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Magnetic reconnection: the change of connectivity of magnetic field
lines in a non-ideal plasma. **Can occur anywhere in 3D**
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Magnetic field partitions

3D magnetic skeleton

Parnell, Haynes & Galsgaard,
2010

Boundary connectivity
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One choice for an isolating loop is a curve encircling the
chord domain Di j from the circuit C" . The loop-vector
would have a single nonzero element corresponding to the
chord domain. The nonzero element would be either "1 or
#1 depending on the sign of the corresponding element in
C" as required by #15$. If we remove a particular sequence
of chords to reduce the graph to a tree, then a given chord
will appear in no subsequent circuits. This fact demonstrates
that the loop-vectors so constructed will be linearly indepen-
dent of one another.

Figure 4 shows an example of an isolating loop Q1 link-
ing circuit C1 exactly once. The loop encircles only the do-
main D34 and will correspond to the vector

Q1!
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There are other choices for a given Q" and we will not
require that each enclose a single domain; we will require
that the loop-vectors be linearly independent.

Adding all loop fluxes to the column vector ", and all
loop-vectors Q" as additional rows in A, leads to an ex-
panded flux relation
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The loop-vectors are linearly independent and compliment
the null space of A, so the relation above is of full rank and
may be inverted. The domain fluxes are completely deter-
mined by the source fluxes along with the Nc loop fluxes.
Our example is represented by the 7$8 system
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where the horizontal bars separate the additional loops and
additional isolating-fluxes.

In addition to the boundary conditions it is necessary to
constrain Nc fluxes !1 ,!2 ,. . . ,!Nc

in order to fix all ND
domain fluxes. From all fields satisfying these Nc con-
straints, there will be one whose magnetic energy is the mini-
mum; this is the stable equilibrium. For a set of boundary
conditions f (x ,y) and connections G there will be an
Nc-dimensional space of such minimum-energy equilibria.

III. THE MINIMUM-ENERGY FIELD

The magnetic field whose energy is a minimum, subject
boundary condition #1$, may be found using the calculus of
variations. To assure a solenoidal solution we vary the vector
potential A(x) subject to boundary conditions on its tangen-
tial components. Equation #2$ gives the magnetic energy
functional for a volume V, the half-space z%0. The variation
is performed by adding a small perturbation to the vector
potential, A→A")A, and expanding the integral to first or-
der
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The surface integral on the right-hand side is always zero,
since n̂$)A!0 at each point on +V. In order that )W!0
under arbitrary variation, )A, we must have *$B!0 every-
where inside V. Thus follows the well-known result that a
potential field, also called a vacuum field, is the state of
minimum magnetic energy.

It is also possible to perform the variational calculation
subject to constraints on a set of domain fluxes ' i j . The
structure of the constraints is summarized by a graph Gc and
quantified by the vector of domain fluxes !c . The vacuum
field, which satisfies the unconstrained problem, will have a
domain graph Gv whose fluxes are a vector !(v). If the con-

FIG. 4. The physical location of circuit C1 #back solid line$ along with an
isolating loop Q1 #white solid line$ which links it exactly once. The loop
shown encircles the chord D34 of the circuit, and no other domains.
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How to partition a flux tube?

Sometimes by boundary connectivity
(toroidal fluxes):

Wilmot-Smith & De Moortel, 2007
What about poloidal (horizontal) fluxes?
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2D reconnection

B(x, y) = ∇× [A(x, y)ez
]

Poloidal flux, e.g.

Φ=
∫

B · da =
∮

A · dl

= A(x1, y1)− A(x2, y2)
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Generalised flux function

A(x, y) =
∫ F1(x,y)

(x,y)
A · dl

Gauge transformation A→ A +∇ψ gives

A(x, y)→ A(x, y) + ψ
∣∣∣F1(x,y)

(x,y)
.
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Example

Flux tube with six twist regions:
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Example
Flux tube with six twist regions:
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(Un)stable manifolds used method of Krauskopf & Osinga (1998).
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Conclusion

• Partition of poloidal fluxes in a non-zero flux tube.
• Measured by generalised flux function A(x, y) at periodic points.
• Well-defined measure of global reconnection.
• Partition could be refined using higher period orbits.

Further details

• Yeates & Hornig, Phys Plasmas 18, 102118 (2011).

http://www.maths.dur.ac.uk/~bmjg46/
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Non-periodic flux tubes
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