Conway's Army

Durham University

Professor Anthony Yeates

Department of Mathematical Sciences

Conway's Army

Aim

Reach target x above the line.

Start

Place as many pegs as you like, anywhere below the line.

Legal moves

Jump left/right or up/down into empty hole, with capture.

Conway's Army

Aim

Reach target x above the line.

Start

Place as many pegs as you like, anywhere below the line.

Legal moves

Jump left/right or up/down
into empty hole, with capture.

Level 1

Level 2

\bullet	\bullet	\bullet	\bullet	\bullet
\bullet	\bullet	x	\bullet	\bullet
\bullet	\bullet	\bullet	\bullet	\bullet
\bullet	\bullet	\bullet	\bullet	\bullet
\bullet	\bullet	\bullet	\bullet	\bullet
\bullet	\bullet	0	\bullet	\bullet
\bullet	\bullet	\bullet	\bullet	\bullet

Level 2

\bullet	\bullet	\bullet	\bullet	\bullet
\bullet	\bullet	x	\bullet	\bullet
\bullet	\bullet	\bullet	\bullet	\bullet
\bullet	\bullet	\bullet	\bullet	\bullet
\bullet	\bullet	\bullet	\bullet	\bullet
\bullet	\bullet	\bullet	\bullet	\bullet
\bullet	\bullet	\bullet	\bullet	\bullet

Level 2

Level 3

Minimum number of pegs required
Level 1
2 pegs
Level 2
4 pegs
Level 3
8 pegs

Level 4
20 pegs!

Level 4

John Horton Conway (1937-2020)

Conway's Game of Life

Conway's Game of Life

Conway's Game of Life

Conway's Game of Life

-

Conway's Game of Life

John Horton Conway (1937-2020)

Claim. It is impossible to reach level 5 (or higher) with a finite number of pegs.

Proof?

1. Create a polynomial to encode the board position.

\bullet	\bullet	\bullet	\bullet	x^{0}	\bullet	\bullet	\bullet	\bullet
x^{5}	x^{4}	x^{3}	x^{2}	x^{1}	x^{2}	x^{3}	x^{4}	x^{5}
x^{6}	x^{5}	x^{4}	x^{3}	x^{2}	x^{3}	x^{4}	x^{5}	x^{6}
x^{7}	x^{6}	x^{5}	x^{4}	x^{3}	x^{4}	x^{5}	x^{6}	x^{7}
\bullet	x^{7}	x^{6}	x^{5}	x^{4}	x^{5}	x^{6}	x^{7}	\bullet
\bullet	\bullet	x^{7}	x^{6}	x^{5}	x^{6}	x^{7}	\bullet	\bullet
\bullet	\bullet	\bullet	x^{7}	x^{6}	x^{7}	\bullet	\bullet	\bullet
\bullet	\bullet	\bullet	\bullet	x^{7}	\bullet	\bullet	\bullet	\bullet
\bullet								
\bullet	\cdot							
\bullet								

Label target hole $1\left(=x^{0}\right)$.

Label all other holes by x^{d}, where d is "taxicab distance" from target.

To encode a position, add the terms for the corresponding pegs.
e.g.

2. Analyse the effect of the possible moves.
a) "Positive jump" - towards target.

$$
p_{\text {new }}(x)-p_{\text {old }}(x)=x^{3}-x^{4}-x^{5}
$$

2. Analyse the effect of the possible moves.
a) "Positive jump" - towards target.

$$
\begin{aligned}
p_{\text {new }}(x)-p_{\text {old }}(x) & =x^{d-2}-x^{d-1}-x^{d} \\
& =x^{d-2}\left(1-x-x^{2}\right)
\end{aligned}
$$

b) "Negative jump" - away from target.

$$
\begin{aligned}
p_{\text {new }}(x)-p_{\text {old }}(x) & =x^{d+2}-x^{d+1}-x^{d} \\
& =x^{d}\left(x^{2}-x-1\right)
\end{aligned}
$$

c) "Neutral jump" - remain same distance from target.

$$
p_{\text {new }}(x)-p_{\text {old }}(x)=-x^{d-1}
$$

Positive jump:

$$
p_{\text {new }}(x)-p_{\text {old }}(x)=x^{d-2}\left(1-x-x^{2}\right)
$$

Negative jump:

$$
p_{\text {new }}(x)-p_{\text {old }}(x)=x^{d}\left(x^{2}-x-1\right)
$$

Neutral jump:

$$
p_{\text {new }}(x)-p_{\text {old }}(x)=-x^{d-1}
$$

3. Choose a helpful value of x.

Choose $x=x_{*}>0$ so total $p\left(x_{*}\right)$ never increases.

$$
x_{*}^{2}+x_{*}-1=0
$$

Positive jump:

$$
p_{\text {new }}\left(x_{*}\right)-p_{\text {old }}\left(x_{*}\right)=-x_{*}^{d-2}\left(x_{*}^{2}+x_{*}-1\right)=0
$$

Negative jump:

$$
\begin{aligned}
p_{\text {new }}\left(x_{*}\right)-p_{\text {old }}\left(x_{*}\right) & =x_{*}^{d}\left(x_{*}^{2}-x_{*}-1\right) \\
& =x_{*}^{d}\left(x_{*}^{2}+x_{*}-1-2 x_{*}\right) \\
& =-2 x_{*}^{d+1}<0
\end{aligned}
$$

Neutral jump:

$$
p_{\text {new }}\left(x_{*}\right)-p_{\text {old }}\left(x_{*}\right)=-x_{*}^{d-1}<0
$$

$$
x_{*}^{2}+x_{*}-1=0 \quad \Longrightarrow \quad x=\frac{-1 \pm \sqrt{1+4}}{2}
$$

Positive root:

$$
x=\frac{\sqrt{5}-1}{2}=0.618 \ldots
$$

Aside: the golden ratio

$$
\begin{array}{r}
\frac{b}{a}=\frac{a}{a+b} \\
b(a+b)=a^{2} \\
a b+b^{2}=a^{2} \\
\frac{b}{a}+\left(\frac{b}{a}\right)^{2}=1 \\
\left(\frac{b}{a}\right)^{2}+\frac{b}{a}-1=0
\end{array}
$$

4. Calculate the value of an infinite starting position.

$$
p(x)=x^{5}+3 x^{6}+5 x^{7}+7 x^{8}+\ldots
$$

$$
\begin{aligned}
p(x) & =x^{5}+3 x^{6}+5 x^{7}+7 x^{8}+\ldots \\
& =x^{5} \frac{\left(1+3 x+5 x^{2}+7 x^{3}+\ldots\right)}{S}
\end{aligned}
$$

"arithmetic-geometric series"

$$
\begin{aligned}
& S=1+3 x+5 x^{2}+7 x^{3}+\ldots \\
& x S=x+3 x^{2}+5 x^{3}+7 x^{4}+\ldots \\
& S-x S=(1-x) S=1+2 x+2 x^{2}+2 x^{3}+\ldots \\
& \quad=1+2\left(x+x^{2}+x^{3}+\ldots\right) \\
& \quad=1+\frac{2 x}{1-x} \\
& \quad=\frac{1+x}{1-x} \quad S=\frac{1+x}{(1-x)^{2}}
\end{aligned}
$$

$$
p(x)=x^{5} S=\frac{x^{5}(1+x)}{(1-x)^{2}}
$$

Now put in our value of x :

$$
\begin{array}{r}
x_{*}^{2}+x_{*}-1=0 \Longrightarrow \quad x_{*}\left(x_{*}+1\right)=1 \\
x_{*}^{2}=1-x_{*}
\end{array}
$$

So the infinite starting configuration has

$$
p\left(x_{*}\right)=1
$$

5. Put everything together.

We need to reach the target $p\left(x_{*}\right)=1$.

Any finite start must have $p\left(x_{*}\right)<1$, since it has fewer pegs than the infinite configuration with $p\left(x_{*}\right)=1$.

Since no move can increase $p\left(x_{*}\right)$, we can never reach level 5 with a finite number of pegs!
Q.E.D.

Why does this argument fail for levels $1,2,3,4$?

The infinite starting configuration has $p\left(x_{*}\right)>1$.
e.g. level 4:

$$
\begin{aligned}
& p(x)=x^{4} S=\frac{x^{4}(1+x)}{(1-x)^{2}} \\
& p\left(x_{*}\right)=\frac{1}{x_{*}}=1.618 \ldots
\end{aligned}
$$

Infinite number of pegs

Simon Tatham \& Geoff Taylor

Adding diagonal jumps

Maximum possible is level 8 (needs 123 pegs):

References

Havil, J., Nonplussed! (Princeton University Press)

Berlekamp, E. R., Winning ways for your mathematical plays Vol 4 (Routledge)

Tatham, S. \& Taylor, G., Reaching row five in solitaire army, (http://www.chiark.greenend.org.uk/~sgtatham/solarmy/)

Bell, G. I., Hirschberg, D. \& Guerrero-Garcia P., The minimum size required of a solitaire army, INTEGERS G7, 2007. http://www.gibell.net/pegsolitaire/army/index.html

A life in games: the playful genius of John Conway, Wired, http://www.wired.com/2015/09/life-games-playful-genius-johnconwayl

Calculating minimum numbers of pegs...

e.g. level 2.

Largest possible values with

2 pegs: $\quad p\left(x_{*}\right)=x_{*}^{2}+x_{*}^{3}=0.618 \ldots$
3 pegs: $\quad p\left(x_{*}\right)=x_{*}^{2}+2 x_{*}^{3}=0.854 \ldots$
4 pegs: $\quad p\left(x_{*}\right)=x_{*}^{2}+3 x_{*}^{3}=1.090 \ldots$

So minimum number of pegs is at least 4.

