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Magnetic Braids

What is a magnetic braid?

Introduction

» A magnetic braid is a magnetic field
B(x,y,z) in the space 0 <z < 1 that
satisfies B, > 0.

V-B=0.
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1. Magnetic loops in the solar corona. Introduction

NASA Solar Dynamics Observatory (23 Feb 11).
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2. Thermonuclear confinement devices.

Introduction
C—ﬁ Plasma

' Helical Magnetic field
Gyrating Plasma Particle

ITER (Internat’l Thermonuclear Experimental Reactor). Inside the KSTAR tokamak.

» Correspond to periodic magnetic braids.
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Magnetic Braids

Topological equivalence

Introduction

» Two magnetic braids are topologically equivalent if they are
related by an ideal deformation v vanishingonz=0andz =1:

0B - _
E -V x (V X B) =0. B(t O) e B(t_T)
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Topological equivalence

Magnetic Braids
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Introduction
» Two magnetic braids are topologically equivalent if they are
related by an ideal deformation v vanishingonz=0andz =1:

E—VX(VXB):O. B(=0)

Theorem (Alfvén, 1942)

In an ideal evolution the magnetic flux through
any co-moving surface is conserved.

= conservation of field lines
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==

Hannes Alfvén receiving the Nobel Prize in Physics, 1970.

Magnetic Braids

Anthony Yeates

Introduction



Physical importance

» Many plasmas are very highly-conducting.

Magnetic Braids

Anthony Yeates

Introduction

» Changes in topology (magnetic reconnection) occur only in

small regions of high VB.

7

X

\\

7

Current sheets (j = V x B) from Servidio et al

. (2010 Phys. Plasmas.).
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O U r p rO b I e m Anthony Yeates

Introduction

1. How do we tell if two magnetic braids are topologically
equivalent?
(necessary and sufficient conditions)

2. How do we quantify differences in their topology?
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AT

» To simplify the discussion, we Blov =e.
consider acylinder0O<r <R, v]gy =0
0 <z < 1 with simple boundary
conditions: A
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Assumptions

» To simplify the discussion, we
consideracylinder0<r <R,
0 <z < 1 with simple boundary
conditions:

AT

» We parametrise the field lines by z so that

df(ro,¢o) _ B(f:(ro, o))

dz B,(f(ro,0))’
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Blov = e

vigy =0

fo(ro, o) = (ro, $o)-
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Assumptions
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AT

. . . . Blou — .
» To simplify the discussion, we lov = e-

consideracylinder0<r <R,
0 <z < 1 with simple boundary
conditions:

vigy =0

» We parametrise the field lines by z so that

dfz(ro, o) _ B(f2(ro. ¢0))
dz B.(f2(r0. o))’

fo(ro, o) = (ro, $o)-

» So fy is the field line mapping fromz=0toz = 1.

» With our assumptions, f; is a necessary and sufficient
condition for topological equivalence.
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Assumptions

» To simplify the discussion, we
consideracylinder0<r <R,
0 <z < 1 with simple boundary
conditions:

AT

» We parametrise the field lines by z so that

df(ro,¢o) _ B(f:(ro, o))

dz B,(f(ro,0))’

Magnetic Braids

Anthony Yeates

Introduction

Blov = e

vigy =0

fo(ro, o) = (ro, $o)-

» So fy is the field line mapping fromz=0toz = 1.

» With our assumptions, f; is a necessary and sufficient

condition for topological equivalence. Can we do better?
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Magnetic helicity
The magnetic helicity is

H =f A-Bd’x,
\%

where

B=VxA.
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Magnetic helicity
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The magnetic helicity is Magnetic helicity

H:fA-Bdsx, where B=VxA.
v

» Measures the linking of magnetic flux:

e.g. two closed thin untwisted tubes, Cs
H=01§ Adiorf Adi=i2n010,
C1 Cy

where n is the linking number. (I)l
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The magnetic helicity is Magnetic helicity

H:fA-Bdsx, where B=VxA.
v

» Measures the linking of magnetic flux:

e.g. two closed thin untwisted tubes, Cs
H= cplyf A~dl+®2f Adl=+2n®10; Dy
Cy Cy
where n is the linking number.
9 ‘I)l

> In an ideal evolution:

O;_': =]€N (Bn(A-v+<I>) —vn(A-B))da
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Magnetic hel iCity Anthony Yeates

The magnetic helicity is Magnetic helicity

H:fA-Bdsx, where B=VxA.
v

» Measures the linking of magnetic flux:

e.g. two closed thin untwisted tubes, Cs
H= cplyf A~dl+®2f Adl=+2n®10; Dy
Cy Cy
where n is the linking number.
9 ‘I)l

> In an ideal evolution:

O;_': =]€N (Bn(A-v+<I>) —vn(A-B))da

> If Bnlgy =Vnlgy =0, then H would be an ideal invariant

— necessary condition for same topology
10/19
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> If Bnlgy #0, then H is not invariant. Magnetic helicity
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> If Bnlgy #0, then H is not invariant. Magnetic helicity
» Can set @ = 0 by choosing an appropriate gauge:

A-A+Vy = H—>H+f xBnda.
av
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> If Bnlgy #0, then H is not invariant. Magnetic helicity
» Can set @ = 0 by choosing an appropriate gauge:

A—-A+Vy = H—>H+f xBnda.
av

» For our cylinder, choose

r
Alpy = =€
lov 280

> Physically, H then corresponds to the relative helicity of Berger &
Field (1984, J. Fluid. Mech.) with reference field e;.
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Magnetic Braids

Magnetic hel iCity Anthony Yeates

> If Bnlgy #0, then H is not invariant. Magnetic helicity
» Can set @ = 0 by choosing an appropriate gauge:

A—-A+Vy = H-H +f xBnda.
oV
» For our cylinder, choose
Algy = re
v =58

> Physically, H then corresponds to the relative helicity of Berger &
Field (1984, J. Fluid. Mech.) with reference field e;.

In the gauge Algy = %ed,, then H is a necessary condition for
topological equivalence.
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Magnetic Braids

Relaxation of a coronal loop

Magnetic helicity

» Resistive-MHD simulation:
initially “braided” magnetic
field.

> Wilmot-Smith, Hornig & Pontin
(2010, Astron. Astrophys.);

> Pontin, Wilmot-Smith, Hornig
& Galsgaard
(2011, Astron. Astrophys.).

» H =0 throughout despite
changing topology.
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An ideal invariant function? AU

Alfvén = a function measuring fluxes through comoving loops
will be an ideal invariant.

Topological flux function
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An ideal invariant function?

Alfvén = a function measuring fluxes through comoving loops
will be an ideal invariant.

The topological flux function « : R? — R is defined as

z=1
.szf(l’o,gbo)Zfz_o A-dl,

where B = V x A and the integral is along a magnetic field line.
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An ideal invariant function? AU

Alfvén = a function measuring fluxes through comoving loops
will be an ideal invariant.

Topological flux function

The topological flux function « : R? — R is defined as

z=1
.szf(l’o,gbo)Zfz_o A-dl,

where B = V x A and the integral is along a magnetic field line.

T, s >\ * Poloidalflux

Ogr) = f -
=&¢(r0,¢>o)+fL A-dl+fL A-dl
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An ideal invariant function? AU

Alfvén = a function measuring fluxes through comoving loops
will be an ideal invariant.

Topological flux function

The topological flux function « : R? — R is defined as

z=1
.szf(l’o,gbo)Zfz_o A-dl,

where B = V x A and the integral is along a magnetic field line.

T, s >\ * Poloidalflux

Ogr) = f -
=&¢(r0,¢>o)+fL A-dl+fL A-dl

1
- fo AR, ¢r) dZ

> o (rp, o) is the mean ®(¢pr) over all angles ¢r. Y
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Topological flux function

> o/ (ro, o) is an ideal invariant for all (rg, ¢o):

%_iflA dl
dt  dt 0

L(oA
=f (——VxVxA+V(V‘A) -dl
o \ ot

=f01v(q>+v-A)-d|

f1(ro.¢o)
(ro.0)

=(P+v-A)
=0

» Uses gauge restriction.

14/19



Magnetic Braids

Relation tO heIiCity Anthony Yeates

» Change variables to (ro, ¢o, z) defined by (r, ¢, z) = f,(ro, $o) e ST

with Jacobian
roB2(ro, ¢o,0)

det(J) = B, (1. 6.2)

> Then
H :fA-Brdrd(pdz.
v

Bz(ro, ¢0,0)
Bz (f2(ro. ¢0))

= _/;zo B (ro, ¢o,0) (ro, o) rodrodepo.

1
=ff A(f2(ro, $0)) - B(fz(ro, po)) rodrod¢podz
0 Jz=0

» So < isafield line helicity?.

lBerger (1988, Astron. Astrophys.).
15/19
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Topological flux function

» o reveals that topology
differs from the identity.

» Positive and negative
regions cancel so H =0.

» ldeal evolution near
boundary = persistence
of 2 interior critical points.
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Example

Anthony Yeates

Topological flux function

» of reveals that topology
differs from the identity.

» Positive and negative
regions cancel so H =0.
» ldeal evolution near

boundary = persistence
of 2 interior critical points.
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Topological flux function

» of reveals that topology
differs from the identity.

» Positive and negative
regions cancel so H =0.
» ldeal evolution near

boundary = persistence
of 2 interior critical points.
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Another physical interpretation Anthony ests

» The magnetic field lines f|(ro, ¢po) are given by extremising the
action?

=1
d(rO: (Po) = f A-dl. Hamiltonian viewpoint
z=0

> Euler-Lagrange equations = (V x A) x df' =0

2Cary & Littlejohn (1983, Ann. Phys.).
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Another physical interpretation

Anthony Yeates

» The magnetic field lines f|(ro, ¢po) are given by extremising the
action?

=1
d(rO: (Po) = f A-dl. Hamiltonian viewpoint
z=0

> Euler-Lagrange equations = (V x A) x df' =0

» This is a Hamiltonian system (z < time), but (r,¢) are
non-canonical variables.

» Fixing the gauge A; = 0 puts < in the canonical form

1
o =f (pdq - H(p,q,t)dt)
0
with canonical variables
tez, porAy, q—¢, He-A,.

> f; preserves phase-space area (magnetic flux).

2Cary & Littlejohn (1983, Ann. Phys.).
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Exploiting this analogy
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» Tautological/Liouville/canonical 1-form a = pdq.

= a=(r?/2)de¢.

Hamiltonian viewpoint
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EXpIOiting thiS analogy Anthony Yeates
» Tautological/Liouville/canonical 1-form a = pdq.

= a=(r?/2)de¢.
Lemma (see Haro, 2000, Nonlinearity) Hamiltonian viewpoint

Consider a magnetic braid with </(r, ¢) in the gauge A; =0,
Algy = (r/2)ey. Then
def =fia—a.

» This says that
od_(WF) o aw_(@P\or i
6[’0 - 2 aro ' 6(/)0 - 2

opo 2

Theorem

Take two magnetic braids on the cylinder, with <7, < both in the
above gauge. Then

.QfZ,Qi — f1=’f1.
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» A magnetic braid is a magnetic field connecting two planes.

» We have introduced a scalar function < (on a cross-section)

that uniquely quantifies the topology under our boundary
conditions.

Summary

> More generally, it gives the topology up to a mapping g with
g*a=a.

» The flux-weighted integral of </ yields the magnetic helicity.
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Summary

Anthony Yeates

» A magnetic braid is a magnetic field connecting two planes.

» We have introduced a scalar function < (on a cross-section)

that uniquely quantifies the topology under our boundary
conditions.

Summary
> More generally, it gives the topology up to a mapping g with
g*a=a.

» The flux-weighted integral of </ yields the magnetic helicity.

Future work

» Using «f to measure reconnection (Yeates & Hornig, 2011).
» What properties of «f are robust under reconnection?
» More general magnetic fields with B, * 0?

References

> Yeates & Hornig, “A generalised flux function for 3-d magnetic reconnection”,
Phys. Plasmas (in press).
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Measuring reconnection with fixed points Anthony ests

> Yeates & Hornig, “A generalised flux function for 3-d magnetic reconnection”,
Phys. Plasmas (in press).
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PrOOf that =Q¢ = mean ﬂUX Anthony Yeates
Geometrical argument
Consider the quadrilateral in the z = 0 plane with vertices O,

(ro, o). (R, ¢r), and (r1, 1) = f1(ro, o).
Since B, =1 and A, = 0, equating flux through this quadrilateral to

its area gives
R . .
fA-dI+f A-dI:—[rlsln(¢1—¢)+fosm(¢0—¢)v
Lo L1 2

which vanishes upon averaging ¢r from 0 to 2.

’ ¢1)

. K2
[ L,
: L}‘,///‘
¥ 40
i & 7o
: PR Ho /

®o
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» Notation: f =f,, f =f;.

Theorem
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