 0.

∇·B= 0.

z=1

z=0

B
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Examples

1. Magnetic loops in the solar corona.

NASA Solar Dynamics Observatory (23 Feb 11).
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2. Thermonuclear confinement devices.

ITER (Internat’l Thermonuclear Experimental Reactor). Inside the KSTAR tokamak.

Ï Correspond to periodic magnetic braids.
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Topological equivalence

Ï Two magnetic braids are topologically equivalent if they are

related by an ideal deformation v vanishing on z = 0 and z = 1:

∂B

∂t
−∇× (

v×B
)= 0.

Theorem (Alfvén, 1942)

In an ideal evolution the magnetic flux through

any co-moving surface is conserved.

=⇒ conservation of field lines
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Hannes Alfvén receiving the Nobel Prize in Physics, 1970.
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Physical importance
Ï Many plasmas are very highly-conducting.

Ï Changes in topology (magnetic reconnection) occur only in

small regions of high ∇B.

having a wide distribution of sizes. In three dimensions these
would correspond to flux tubes. For the large islands, the
sign of a in a closed field line region gives the sense of
rotation of the magnetic vortex. These coherent structures
interact nonlinearly, merge, stretch, connect, attract, and re-
pulse each other. In fact the dynamics of the magnetic field
in 2D MHD turbulence can be thought of as consisting
largely of the interactions among these islands. Reconnection
is a major element of this interaction.

III. STATISTICS OF THE RECONNECTION RATES

A. Topology of the magnetic field

To understand reconnection in 2D turbulence, we need to
examine the topography of a!x ,y" in detail. In particular we
need to identify the neutral points. To this end we examine
the Hessian matrix with the second-order partial derivatives
of the potential a,48 defined as

Hi,j
a !x" =

!2a

!xi ! xj
. !3"

At each neutral point, !a=0, we compute the eigenvalues of
Hi,j

a . The magnetic potential is a smooth and differentiable
function and it contains key information about the magnetic
field topology. If the gradient of a !or equivalently, b" is zero
at some point x, then a has a critical point !or stationary
point" at x. The determinant of the Hessian at x is then called
the discriminant. If this determinant is zero then x is called a
degenerate critical point of a, which is also called a non-
Morse critical point of a. Otherwise if it is nondegenerate,
this is called a Morse critical point of a. Non-Morse critical
points are very rare in nature.49

The following procedure can be applied to classify be-
havior at a nondegenerate critical point x. If the Hessian is
positive definite at x, then a attains a local minimum at x. If
the Hessian is negative definite at x, then a attains a local
maximum at x. If the Hessian has both positive and negative
eigenvalues then x is a saddle point !or X-point".

Because of the complex topology of turbulence, critical
points can be very close to each other. Moreover, based on a
spectral representation, they are usually not located on the
vertices of a chosen computational grid, so we use a second
order interpolation algorithm. The problem is that a nonzero
amount of energy at smallest scales is present !this can be
seen from Fig. 2". This affects the precision of the interpola-
tion technique, producing false critical points. To avoid this
inconvenience we make use of a Fourier zero-padding and
interpolation technique. This consists of computing the Fou-
rier transform of a!x", and, once we obtain the Fourier coef-
ficients â!k", we copy this to an array four times bigger. The
new expanded array has identical amplitudes at wave vectors
present in the lower resolution representation. However it is
extended by adding zeros for kj ! !Nj /2", where N /2 the
maximum k-vector of the original array !Nyquist frequency".
Following this zero padding we inverse Fourier transform to
obtain a!x ,y" on a higher resolution spatial grid. In this way
we can generate a function that has 4Nx"4Ny points from
the original Nx"Ny. It coincides with the original function
on the original grid points. Between these, on the new finer
grid, it represents a trigonometric interpolation of the func-
tion. This process can require substantial computer memory,
but gives results with the following desirable properties: !1"
a function on a higher resolution grid with an exact Fourier
expansion can be extrapolated, !2" cases in which critical
points are in the same Cartesian cell are avoided, and !3" the
interpolation becomes much more accurate, even if the order
of the interpolation is the same !this is because the field is
much smoother at the new grid size".

FIG. 3. !Color online" The blue-red scale color contour represents the cur-
rent density j in a region of the simulation box. In between magnetic islands
strong peaks in the current density are present. Only about #1 /9 of the
simulation box is shown.

FIG. 4. !Color online" Contour plot of the magnetic potential a with the
position of all the critical points: O-points !blue stars for the maxima and red
open diamonds for the minima" and X-points !black "".

032315-4 Servidio et al. Phys. Plasmas 17, 032315 "2010#

Downloaded 17 May 2010 to 134.36.32.128. Redistribution subject to AIP license or copyright; see http://pop.aip.org/pop/copyright.jsp

Current sheets (j=∇×B) from Servidio et al. (2010 Phys. Plasmas.).
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Our problem

1. How do we tell if two magnetic braids are topologically

equivalent?

(necessary and sufficient conditions)

2. How do we quantify differences in their topology?
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Assumptions

Ï To simplify the discussion, we

consider a cylinder 0 < r < R,

0 < z < 1 with simple boundary

conditions:

Ï We parametrise the field lines by z so that

dfz(r0,φ0)

dz
= B

(
fz(r0,φ0)

)
Bz

(
fz(r0,φ0)

) , f0(r0,φ0) = (r0,φ0).

Ï So f1 is the field line mapping from z = 0 to z = 1.

Ï With our assumptions, f1 is a necessary and sufficient

condition for topological equivalence. Can we do better?
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Magnetic helicity

The magnetic helicity is

H =
∫

V
A ·Bd3x, where B=∇×A.

Ï Measures the linking of magnetic flux:

e.g. two closed thin untwisted tubes,

H =Φ1

∮
C1

A·dl+Φ2

∮
C2

A·dl=±2nΦ1Φ2

where n is the linking number.

Ï In an ideal evolution:

dH

dt
=

∮
∂V

(
Bn

(
A ·v+Φ)−vn

(
A ·B))

da

Ï If Bn|∂V = vn|∂V = 0, then H would be an ideal invariant

=⇒ necessary condition for same topology
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Magnetic helicity

Ï If Bn|∂V 6= 0, then H is not invariant.

Ï Can setΦ= 0 by choosing an appropriate gauge:

A→A+∇χ =⇒ H → H +
∮
∂V
χBn da.

Ï For our cylinder, choose

A|∂V = r

2
eφ.

Ï Physically, H then corresponds to the relative helicity of Berger &

Field (1984, J. Fluid. Mech.) with reference field ez.

In the gauge A|∂V = r
2
eφ, then H is a necessary condition for

topological equivalence.
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Relaxation of a coronal loop

Ï Resistive-MHD simulation:
initially “braided” magnetic
field.

Ï Wilmot-Smith, Hornig & Pontin

(2010, Astron. Astrophys.);
Ï Pontin, Wilmot-Smith, Hornig

& Galsgaard

(2011, Astron. Astrophys.).

Ï H = 0 throughout despite

changing topology.
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An ideal invariant function?
Alfvén =⇒ a function measuring fluxes through comoving loops

will be an ideal invariant.

The topological flux function A :R2 →R is defined as

A (r0,φ0) =
∫ z=1

z=0
A ·dl,

where B=∇×A and the integral is along a magnetic field line.

Ï Poloidal flux

Φ(φR) =
∮

A · dl

=A (r0,φ0)+
∫

L0

A · dl+
∫

L1

A · dl

−
∫ 1

0
Az(R,φR)dz

Ï A (r0,φ0) is the meanΦ(φR) over all angles φR.
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Ideal invariance

Ï A (r0,φ0) is an ideal invariant for all (r0,φ0):

dA

dt
= d

dt

∫ 1

0
A · dl

=
∫ 1

0

(
∂A

∂t
−v×∇×A+∇(v ·A)

)
· dl

=
∫ 1

0
∇(
Φ+v ·A) · dl

= (
Φ+v ·A)∣∣∣f1(r0,φ0)

(r0,φ0)

= 0

Ï Uses gauge restriction.
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Relation to helicity

Ï Change variables to (r0,φ0,z) defined by (r,φ,z) = fz(r0,φ0)

with Jacobian

det(J) = r0Bz(r0,φ0,0)

rBz(r,φ,z)
.

Ï Then

H =
∫

V
A ·Br drdφdz.

=
∫ 1

0

∫
z=0

A
(
fz(r0,φ0)

) ·B(
fz(r0,φ0)

) Bz(r0,φ0,0)

Bz

(
fz(r0,φ0)

) r0dr0dφ0dz

=
∫

z=0
Bz(r0,φ0,0)A (r0,φ0)r0dr0 dφ0.

Ï So A is a field line helicity1.

1Berger (1988, Astron. Astrophys.).
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Example

Ï A reveals that topology

differs from the identity.

Ï Positive and negative

regions cancel so H = 0.

Ï Ideal evolution near

boundary =⇒ persistence

of 2 interior critical points.

16 / 19



Magnetic Braids

Anthony Yeates

Introduction

Magnetic helicity

Topological flux function

Hamiltonian viewpoint

Summary

Example

Ï A reveals that topology

differs from the identity.

Ï Positive and negative

regions cancel so H = 0.

Ï Ideal evolution near

boundary =⇒ persistence

of 2 interior critical points.

16 / 19



Magnetic Braids

Anthony Yeates

Introduction

Magnetic helicity

Topological flux function

Hamiltonian viewpoint

Summary

Example

Ï A reveals that topology

differs from the identity.

Ï Positive and negative

regions cancel so H = 0.

Ï Ideal evolution near

boundary =⇒ persistence

of 2 interior critical points.

16 / 19



Magnetic Braids

Anthony Yeates

Introduction

Magnetic helicity

Topological flux function

Hamiltonian viewpoint

Summary

Example

Ï A reveals that topology

differs from the identity.

Ï Positive and negative

regions cancel so H = 0.

Ï Ideal evolution near

boundary =⇒ persistence

of 2 interior critical points.

16 / 19



Magnetic Braids

Anthony Yeates

Introduction

Magnetic helicity

Topological flux function

Hamiltonian viewpoint

Summary

Example

Ï A reveals that topology

differs from the identity.

Ï Positive and negative

regions cancel so H = 0.

Ï Ideal evolution near

boundary =⇒ persistence

of 2 interior critical points.

16 / 19



Magnetic Braids

Anthony Yeates

Introduction

Magnetic helicity

Topological flux function

Hamiltonian viewpoint

Summary

Example

Ï A reveals that topology

differs from the identity.

Ï Positive and negative

regions cancel so H = 0.

Ï Ideal evolution near

boundary =⇒ persistence

of 2 interior critical points.

16 / 19



Magnetic Braids

Anthony Yeates

Introduction

Magnetic helicity

Topological flux function

Hamiltonian viewpoint

Summary

Example

Ï A reveals that topology

differs from the identity.

Ï Positive and negative

regions cancel so H = 0.

Ï Ideal evolution near

boundary =⇒ persistence

of 2 interior critical points.

16 / 19



Magnetic Braids

Anthony Yeates

Introduction

Magnetic helicity

Topological flux function

Hamiltonian viewpoint

Summary

Example

Ï A reveals that topology

differs from the identity.

Ï Positive and negative

regions cancel so H = 0.

Ï Ideal evolution near

boundary =⇒ persistence

of 2 interior critical points.

16 / 19



Magnetic Braids

Anthony Yeates

Introduction

Magnetic helicity

Topological flux function

Hamiltonian viewpoint

Summary

Example

Ï A reveals that topology

differs from the identity.

Ï Positive and negative

regions cancel so H = 0.

Ï Ideal evolution near

boundary =⇒ persistence

of 2 interior critical points.

16 / 19



Magnetic Braids

Anthony Yeates

Introduction

Magnetic helicity

Topological flux function

Hamiltonian viewpoint

Summary

Example

Ï A reveals that topology

differs from the identity.

Ï Positive and negative

regions cancel so H = 0.

Ï Ideal evolution near

boundary =⇒ persistence

of 2 interior critical points.

16 / 19



Magnetic Braids

Anthony Yeates

Introduction

Magnetic helicity

Topological flux function

Hamiltonian viewpoint

Summary

Another physical interpretation

Ï The magnetic field lines fl(r0,φ0) are given by extremising the

action2

A (r0,φ0) =
∫ z=1

z=0
A ·dl.

Ï Euler-Lagrange equations =⇒ (∇×A)× dfl
dl

= 0

Ï This is a Hamiltonian system (z ↔ time), but (r,φ) are

non-canonical variables.

Ï Fixing the gauge Ar = 0 puts A in the canonical form

A =
∫ 1

0

(
pdq−H(p,q, t)dt

)
with canonical variables

t ↔ z, p ↔ rAφ, q ↔φ, H ↔−Az.

Ï fz preserves phase-space area (magnetic flux).

2Cary & Littlejohn (1983, Ann. Phys.).
17 / 19
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Exploiting this analogy
Ï Tautological/Liouville/canonical 1-form α= pdq.

=⇒ α= (r2/2)dφ.

Lemma (see Haro, 2000, Nonlinearity)

Consider a magnetic braid with A (r,φ) in the gauge Ar = 0,

A|∂V = (r/2)eφ. Then

dA = f∗1α−α.

Ï This says that

∂A

∂r0
=

(
(f r

1 )2

2

)
∂f

φ
1

∂r0
,

∂A

∂φ0
=

(
(f r

1 )2

2

)
∂f

φ
1

∂φ0
− r2

0

2
.

Theorem

Take two magnetic braids on the cylinder, with A , Ã both in the

above gauge. Then

A = Ã ⇐⇒ f1 = f̃1.

Proof
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Summary

Ï A magnetic braid is a magnetic field connecting two planes.

Ï We have introduced a scalar function A (on a cross-section)
that uniquely quantifies the topology under our boundary
conditions.

Ï More generally, it gives the topology up to a mapping g with

g∗α=α.

Ï The flux-weighted integral of A yields the magnetic helicity.

Future work

Ï Using A to measure reconnection (Yeates & Hornig, 2011).

Ï What properties of A are robust under reconnection?

Ï More general magnetic fields with Bz ≯ 0?

References

Ï Yeates & Hornig, “A generalised flux function for 3-d magnetic reconnection”,

Phys. Plasmas (in press).
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Anthony YeatesMeasuring reconnection with fixed points

Ï Yeates & Hornig, “A generalised flux function for 3-d magnetic reconnection”,

Phys. Plasmas (in press).
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Magnetic Braids

Anthony YeatesProof that A = mean flux
Geometrical argument

Consider the quadrilateral in the z = 0 plane with vertices O,

(r0,φ0), (R,φR), and (r1,φ1) ≡ f1(r0,φ0).

Since Bz = 1 and Ar = 0, equating flux through this quadrilateral to

its area gives∫
L0

A · dl+
∫

L1

A · dl= R

2

[
r1 sin(φ1 −φ)+ r0 sin(φ0 −φ)

]
,

which vanishes upon averaging φR from 0 to 2π.

back

2 / 3



Magnetic Braids

Anthony YeatesOutline of proof
Ï Notation: f ≡ f1, f̃ ≡ f̃1.

Theorem

A = Ã ⇐⇒ f = f̃ .

1. Assume f = f̃ , then Lemma =⇒ dÃ = dA .

Boundary conditions =⇒ Ã (R,φ0) =A (R,φ0) = 0, so Ã =A .

2. Assume Ã =A and define g = f̃ ◦ f −1.

Lemma =⇒ g∗α=α.

=⇒ (gr)2

2

(
∂gφ

∂r
dr+ ∂gφ

∂φ
dφ

)
= r2

2
dφ.

The r and φ components respectively give

gφ = G(φ), gr = r

(
dG

dφ

)−1/2

.

Boundary conditions on r = R =⇒ g = id.

back
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