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0 What is numerical analysis?

Numerical analysis is the study of algorithms
for the problems of continuous mathematics.

(from �e de�nition of numerical analysis, L. N. Trefethen)

�e goal is to devise algorithms that give quick and accurate answers to mathematical problems
for scientists and engineers, nowadays using computers.

�e word continuous is important: numerical analysis concerns real (or complex) variables, as
opposed to discrete variables, which are the domain of computer science.

0.1 Direct or iterative methods?

Some problems can be solved by a �nite sequence of elementary operations: a direct method.

Example→ Solve a system of simultaneous linear equations.

x + 2y = 0
2x − πy = 1 →

(
1.00 2.00
2.00 −3.14

) (
x
y

)
=

(
0.00
1.00

)
→ Gaussian elimination . . .

Even in this simple example, we hit upon one problem: π is a transcendental number that
can’t be represented exactly in a computer with �nite memory. Instead, we will see that the
computer uses a �oating-point approximation, which incurs rounding error.

In direct methods, we only have to worry about rounding error, and computational time/memory.
But, unfortunately, most problems of continuous mathematics cannot be solved by a �nite al-
gorithm.

Example→ Evaluate sin(1.2).
We could do this with a Maclaurin series:

sin(1.2) = 1.2 − (1.2)3
3! +

(1.2)5
5! −

(1.2)7
7! + . . . .

To 8 decimal places, we get the partial sums

1.2
0.912
0.932736
0.93202505
0.93203927
0.93203908
0.93203909

�is is an iterative method – keep adding an extra term to improve the approximation. Iterative
methods are the only option for the majority of problems in numerical analysis, and may
actually be quicker even when a direct method exists.

I�e word “iterative” derives from the latin iterare, meaning “to repeat”.
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Even if our computer could do exact real arithmetic, there would still be an error resulting
from stopping our iterative process at some �nite point. �is is called truncation error. We
will be concerned with controlling this error and designing methods which converge as fast
as possible.

Example → �e famous
√

2 tablet from the Yale Babylonian Collection (photo: Bill Cassel-
man, h�p://www.math.ubc.ca/∼cass/Euclid/ybc/ybc.html).

�is is one of the oldest extant mathematical diagrams, dated approximately to 1800-1600 BC.
�e numbers along the diagonal of the square approximate

√
2 in base 60 (sexagesimal):

1 + 24
60 +

51
602 +

10
603 = 1.41421296 to 9 s.f.

�is is already a good approximation to the true value
√

2 = 1.41421356 – much be�er than
could be achieved by ruler and pencil measurements!

I�e other numbers on the tablet relate to the calculation of the diagonal length for a square
of side 30, which is

30
√

2 ≈ 42 + 25
60 +

35
602 .

Example→ Iterative method for
√

2.
It is probable that the Babylonians used something like the following iterative method. Start
with an initial guess x0 = 1.4. �en iterate the following formula:

xk+1 =
xk
2 +

1
xk

=⇒
x1 = 1.4142857 . . .
x2 = 1.414213564 . . .

I�is method is also known as Heron’s method, a�er a Greek mathematician who described
it in the �rst century AD.

I Notice that the method converges extremely rapidly! We will explain this later in the course
when we discuss root�nding for nonlinear equations.
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0.2 Course outline

In this course, we will learn how to do many common calculations quickly and accurately. In
particular:

1. Floating-point arithmetic (How do we represent real numbers on a computer?)
2. Polynomial interpolation (How dowe representmathematical functions on a computer?)
3. Numerical di�erentiation (How do we calculate derivatives?)
4. Nonlinear equations (How do we �nd roots of nonlinear equations?)
5. Linear equations (How do we solve linear systems?)
6. Least-squares approximation (How do we �nd approximate solutions to overdetermined

systems?)
7. Numerical integration (How do we calculate integrals?)

One area we won’t cover is how to solve di�erential equations. �is is such an important topic
that it has its own course Numerical Di�erential Equations III/IV.
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1 Floating-point arithmetic

How do we represent numbers on a computer?

Integers can be represented exactly, up to some maximum size.

Example→ 64-bit integers.
If 1 bit (binary digit) is used to store the sign ±, the largest possible number is

1 × 262 + 1 × 261 + . . . + 1 × 21 + 1 × 20 = 263 − 1.

I In Python, this is not really a worry. Even though the maximum size of a normal (32-bit)
integer is 231 − 1, larger results will be automatically promoted to “long” integers.
By contrast, only a subset of real numbers within any given interval can be represented exactly.

1.1 Fixed-point numbers

In everyday life, we tend to use a �xed point representation

x = ±(d1d2 · · ·dk−1.dk · · ·dn )β , where d1, . . . ,dn ∈ {0, 1, . . . , β − 1}. (1.1)

Here β is the base (e.g. 10 for decimal arithmetic or 2 for binary).

Example→ (10.1)2 = 1 × 21 + 0 × 20 + 1 × 2−1 = 2.5.

If we require that d1 , 0 unless k = 2, then every number has a unique representation of this
form, except for in�nite trailing sequences of digits β − 1.

Example→ 3.1999 · · · = 3.2.

1.2 Floating-point numbers

Computers use a �oating-point representation. Only numbers in a �oating-point number sys-
tem F ⊂ R can be represented exactly, where

F =
{
± (0.d1d2 · · ·dm )ββ

e | β ,di , e ∈ Z, 0 ≤ di ≤ β − 1, emin ≤ e ≤ emax
}
. (1.2)

Here (0.d1d2 · · ·dm )β is called the fraction (or signi�cand or mantissa), β is the base, and e is
the exponent. �is can represent a much larger range of numbers than a �xed-point system
of the same size, although at the cost that the numbers are not equally spaced. If d1 , 0 then
each number in F has a unique representation and F is called normalised.

Example→ Floating-point number system with β = 2,m = 3, emin = −1, emax = 2.
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I Notice that the spacing between numbers jumps by a factor β at each power of β . �e
largest possible number is (0.111)222 = ( 1

2 +
1
4 +

1
8 ) (4) =

7
2 . �e smallest non-zero number is

(0.100)22−1 = 1
2 (

1
2 ) =

1
4 .

Example→ IEEE standard (1985) for double-precision (64-bit) arithmetic.
Here β = 2, and there are 52 bits for the fraction, 11 for the exponent, and 1 for the sign. �e
actual format used is

±(1.d1 · · ·d52)22e−1023 = ±(0.1d1 · · ·d52)22e−1022, e = (e1e2 · · · e11)2.

When β = 2, the �rst digit of a normalized number is always 1, so doesn’t need to be stored
in memory. �e exponent bias of 1022 means that the actual exponents are in the range −1022
to 1025, since e ∈ [0, 2047]. Actually the exponents −1022 and 1025 are used to store ±0 and
±∞ respectively.

�e smallest non-zero number in this system is (0.1)22−1021 ≈ 2.225 × 10−308, and the largest
number is (0.1 · · · 1)221024 ≈ 1.798 × 10308. I IEEE stands for Institute of Electrical and Elec-
tronics Engineers. �is is the default system in Python/numpy. �e automatic 1 is sometimes
called the “hidden bit”. �e exponent bias avoids the need to store the sign of the exponent.

Numbers outside the �nite set F cannot be represented exactly. If a calculation falls below the
lower non-zero limit (in absolute value), it is called under�ow, and usually set to 0. If it falls
above the upper limit, it is called over�ow, and usually results in a �oating-point exception.

I e.g. in Python, 2.0**1025 leads to an exception.

I e.g. Ariane 5 rocket failure (1996). �e maiden �ight ended in failure. Only 40 seconds
a�er initiation, at altitude 3700m, the launcher veered o� course and exploded. �e cause
was a so�ware exception during data conversion from a 64-bit �oat to a 16-bit integer. �e
converted number was too large to be represented, causing an exception.

I In IEEE arithmetic, some numbers in the “zero gap” can be represented using e = 0, since
only two possible fraction values are needed for ±0. �e other fraction values may be used
with �rst (hidden) bit 0 to store a set of so-called subnormal numbers.

�e mapping from R to F is called rounding and denoted �(x ). Usually it is simply the nearest
number in F to x . If x lies exactly midway between two numbers in F , a method of breaking
ties is required. �e IEEE standard speci�es round to nearest even – i.e., take the neighbour
with last digit 0 in the fraction. I�is avoids statistical bias or prolonged dri�.

Example→ Our toy system from earlier.

9
8 = (1.001)2 has neighbours 1 = (0.100)221 and 5

4 = (0.101)221, so is rounded down to 1.
11
8 = (1.011)2 has neighbours 5

4 = (0.101)221 and 3
2 = 0.110)221, so is rounded up to 3

2 .
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I e.g. Vancouver stock exchange index. In 1982, the index was established at 1000. By
November 1983, it had fallen to 520, even though the exchange seemed to be doing well. Ex-
planation: the index was rounded down to 3 digits at every recomputation. Since the errors
were always in the same direction, they added up to a large error over time. Upon recalcula-
tion, the index doubled!

1.3 Signi�cant �gures

When doing calculations without a computer, we o�en use the terminology of signi�cant �g-
ures. To count the number of signi�cant �gures in a number x , start with the �rst non-zero
digit from the le�, and count all the digits therea�er, including �nal zeros if they are a�er the
decimal point.

Example→ 3.1056, 31.050, 0.031056, 0.031050, and 3105.0 all have 5 signi�cant �gures (s.f.).

To round x to n s.f., replace x by the nearest number with n s.f. An approximation x̂ of x is
“correct to n s.f.” if both x̂ and x round to the same number to n s.f.

1.4 Rounding error

If |x | lies between the smallest non-zero number in F and the largest number in F , then

�(x ) = x (1 + δ ), (1.3)

where the relative error incurred by rounding is

|δ | =
|�(x ) − x |
|x |

. (1.4)

I Relative errors are o�en more useful because they are scale invariant. E.g., an error of 1
hour is irrelevant in estimating the age of this lecture theatre, but catastrophic in timing your
arrival at the lecture.

Now x may be wri�en as x = (0.d1d2 · · · )ββ
e for some e ∈ [emin, emax], but the fraction will

not terminate a�er m digits if x < F . However, this fraction will di�er from that of �(x ) by at
most 1

2β
−m, so

|�(x ) − x | ≤ 1
2β
−mβe =⇒ |δ | ≤ 1

2β
1−m . (1.5)

Here we used that the fractional part of |x | is at least (0.1)β ≡ β−1. �e number ϵM =
1
2β

1−m is
called the machine epsilon (or unit roundo� ), and is independent of x . So the relative rounding
error satis�es

|δ | ≤ ϵM. (1.6)

I Sometimes the machine epsilon is de�ned without the factor 1
2 . For example, in Python,

print(np.finfo(np.float64).eps).

I�e name “unit roundo�” arises because β1−m is the distance between 1 and the next number
in the system.
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Example → For our system with β = 2, m = 3, we have ϵM =
1
2 .2

1−3 = 1
8 . For IEEE double

precision, we have β = 2 and m = 53 (including the hidden bit), so ϵM =
1
2 .2

1−53 = 2−53 ≈

1.11 × 10−16.

When adding/subtracting/multiplying/dividing two numbers in F , the result will not be in F

in general, so must be rounded.

Example→ Our toy system again (β = 2,m = 3, emin = −1, emax = 2).
Let us multiply x = 5

8 and y = 7
8 . We have

xy = 35
64 =

1
2 +

1
32 +

1
64 = (0.100011)2.

�is has too many signi�cant digits to represent in our system, so the best we can do is round
the result to �(xy) = (0.100)2 = 1

2 .

I Typically additional digits are used during the computation itself, as in our example.

For ◦ = +,−,×,÷, IEEE standard arithmetic requires rounded exact operations, so that

�(x ◦y) = (x ◦y) (1 + δ ), |δ | ≤ ϵM. (1.7)

1.5 Loss of signi�cance

You might think that (1.7) guarantees the accuracy of calculations to within ϵM, but this is true
only if x and y are themselves exact. In reality, we are probably starting from x̄ = x (1 + δ1)

and ȳ = y (1 + δ2), with |δ1 |, |δ2 | ≤ ϵM. In that case, there is an error even before we round the
result, since

x̄ ± ȳ = x (1 + δ1) ± y (1 + δ2) (1.8)

= (x ± y)

(
1 + xδ1 ± yδ2

x ± y

)
. (1.9)

If the correct answer x ± y is very small, then there can be an arbitrarily large relative error
in the result, compared to the errors in the initial x̄ and ȳ. In particular, this relative error can
be much larger than ϵM. �is is called loss of signi�cance, and is a major cause of errors in
�oating-point calculations.

Example→�adratic formula for solving x2 − 56x + 1 = 0.
To 4 s.f., the roots are

x1 = 28 +
√

783 = 55.98, x2 = 28 −
√

783 = 0.01786.

However, working to 4 s.f. we would compute
√

783 = 27.98, which would lead to the results

x̄1 = 55.98, x̄2 = 0.02000.

�e smaller root is not correct to 4 s.f., because of cancellation error. One way around this is
to note that x2 − 56x + 1 = (x − x1) (x − x2), and compute x2 from x2 = 1/x1, which gives the
correct answer.
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I Note that the error crept in when we rounded
√

783 to 27.98, because this removed digits
that would otherwise have been signi�cant a�er the subtraction.

Example→ Evaluate f (x ) = ex − cos(x ) − x for x very near zero.
Let us plot this function in the range −5×10−8 ≤ x ≤ 5×10−8 – even in IEEE double precision
arithmetic we �nd signi�cant errors, as shown by the blue curve:

�e red curve shows the correct result approximated using the Taylor series

f (x ) =

(
1 + x + x2

2! +
x3

3! + . . .
)
−

(
1 − x2

2! +
x4

4! − . . .
)
− x

≈ x2 +
x3

6 .

�is avoids subtraction of nearly equal numbers.

IWe will look in more detail at polynomial approximations in the next section.

Note that �oating-point arithmetic violates many of the usual rules of real arithmetic, such as
(a + b) + c = a + (b + c ).

Example→ In 2-digit decimal arithmetic,

�
[
(5.9 + 5.5) + 0.4

]
= �

[
�(11.4) + 0.4

]
= �(11.0 + 0.4) = 11.0,

�
[
5.9 + (5.5 + 0.4)

]
= �

[
5.9 + 5.9

]
= �(11.8) = 12.0.

Example→�e average of two numbers.
In R, the average of two numbers always lies between the numbers. But if we work to 3
decimal digits,

�
(5.01 + 5.02

2

)
=

�(10.03)
2 =

10.0
2 = 5.0.

�e moral of the story is that sometimes care is needed.
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2 Polynomial interpolation

How do we represent mathematical functions on a computer?

If f is a polynomial of degree n,

f (x ) = pn (x ) = a0 + a1x + . . . + anx
n, (2.1)

then we only need to store the n + 1 coe�cients a0, . . . ,an. Operations such as taking the
derivative or integrating f are also convenient. �e idea in this chapter is to �nd a polynomial
that approximates a general function f . For a continuous function f on a bounded interval,
this is always possible if you take a high enough degree polynomial:

�eorem 2.1 (Weierstrass Approximation �eorem, 1885). For any f ∈ C ([0, 1]) and any
ϵ > 0, there exists a polynomial p (x ) such that

max
0≤x≤1

���f (x ) − p (x )
��� ≤ ϵ .

I �is may be proved using an explicit sequence of polynomials, called Bernstein polynomials.
�e proof is beyond the scope of this course, but see the extra handout for an outline.

If f is not continuous, then something other than a polynomial is required, since polynomials
can’t handle asymptotic behaviour.

I To approximate functions like 1/x , there is a well-developed theory of rational function
interpolation, which is beyond the scope of this course.

In this chapter, we look for a suitable polynomial pn by interpolation – that is, requiring
pn (xi ) = f (xi ) at a �nite set of points xi , usually called nodes. Sometimes we will also require
the derivative(s) ofpn to match those of f . In Chapter 6 we will see an alternative approach, ap-
propriate for noisy data, where the overall error | f (x )−pn (x ) | is minimised, without requiring
pn to match f at speci�c points.

2.1 Taylor series

A truncated Taylor series is (in some sense) the simplest interpolating polynomial since it uses
only a single node x0, although it does require pn to match both f and some of its derivatives.

Example→ Calculating sin(0.1) to 6 s.f. by Taylor series.
We can approximate this using a Taylor series about the point x0 = 0, which is

sin(x ) = x −
x3

3! +
x5

5! −
x7

7! + . . . .

�is comes from writing

f (x ) = a0 + a1(x − x0) + a2(x − x0)
2 + . . . ,
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then di�erentiating term-by-term and matching values at x0:

f (x0) = a0,

f ′(x0) = a1,

f ′′(x0) = 2a2,

f ′′′(x0) = 3(2)a3,

...

=⇒ f (x ) = f (x0) + f ′(x0) (x − x0) +
f ′′(x0)

2! (x − x0)
2 +

f ′′′(x0)

3! (x − x0)
3 + . . . .

So

1 term =⇒ f (0.1) ≈ 0.1,

2 terms =⇒ f (0.1) ≈ 0.1 − 0.13

6 = 0.099833 . . . ,

3 terms =⇒ f (0.1) ≈ 0.1 − 0.13

6 +
0.15

120 = 0.09983341 . . . .

�e next term will be −0.17/7! ≈ −10−7/103 = −10−10, which won’t change the answer to 6 s.f.

I�e exact answer is sin(0.1) = 0.09983341.

Mathematically, we can write the remainder as follows.

�eorem 2.2 (Taylor’s �eorem). Let f be n + 1 times di�erentiable on (a,b), and let f (n) be
continuous on [a,b]. If x ,x0 ∈ [a,b] then there exists ξ ∈ (a,b) such that

f (x ) =
n∑

k=0

f (k ) (x0)

k! (x − x0)
k +

f (n+1) (ξ )

(n + 1)! (x − x0)
n+1.

�e sum is called the Taylor polynomial of degree n, and the last term is called the Lagrange
form of the remainder. Note that the unknown number ξ depends on x .

Example→We can use the Lagrange remainder to bound the error in our approximation.
For f (x ) = sin(x ), we found the Taylor polynomial p6(x ) = x − x3/3! + x5/5!, and f (7) (x ) =

− sin(x ). So we have
���f (x ) − p6(x )

��� =
�����
f (7) (ξ )

7! (x − x0)
7
�����

for some ξ between x0 and x . For x = 0.1, we have

���f (0.1) − p6(0.1)��� =
1

5040 (0.1)
7���f

(7) (ξ )��� for some ξ ∈ [0, 0.1].

Since ���f
(7) (ξ )��� =

��� sin(ξ )��� ≤ 1, we can say, before calculating, that the error satis�es

���f (0.1) − p6(0.1)��� ≤ 1.984 × 10−11.
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I�e actual error is 1.983 × 10−11, so this is a tight estimate.
Since this error arises from approximating f with a truncated series, rather than due to round-
ing, it is known as truncation error. Note that it tends to be lower if you use more terms [larger
n], or if the function oscillates less [smaller f (n+1) on the interval (x0,x )].
I Much of this course will be concerned with truncation error, since this is a property of the
numerical algorithm and independent of the �oating-point arithmetic used.
Error estimates like the Lagrange remainder will play an important role in this course, so it is
important to understand where it comes from. �e number ξ will ultimately come from Rollé’s
theorem, which is a special case of the mean value theorem from 1H calculus;
�eorem 2.3 (Rolle). If f is continuous on [a,b] and di�erentiable on (a,b), with f (a) = f (b) =

0, then there exists ξ ∈ (a,b) with f ′(ξ ) = 0.

Proof of Lagrange remainder (�eorem 2.2). �e argument goes as follows:
1. De�ne the “auxilliary” function

д(t ) = f (t ) − pn (t ) −M (t − x0)
n+1,

where pn is the Taylor polynomial. By construction, this function satis�es

д(x0) = f (x0) − pn (x0) −M (0)n+1 = 0,
д′(x0) = f ′(x0) − p

′
n (x0) − (n + 1)M (0)n = 0,

д′′(x0) = f ′′(x0) − p
′′
n (x0) − n(n + 1)M (0)n−1 = 0,

...

д(n) (x0) = f (n) (x0) − p
(n)
n (x0) − (n + 1)!M (0) = 0.

2. By a cunning choice of M , we can make д(x ) = 0 too. Put

M =
f (x ) − pn (x )

(x − x0)n+1 ,

then д(x ) = f (x ) − pn (x ) −M (x − x0)
n+1 = 0.

3. Since д(x0) = д(x ) = 0 and x , x0, Rolle’s theorem implies that there exists ξ0 between
x0 and x such that д′(ξ0) = 0. But we already know that д′(x0) = 0, so д′ has two distinct
roots and we can apply Rolle’s theorem again. Hence there exists ξ1 between x0 and ξ0
such that д′′(ξ1) = 0. We can keep repeating this argument until we get ξn+1 ≡ ξ such
that д(n+1) (ξ ) = 0.

4. We can di�erentiate д(t ) to see that

д(n+1) (t ) = f (n+1) (t ) − p (n+1)
n (t ) −M

dn+1

dtn+1

[
(t − x0)

n+1
]
= f (n+1) (t ) −M (n + 1)!

Substituting ξ and our chosen M gives

0 = д(n+1) (ξ ) = f (n+1) (ξ ) −
f (x ) − pn (x )

(x − x0)n+1 (n + 1)!

which rearranges to give the formula in �eorem 2.2.
�
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2.2 Polynomial interpolation

�e classical problem of polynomial interpolation is to �nd a polynomial

pn (x ) = a0 + a1x + . . . + anx
n =

n∑
k=0

akx
k (2.2)

that interpolates our function f at a �nite set of nodes {x0,x1, . . . ,xm}. In other words,pn (xi ) =
f (xi ) at each of the nodes xi . Since the polynomial has n + 1 unknown coe�cients, we expect
to need n + 1 distinct nodes, so let us assume thatm = n.

Example→ Linear interpolation (n = 1).

Here we have two nodes x0, x1, and seek a polynomial p1(x ) = a0+a1x . �en the interpolation
conditions require that




p1(x0) = a0 + a1x0 = f (x0)

p1(x1) = a0 + a1x1 = f (x1)
=⇒ p1(x ) =

x1 f (x0) − x0 f (x1)

x1 − x0
+

f (x1) − f (x0)

x1 − x0
x .

For general n, the interpolation conditions require

a0 + a1x0 + a2x
2
0 + . . . + anx

n
0 = f (x0),

a0 + a1x1 + a2x
2
1 + . . . + anx

n
1 = f (x1),

...
...

...
...

...
a0 + a1xn + a2x

2
n + . . . + anx

n
n = f (xn ),

(2.3)

so we have to solve
*....
,

1 x0 x2
0 · · · xn0

1 x1 x2
1 · · · xn1

...
...
...

...
1 xn x2

n · · · xnn

+////
-

*....
,

a0
a1
...
an

+////
-

=

*....
,

f (x0)
f (x1)
...

f (xn )

+////
-

. (2.4)

�is is called a Vandermonde matrix. �e determinant of this matrix (problem sheet) is

det(A) =
∏

0≤i<j≤n
(xi − xj ), (2.5)

which is non-zero provided the nodes are all distinct. �is establishes an important result,
where Pn denotes the space of all real polynomials of degree ≤ n.

�eorem 2.4 (Existence/uniqueness). Given n+1 distinct nodes x0,x1, . . . ,xn, there is a unique
polynomial pn ∈ Pn that interpolates f (x ) at these nodes.

We may also prove uniqueness by the following elegant argument.

Uniqueness part of �eorem 2.4. Suppose that in addition to pn there is another interpolating
polynomial qn ∈ Pn. �en the di�erence rn := pn − qn is also a polynomial with degree ≤ n.
But we have

rn (xi ) = pn (xi ) − qn (xi ) = f (xi ) − f (xi ) = 0 for i = 0, . . . ,n,

Numerical Analysis II - ARY 15 2017-18 Lecture Notes



so rn (x ) has n + 1 roots. From the Fundamental �eorem of Algebra, this is possible only if
rn (x ) ≡ 0, which implies that qn = pn. �

I An alternative way to prove existence is to construct the interpolant explicitly, as we will
do in Section 2.3.

Note that the unique polynomial through n + 1 points may have degree < n.

I�is happens when a0 = 0 in the solution to (2.4).

Example→ Interpolate f (x ) = cos(x ) with p2 ∈ P2 at the nodes {0, π2 ,π}.

We have x0 = 0, x1 =
π
2 , x2 = π , so f (x0) = 1,f (x1) = 0,f (x2) = −1. Clearly the unique

interpolant is a straight line p2(x ) = 1 − 2
π x .

If we took the nodes {0, 2π , 4π}, we would get a constant function p2(x ) = 1.

One way to compute the interpolating polynomial would be to solve (2.4), e.g. by Gaussian
elimination. However, we will see (next term) that this is not recommended. In practice, we
choose a di�erent basis for pn. �ere are two common choices, due to Lagrange and Newton.

I�e Vandermonde matrix arises when we write pn in the natural basis {1,x ,x2, . . .}.

2.3 Lagrange form

�is uses a special basis of polynomials {`k} in which the interpolation equations reduce to
the identity matrix. In other words, the coe�cients in this basis are just the function values,

pn (x ) =
n∑

k=0
f (xk )`k (x ). (2.6)
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Example→ Linear interpolation again.

We can re-write our linear interpolant to separate out the function values:

p1(x ) =
x − x1
x0 − x1︸  ︷︷  ︸
`0 (x )

f (x0) +
x − x0
x1 − x0︸  ︷︷  ︸
`1 (x )

f (x1).

�en `0 and `1 form the necessary basis. In particular, they have the property that

`0(xi ) =



1 if i = 0,
0 if i = 1,

`1(xi ) =



0 if i = 0,
1 if i = 1,

For general n, the n + 1 Lagrange polynomials are de�ned as a product

`k (x ) =
n∏
j=0
j,k

x − xj

xk − xj
. (2.7)

By construction, they have the property that

`k (xi ) =



1 if i = k,
0 otherwise.

(2.8)

From this, it follows that the interpolating polynomial may be wri�en as (2.6).

I By �eorem 2.4, the Lagrange polynomials are the unique polynomials with property (2.8).

Example → Compute the quadratic interpolating polynomial to f (x ) = cos(x ) with nodes
{−π4 , 0, π4 } using Lagrange polynomials.

�e Lagrange polynomials of degree 2 for these nodes are

`0(x ) =
(x − x1) (x − x2)

(x0 − x1) (x0 − x2)
=
x (x − π

4 )
π
4 ·

π
2
,

`1(x ) =
(x − x0) (x − x2)

(x1 − x0) (x1 − x2)
=

(x + π
4 ) (x −

π
4 )

−π4 ·
π
4

,

`2(x ) =
(x − x0) (x − x1)

(x2 − x0) (x2 − x1)
=
x (x + π

4 )
π
2 ·

π
4
.

So the interpolating polynomial is

p2(x ) = f (x0)`0(x ) + f (x1)`1(x ) + f (x2)`2(x )

= 1√
2

8
π 2x (x −

π
4 ) −

16
π 2 (x +

π
4 ) (x −

π
4 ) +

1√
2

8
π 2x (x +

π
4 ) =

16
π 2

(
1√
2 − 1

)
x2 + 1.

�e Lagrange polynomials and the resulting interpolant are shown below:
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I Lagrange polynomials were actually discovered by Edward Waring in 1776 and rediscovered
by Euler in 1783, before they were published by Lagrange himself in 1795.

�e Lagrange form of the interpolating polynomial is easy to write down, but expensive to
evaluate since all of the `k must be computed. Moreover, changing any of the nodes means
that the `k must all be recomputed from scratch, and similarly for adding a new node (moving
to higher degree).

2.4 Newton/divided-di�erence form

It would be easy to increase the degree of pn if

pn+1(x ) = pn (x ) + дn+1(x ), where дn+1 ∈ Pn+1. (2.9)

From the interpolation conditions, we know that

дn+1(xi ) = pn+1(xi ) − pn (xi ) = f (xi ) − f (xi ) = 0 for i = 0, . . . ,n, (2.10)
=⇒ дn+1(x ) = an+1(x − x0) · · · (x − xn ). (2.11)

�e coe�cient an+1 is determined by the remaining interpolation condition at xn+1, so

pn (xn+1) + дn+1(xn+1) = f (xn+1) =⇒ an+1 =
f (xn+1) − pn (xn+1)

(xn+1 − x0) · · · (xn+1 − xn )
. (2.12)

�e polynomial (x − x0) (x − x1) · · · (x − xn ) is called a Newton polynomial. �ese form a new
basis

n0(x ) = 1, nk (x ) =
k−1∏
j=0

(x − xj ) for k > 0. (2.13)

I Proving that this is truly a basis is le� to the Problem Sheet.

�e Newton form of the interpolating polynomial is then

pn (x ) =
n∑

k=0
aknk (x ), a0 = f (x0), ak =

f (xk ) − pk−1(xk )

(xk − x0) · · · (xk − xk−1)
for k > 0. (2.14)

Notice that ak depends only on x0, . . . xk , so we can construct �rst a0, then a1, etc.
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It turns out that the ak are easy to compute, but it will take a li�le work to derive the method.
We de�ne the divided di�erence f [x0,x1, . . . ,xk] to be the coe�cient of xk in the polynomial
interpolating f at nodes x0, . . . ,xk . It follows that

f [x0,x1, . . . ,xk] = ak , (2.15)

where ak is the coe�cient in (2.14).

Example→ Using (2.14), we �nd

f [x0] = a0 = f (x0), (2.16)

f [x0,x1] = a1 =
f (x1) − p0(x1)

x1 − x0
=

f (x1) − a0
x1 − x0

=
f [x1] − f [x0]

x1 − x0
. (2.17)

So the �rst-order divided di�erence f [x0,x1] is obtained from the zeroth-order di�erences
f [x0], f [x1] by subtracting and dividing, hence the name “divided di�erence”.

Example→ Continuing, we �nd

f [x0,x1,x2] = a2 =
f (x2) − p1(x2)

(x2 − x0) (x2 − x1)
=

f (x2) − a0 − a1(x2 − x0)

(x2 − x0) (x2 − x1)

= . . . =
1

x2 − x0

(
f [x2] − f [x1]

x2 − x1
−

f [x1] − f [x0]
x1 − x0

)
=

f [x1,x2] − f [x0,x1]
x2 − x0

.

(2.18)
So again, we subtract and divide. In general, we have the following.

�eorem 2.5. For k > 0, the divided di�erences satisfy

f [xi ,xi+1, . . . ,xi+k] = f [xi+1, . . . ,xi+k] − f [xi , . . . ,xi+k−1]
xi+k − xi

. (2.19)

Proof. Without loss of generality, we relabel the nodes so that i = 0. So we want to prove that

f [x0,x1, . . . ,xk] = f [x1, . . . ,xk] − f [x0, . . . ,xk−1]
xk − x0

. (2.20)

�e trick is to write the interpolant with nodes x0, . . . ,xk in the form

pk (x ) =
(xk − x )qk−1(x ) + (x − x0)q̃k−1(x )

xk − x0
, (2.21)

where qk−1 ∈ Pk−1 interpolates f at the subset of nodes x0,x1, . . . ,xk−1 and q̃k−1 ∈ Pk−1
interpolates f at the subset x1,x2, . . . ,xk . If (2.21) holds, then matching the coe�cient of xk
on each side will give (2.20), since, e.g., the leading coe�cient of qk−1 is f [x0, . . . ,xk−1]. To see
that pk may really be wri�en as (2.21), note that

pk (x0) = qk−1(x0) = f (x0), (2.22)
pk (xk ) = q̃k−1(xk ) = f (xk ), (2.23)

pk (xi ) =
(xk − xi )qk−1(xi ) + (xi − x0)q̃k−1(xi )

xk − x0
= f (xi ) for i = 1, . . . ,k − 1. (2.24)

Since pk agrees with f at the k + 1 nodes, it is the unique interpolant in Pk (�eorem 2.4). �

Numerical Analysis II - ARY 19 2017-18 Lecture Notes



�eorem 2.5 gives us our convenient method, which is to construct a divided-di�erence table.

Example→ Nodes {−1, 0, 1, 2} and data {5, 1, 1, 11}. We construct a divided-di�erence table
as follows.

x0 = −1 f [x0] = 5
f [x0,x1] = −4

x1 = 0 f [x1] = 1 f [x0,x1,x2] = 2
f [x1,x2] = 0 f [x0,x1,x2,x3] = 1

x2 = 1 f [x2] = 1 f [x1,x2,x3] = 5
f [x2,x3] = 10

x3 = 2 f [x3] = 11

�e coe�cients of the p3 lie at the top of each column, so

p3(x ) = f [x0] + f [x0,x1](x − x0) + f [x0,x1,x2](x − x0) (x − x1) + f [x0,x1,x2,x3](x − x0) (x − x1) (x − x2)

= 5 − 4(x + 1) + 2x (x + 1) + x (x + 1) (x − 1).

Now suppose we add the extra nodes {−2, 3} with data {5, 35}. All we need to do to compute
p5 is add two rows to the bo�om of the table — there is no need to recalculate the rest. �is
gives

−1 5
−4

0 1 2
0 1

1 1 5 − 1
12

10 13
12 0

2 11 17
6 − 1

123
2

5
6

−2 5 9
2

6
3 35

�e new interpolating polynomial is

p5(x ) = p3(x ) −
1
12x (x + 1) (x − 1) (x − 2).

I Notice that the x5 coe�cient vanishes for these particular data, meaning that they are con-
sistent with f ∈ P4.

I Note that the value of f [x0,x1, . . . ,xk] is independent of the order of the nodes in the table.
�is follows from the uniqueness of pk .

I Divided di�erences are actually approximations for derivatives of f (cf. Chapter 3). In the
limit that the nodes all coincide, the Newton form of pn (x ) becomes the Taylor polynomial.
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2.5 Interpolation error

�e goal here is to estimate the error | f (x ) − pn (x ) | when we approximate a function f by a
polynomial interpolant pn. Clearly this will depend on x .

Example→�adratic interpolant for f (x ) = cos(x ) with {−π4 , 0, π4 }.
From Section 2.3, we have p2(x ) =

16
π 2

(
1√
2 − 1

)
x2 + 1, so the error is

| f (x ) − p2(x ) | =
����cos(x ) − 16

π 2

(
1√
2 − 1

)
x2 − 1

���� .

�is is shown here:

Clearly the error vanishes at the nodes themselves, but note that it generally does be�er near
the middle of the set of nodes — this is quite typical behaviour.

We can adapt the proof of Taylor’s theorem to get a quantitative error estimate.

�eorem 2.6 (Cauchy). Let pn ∈ Pn be the unique polynomial interpolating f (x ) at the n + 1
distinct nodes x0,x1, . . . ,xn ∈ [a,b], and let f be continuous on [a,b] with n + 1 continuous
derivatives on (a,b). �en for each x ∈ [a,b] there exists ξ ∈ (a,b) such that

f (x ) − pn (x ) =
f (n+1) (ξ )

(n + 1)! (x − x0) (x − x1) · · · (x − xn ).

I�is looks similar to the error formula for Taylor polynomials (�eorem 2.2). But now the
error vanishes at multiple nodes rather than just at x0.

I From the formula, you can see that the error will be larger for a more “wiggly” function,
where the derivative f (n+1) is larger. It might also appear that the error will go down as the
number of nodes n increases; we will see in Section 2.6 that this is not always true.

I As in Taylor’s theorem, note the appearance of an undetermined point ξ . �is will prevent
us knowing the error exactly, but we can make an estimate as before.
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Proof of �eorem 2.6. We follow a similar idea as for the Lagrange remainder in �eorem 2.2.

1. De�ne the “auxilliary” function

д(t ) = f (t ) − pn (t ) −M
n∏
i=0

(t − xi ).

By construction, this function satis�es

д(xi ) = f (xi ) − pn (xi ) = 0 for i = 0, . . . ,n.

2. By a cunning choice of M , we can make д(x ) = 0 too. Put

M =
f (x ) − pn (x )∏n

i=0(x − xi )
,

then д(x ) = f (x ) − pn (x ) −M
∏n

i=0(x − xi ) = 0.
3. Since д(t ) has n + 2 distinct roots, Rolle’s theorem implies that there are n + 1 distinct

points where д′(t ) = 0. But then we can apply Rolle’s theorem again to see that there
are n distinct points where д′′(t ) = 0. Continuing to apply Rolle’s theorem in this way,
we end up with a single point t = ξ where д(n+1) (ξ ) = 0.

4. Repeatedly di�erentiating д(t ) gives

д(n+1) (t ) = f (n+1) (t ) − p (n+1)
n (t ) −M

dn+1

dtn+1

[ n∏
i=0

(t − xi )
]
= f (n+1) (t ) −M (n + 1)!

Substituting ξ and our chosen M gives

0 = д(n+1) (ξ ) = f (n+1) (ξ ) −
f (x ) − pn (x )∏n

i=0(x − xi )
(n + 1)!

which rearranges to give the formula in �eorem 2.6.

�

Example→�adratic interpolant for f (x ) = cos(x ) with {−π4 , 0, π4 }.
For n = 2, �eorem 2.6 says that

f (x ) − p2(x ) =
f (3) (ξ )

6 x (x + π
4 ) (x −

π
4 ) =

1
6 sin(ξ )x (x + π

4 ) (x −
π
4 ), for some ξ ∈ [−π4 ,

π
4 ].

For an upper bound on the error at a particular x , we can just use | sin(ξ ) | ≤ 1 and plug in x .

To bound the maximum error within the interval [−1, 1], let us maximise the polynomial
w (x ) = x (x + π

4 ) (x −
π
4 ). We have w′(x ) = 3x2 − π 2

16 so turning points are at x = ± π
4
√

3 .
We have

w (− π
4
√

3 ) = 0.186 . . . , w ( π
4
√

3 ) = −0.186 . . . , w (−1) = −0.383 . . . , w (1) = 0.383 . . . .

So our error estimate for x ∈ [−1, 1] is

| f (x ) − p2(x ) | ≤
1
6 (0.383) = 0.0638 . . .

From the plot earlier, we see that this bound is satis�ed (as it has to be), although not tight.
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2.6 Convergence and the Chebyshev nodes

You might expect polynomial interpolation to converge as n → ∞. Surprisingly, this is not the
case if you take equally-spaced nodes xi . �is was shown by Runge in a famous 1901 paper.

Example→�e Runge function f (x ) = 1/(1 + 25x2) on [−1, 1].
Here are illustrations of pn for increasing n:

Notice that thepn is converging to f in the middle, but diverging more and more near the ends,
even within the interval [x0,xn]. �is is called the Runge phenomenon.

I A full mathematical explanation for this divergence usually uses complex analysis — see
Chapter 13 of Approximation �eory and Approximation Practice by L.N. Trefethen (SIAM,
2013). For a more elementary proof, see h�p://math.stackexchange.com/questions/775405/.

�e problem is (largely) coming from the polynomial

w (x ) =
n∏
i=0

(x − xi ). (2.25)

We can avoid the Runge phenomenon by choosing di�erent nodes xi .

I If we are forced to keep equally-spaced nodes, then the best option is to use a piecewise
interpolant made up of lower-degree polynomials.
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Since the problems are occurring near the ends of the interval, it would be logical to put more
nodes there. A good choice is given by taking equally-spaced points on the unit circle |z | = 1,
and projecting to the real line:

�e points around the circle are

ϕj =
(2j + 1)π
2(n + 1) , j = 0, . . . ,n,

so the corresponding Chebyshev nodes are

xj = cos
[
(2j + 1)π
2(n + 1)

]
, j = 0, . . . ,n. (2.26)

I Note that the order of the points is decreasing in x . �is doesn’t ma�er for any of our
interpolation methods.

Example→�e Runge function f (x ) = 1/(1 + 25x2) on [−1, 1] using the Chebyshev nodes.
For n = 3, the nodes are x0 = cos( π8 ), x1 = cos( 3π

8 ), x2 = cos( 5π
8 ), x3 = cos( 7π

8 ).

Below we illustrate the resulting interpolant for n = 15:

Compare this to the example with equally spaced nodes.
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In fact, the Chebyshev nodes are, in one sense, an optimal choice. To see this, we �rst note
that they are zeroes of a particular polynomial.

Lemma 2.7. �eChebyshev points xj = cos
[
(2j+1)π
2(n+1)

]
for j = 0, . . . ,n are zeroes of the Chebyshev

polynomial
Tn+1(t ) := cos

[
(n + 1) arccos(t )

]

I�e Chebyshev polynomials are denotedTn rather thanCn because the name is transliterated
from Russian as “Tchebychef” in French, for example.

I Technically, these are Chebyshev polynomials of the �rst kind. �e second kind are denoted
Un (t ) and de�ned by the recurrence U0(t ) = 1, U1(t ) = 2t , Un+1(t ) = 2tUn (t ) −Un−1(t ).

I Chebyshev polynomials have many uses because they form an orthogonal basis for Pn with
weight function (1− t2)−1/2 (next term). �ey (�rst kind) are solutions to the ODE (1− t2)T ′′−

tT ′ + n2T = 0.

Proof. �ere are two things to prove here. Firstly that our xj are zeroes of this function, and
secondly that it is a polynomial (not obvious!).

To see that Tn+1(xj ) = 0, just put them in for j = 0, . . . ,n:

Tn+1(xj ) = cos
[
(n + 1) (2j + 1)π

2(n + 1)

]
= cos

(
(j + 1

2 )π
)
= 0.

To see that Tn ∈ Pn, we will work by induction. Firstly, note that

T0(t ) = cos[0] = 1 ∈ P0, and T1(t ) = cos
[

arccos(t )
]
= t ∈ P1.

Now

Tn+1(t ) +Tn−1(t ) = cos
[
(n + 1)θ

]
+ cos

[
(n − 1)θ

]
where θ = arccos(t ),

= cos(nθ ) cos(θ ) − sin(nθ ) sin(θ ) + cos(nθ ) cos(θ ) + sin(nθ ) sin(θ ),
= 2 cos(nθ ) cosθ ,
= 2tTn (t ).

�is gives the recurrence relation

Tn+1(t ) = 2tTn (t ) −Tn−1(t ). (2.27)

It follows that Tn+1 is a polynomial of degree n + 1. �

In choosing the Chebyshev nodes, we are choosing the error polynomialw (x ) :=∏n
i=0(x −xi )

to be Tn+1(x )/2n. (�is normalisation makes the leading coe�cient 1, from (2.27).) �is is a
good choice because of the following result.

�eorem2.8 (Chebyshev interpolation). Letx0,x1, . . . ,xn ∈ [−1, 1] be distinct. �enmax[−1,1] |w (x ) |

is minimized if

w (x ) =
1
2nTn+1(x ),

where Tn+1(x ) is the Chebyshev polynomial Tn+1(x ) = cos
(
(n + 1) arccos(x )

)
.
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Before we prove it, look at the �rst few Chebyshev polynomials Tn+1:

�e trigonometric nature ofTn+1 means that it oscillates between ±1, so |w (x ) | will not “blow
up” near the ends of the interval. �is is the underlying idea of the proof.

Proof. Note that p (t ) = 2−nTn+1(t ) is a monic polynomial (leading coe�cient 1) with correct
degree n + 1 and distinct roots. It a�ains its maximum absolute value at the n + 2 points
tj = cos

(
jπ
n+1

)
, where p (tj ) = 2−n (−1)j .

Now assume there is another monic polynomialq ∈ Pn+1 such that max[−1,1] |q(t ) | < max[−1,1] |p (t ) |.

De�ne the di�erence r (t ) = p (t ) − q(t ), which is in Pn since p and q are both monic. �en

r (tj ) = p (tj ) − q(tj )



> 0 if j even,
< 0 if j odd.

By the intermediate value theorem, r must have n + 1 zeroes, but r ∈ Pn so r ≡ 0. Hence q ≡ p
and w := p minimises max[−1,1] |w |. �

Having established that the Chebyshev polynomial minimises the maximum error, we can see
convergence from the fact that

| f (x ) − pn (x ) | =
| f (n+1) (ξ ) |

(n + 1)! |w (x ) | =
| f (n+1) (ξ ) |

2n (n + 1)! |Tn+1(x ) | ≤
| f (n+1) (ξ ) |

2n (n + 1)! .

If the function is well-behaved enough that | f (n+1) (x ) | < M for some constant whenever
x ∈ [−1, 1], then the error will tend to zero as n → ∞.

2.7 Derivative conditions

A variant of the interpolation problem is to require that the interpolant matches one or more
derivatives of f at each of the nodes, in addition to the function values.

I�is is sometimes called osculating (“kissing”) interpolation.
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I We already saw the Taylor polynomial, which is an extreme case with many derivative
conditions but only one node.

As an example, we considerHermite interpolation, where we look for a polynomial that matches
both f ′(xi ) and f (xi ) at the nodes xi = x0, . . . ,xn. Since there are 2n + 2 conditions, this sug-
gests that we will need a polynomial of degree 2n + 1.

�eorem 2.9 (Hermite interpolation). Given n + 1 distinct nodes x0,x1, . . . ,xn, there exists a
unique polynomial p2n+1 ∈ P2n+1 that interpolates both f (x ) and f ′(x ) at these points.

Proof. 1. Uniqueness. �e proof is similar to �eorem 2.4. Suppose that both p2n+1 and q2n+1
are polynomials in P2n+1 that interpolate both f and f ′ at the nodes. �en the di�erence
r2n+1 := p2n+1 − q2n+1 is also in P2n+1. But we have

r2n+1(xi ) = p2n+1(xi ) − q2n+1(xi ) = f (xi ) − f (xi ) = 0 for i = 0, . . . ,n,
r ′2n+1(xi ) = p

′
2n+1(xi ) − q

′
2n+1(xi ) = f ′(xi ) − f ′(xi ) = 0 for i = 0, . . . ,n,

so each node is a root of r2n+1 of multiplicity ≥ 2. �erefore r2n+1 has 2n + 2 roots, so by the
Fundamental �eorem of Algebra r2n+1(x ) ≡ 0, which implies that qn = pn.

2. Existence. �e simplest way to see that such a polynomial exists is to construct a basis
analogous to the Lagrange basis, so that we can write

p2n+1(x ) =
n∑

k=0

(
f (xk )hk (x ) + f ′(xk )ĥk (x )

)
, (2.28)

where hk and ĥk are basis functions in P2n+1 that satisfy

hk (xj ) = δjk , h′
k
(xj ) = 0,

ĥk (xj ) = 0, ĥ′
k
(xj ) = δjk .

(2.29)

Let’s try and construct hk and ĥk using the Lagrange basis functions `k (x ), which satisfy
`k (xj ) = δjk . To get the correct degree, try writing

hk (x ) = `
2
k (x )

(
ak (x − xk ) + bk

)
, ĥk (x ) = `

2
k (x )

(
âk (x − xk ) + b̂k

)
. (2.30)

�e coe�cients ak , bk , âk , b̂k need to be chosen to match the conditions (2.29). We have

hk (xk ) = 1 =⇒ bk = 1,
h′k (xk ) = 0 =⇒ 2`k (xk )`′k (xk ) + ak`

2
k (xk ) = 0 =⇒ ak = −2`′k (xk ),

ĥk (xk ) = 0 =⇒ b̂k = 0,
ĥ′k (xk ) = 1 =⇒ âk`

2
k (xk ) = 1 =⇒ âk = 1.

Hence the Hermite basis functions are

hk (x ) =
(
1 − 2(x − xk )`′k (xk )

)
`2k (x ), (2.31)

ĥk (x ) = (x − xk )`
2
k (x ). (2.32)

�
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Example→ Hermite interpolant for f (x ) = sin(x ) with {0, π2 }.
We have x0 = 0, x1 =

π
2 and f (x0) = 0, f (x1) = 1, f ′(x0) = 1, f ′(x1) = 0, so

p3(x ) = f (x0)h0(x ) + f ′(x0)ĥ0(x ) + f (x1)h1(x ) + f ′(x1)ĥ1(x ) = ĥ0(x ) + h1(x ).

�e Lagrange polynomials are

`0(x ) =
x − x1
x0 − x1

= 1 − 2
π x , `1(x ) =

x − x0
x1 − x0

= 2
π x =⇒ `′1(x ) =

2
π .

So

h1(x ) =
(
1 − 2(x − x1)`

′
1(x )

)
`21 (x ) =

4
π 2x

2(3 − 4
π x ), ĥ0(x ) = (x − x0)`

2
0 (x ) = x (1 − 2

π x )
2,

and we get
p3(x ) = x (1 − 2

π x )
2 + 4

π 2x
2(3 − 4

π x ).

A similar error estimate can be derived as for normal interpolation, and analogous interpolants
can be found for di�erent sets of derivative conditions (see the problems).

I�e Hermite interpolant can also be calculated using a modi�ed divided-di�erence table.

I A surprising connection (for those taking Algebra II): both the original and Hermite inter-
polating polynomials can be viewed as the Chinese Remainder �eorem applied to polynomial
rings. See the Wikipedia page on Chinese Remainder �eorem for details.
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3 Di�erentiation

How do we di�erentiate functions numerically?

�e de�nition of the derivative as

f ′(x0) = lim
h→0

f (x0 + h) − f (x0)

h
, (3.1)

suggests an obvious approximation: just pick some small �nite h to give the estimate

f ′(x0) ≈
f (x0 + h) − f (x0)

h
. (3.2)

For h > 0 this is called a forward di�erence (and, for h < 0, a backward di�erence). It is an
example of a �nite-di�erence formula.

Of course, what we are doing with the forward di�erence is approximating f ′(x0) by the slope
of the linear interpolant for f at the nodes x0 and x1 = x0 + h. So we could also have derived
(3.2) by starting with the Lagrange form of the interpolating polynomial,

f (x ) =
x − x1
x0 − x1

f (x0) +
x − x0
x1 − x0

f (x1) +
f ′′(ξ )

2 (x − x0) (x − x1) (3.3)

for some ξ ∈ [x0,x1]. Di�erentiating – and remembering that ξ depends on x , so that we need
to use the chain rule – we get

f ′(x ) =
1

x0 − x1
f (x0) +

1
x1 − x0

f (x1) +
f ′′(ξ )

2 (2x − x0 − x1) +
f ′′′(ξ )

2

(
dξ
dx

)
(x − x0) (x − x1),

(3.4)

=⇒ f ′(x0) =
f (x1) − f (x0)

x1 − x0
+ f ′′(ξ )

x0 − x1
2 . (3.5)

Equivalently,
f ′(x0) =

f (x0 + h) − f (x0)

h
− f ′′(ξ )

h

2 . (3.6)

�is shows that the truncation error for our forward di�erence approximation is −f ′′(ξ )h/2,
for some ξ ∈ [x0,x0 + h]. In other words, a smaller interval or a less “wiggly” function will
lead to a be�er estimate, as you would expect.
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Another way to estimate the truncation error is to use Taylor’s theorem 2.2, which tells us that

f (x0 + h) = f (x0) + hf
′(x0) + h

2 f
′′(ξ )

2 for some ξ between x0 and x0 + h. (3.7)

Rearranging this will give back (3.6).

Example→ Derivative of f (x ) = log(x ) at x0 = 2.
Using a forward-di�erence, we get the following sequence of approximations:
h Forward di�erence Truncation error
1 0.405465 0.0945349
0.1 0.487902 0.0120984
0.01 0.498754 0.00124585
0.001 0.499875 0.000124958

Indeed the error is linear in h, and we estimate that it is approximately 0.125h when h is small.
�is agrees with (3.6), since f ′′(x ) = −x−2, so we expect −f ′′(ξ )/2 ≈ 1

8 .

Since the error is linearly proportional to h, the approximation is called linear, or �rst order.

3.1 Higher-order �nite di�erences

To get a higher-order approximation, we can di�erentiate a higher degree interpolating poly-
nomial. �is means that we need more nodes.

Example→ Central di�erence.
Take three nodes x0, x1 = x0+h, and x2 = x0+2h. �en the Lagrange form of the interpolating
polynomial is

f (x ) =
(x − x1) (x − x2)

(x0 − x1) (x0 − x2)
f (x0) +

(x − x0) (x − x2)

(x1 − x0) (x1 − x2)
f (x1) +

(x − x0) (x − x1)

(x2 − x0) (x2 − x1)
f (x2)

+
f ′′′(ξ )

3! (x − x0) (x − x1) (x − x2).

Di�erentiating, we get

f ′(x ) =
2x − x1 − x2

(x0 − x1) (x0 − x2)
f (x0) +

2x − x0 − x2
(x1 − x0) (x1 − x2)

f (x1) +
2x − x0 − x1

(x2 − x0) (x2 − x1)
f (x2)

+
f ′′′(ξ )

6

(
(x − x1) (x − x2) + (x − x0) (x − x2) + (x − x0) (x − x1)

)
+

f (4) (ξ )

6

(
dξ
dx

)
(x − x0) (x − x1) (x − x2).

Now substitute in x = x1 to evaluate this at the central point:

f ′(x1) =
x1 − x2

(x0 − x1) (x0 − x2)
f (x0) +

2x1 − x0 − x2
(x1 − x0) (x1 − x2)

f (x1) +
x1 − x0

(x2 − x0) (x2 − x1)
f (x2)

+
f ′′′(ξ )

6 (x1 − x0) (x1 − x2),

=
−h

2h2 f (x0) + 0 + h

2h2 f (x2) −
f ′′′(ξ )

6 h2

=
f (x1 + h) − f (x1 − h)

2h −
f ′′′(ξ )

6 h2.
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�is is called a central di�erence approximation for f ′(x1), and is frequently used in practice.

To see the quadratic behaviour of the truncation error, go back to our earlier example.

Example→ Derivative of f (x ) = log(x ) at x = 2.
h Forward di�erence Truncation error Central di�erence Truncation error
1 0.405465 0.0945349 0.549306 -0.0493061
0.1 0.487902 0.0120984 0.500417 -0.000417293
0.01 0.498754 0.00124585 0.500004 -4.16673e-06
0.001 0.499875 0.000124958 0.500000 -4.16666e-08

�e truncation error for the central di�erence is about 0.04h2, which agrees with the formula
since f ′′′(ξ ) ≈ 2/23 = 1

4 when h is small.

3.2 Rounding error

�e problem with numerical di�erentiation is that it involves subtraction of nearly-equal num-
bers. As h gets smaller, the problem gets worse.

To quantify this for the central di�erence, suppose that we have the correctly rounded values
of f (x1 ± h), so that

�[f (x1 + h)] = (1 + δ1) f (x1 + h), �[f (x1 − h)] = (1 + δ2) f (x1 − h), (3.8)

where |δ1 |, |δ2 | ≤ ϵM. Ignoring the rounding error in dividing by 2h, we then have that
�����
f ′(x1) −

�[f (x1 + h)] − �[f (x1 − h)]
2h

�����
=

�����
−
f ′′′(ξ )

6 h2 −
δ1 f (x1 + h) − δ2 f (x1 − h)

2h
�����

(3.9)

≤
| f ′′′(ξ ) |

6 h2 + ϵM
| f (x1 + h) | + | f (x1 − h) |

2h (3.10)

≤
h2

6 max
[x1−h,x1+h]

| f ′′′(ξ ) | +
ϵM
h

max
[x1−h,x1+h]

| f (ξ ) |. (3.11)

�e �rst term is the truncation error, which tends to zero as h → 0. But the second term is the
rounding error, which tends to in�nity as h → 0.

Example→ Derivative of f (x ) = log(x ) at x = 2 again.
Here is a comparison of the terms in the above inequality using Python (the red points are the
le�-hand side), shown on logarithmic scales. To estimate the maxima, I just took ξ = 2.
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You see that once h is small enough, rounding error takes over and the error in the computed
derivative starts to increase again.

3.3 Richardson extrapolation

Finding higher-order formulae by di�erentiating Lagrange polynomials is tedious, and there
is a simpler trick to obtain higher-order formulae, called Richardson extrapolation.

We begin from the central-di�erence formula. Since we will use formulae with di�erent h, let
us de�ne the notation

Dh := f (x1 + h) − f (x1 − h)

2h . (3.12)

Now use Taylor’s theorem to expand more terms in the truncation error:

f (x1 ±h) = f (x1) ± f ′(x1)h+
f ′′(x1)

2 h2 ±
f ′′′(x1)

3! h3 +
f (4) (x1)

4! h4 ±
f (5) (x1)

5! h5 +O (h6). (3.13)

Substituting into (3.12), the even powers of h cancel and we get

Dh =
1

2h

(
2f ′(x1)h + 2f ′′′(x1)

h3

6 + 2f (5) (x1)
h5

120 + O (h
7)

)
(3.14)

= f ′(x1) + f ′′′(x1)
h2

6 + f (5) (x1)
h4

120 + O (h
6). (3.15)

I You may not have seen the big-Oh notation. When we write f (x ) = O (д(x )), we mean

lim
x→0

| f (x ) |

|д(x ) |
≤ M < ∞.

So the error is O (h6) if it gets smaller at least as fast as h6 as h → 0 (essentially, it contains no
powers of h less than 6).

I�e leading term in the error here has the same coe�cient h2/6 as the truncation error we
derived earlier, although we have now expanded the error to higher powers of h.
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�e trick is to apply the same formula with di�erent step-sizes, typically h and h/2:

Dh = f ′(x1) + f ′′′(x1)
h2

6 + f (5) (x1)
h4

120 + O (h
6), (3.16)

Dh/2 = f ′(x1) + f ′′′(x1)
h2

22(6) + f (5) (x1)
h4

24(120) + O (h
6). (3.17)

We can then eliminate the h2 term by simple algebra:

Dh − 22Dh/2 = −3f ′(x1) +

(
1 − 22

24

)
f (5) (x1)

h4

120 + O (h
6), (3.18)

=⇒ D (1)
h

:=
22Dh/2 − Dh

3 = f ′(x1) − f (5) (x1)
h4

480 + O (h
6). (3.19)

�e new formula D (1)
h

is 4th-order accurate.

Example→ Derivative of f (x ) = log(x ) at x = 2 (central di�erence).
h Dh Error D (1)

h
Error

1.0 0.5493061443 0.04930614433 0.4979987836 0.00200121642
0.1 0.5004172928 0.0004172927849 0.4999998434 1.565994869e-07
0.01 0.5000041667 4.166729162e-06 0.5000000000 1.563887908e-11
0.001 0.5000000417 4.166661505e-08 0.5000000000 9.292566716e-14

In fact, we could have applied this Richardson extrapolation procedure without knowing the
coe�cients of the error series. If we have some general order-n approximation

Dh = f ′(x ) +Chn + O (hn+1), (3.20)

then we can always evaluate it with h/2 to get

Dh/2 = f ′(x ) +C
hn

2n + O (h
n+1) (3.21)

and then eliminate the hn term to get a new approximation

D (1)
h

:=
2nDh/2 − Dh

2n − 1 = f ′(x ) + O (hn+1). (3.22)

I �e technique is used not only in di�erentiation but also in Romberg integration and the
Bulirsch-Stoer method for solving ODEs.

I�ere is nothing special about taking h/2; we could have taken h/3 or even 2h, and modi�ed
the formula accordingly. But h/2 is usually convenient.

Furthermore, Richardson extrapolation can be applied iteratively. In other words, we can now
combine D (1)

h
and D (1)

h/2 to get an even higher order approximation D (2)
h

, and so on.

Example→ Iterated Richardson extrapolation for central di�erences.
From

D (1)
h
= f ′(x1) +C1h

4 + O (h6),

D (1)
h/2 = f ′(x1) +C1

h4

24 + O (h
6),
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we can eliminate the h4 term to get the 6th-order approximation

D (2)
h

:=
24D (1)

h/2 − D
(1)
h

24 − 1 .

I Lewis Fry Richardson (1881–1953) was from Newcastle and an undergraduate there. He was
the �rst person to apply mathematics (�nite di�erences) to weather prediction, and was ahead
of his time: in the absence of electronic computers, he estimated that 60 000 people would be
needed to predict the next day’s weather!
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4 Nonlinear equations

How do we �nd roots of nonlinear equations?

Given a general equation
f (x ) = 0, (4.1)

there will usually be no explicit formula for the root(s) x∗, so we must use an iterative method.

Root�nding is a delicate business, and it is essential to begin by plo�ing a graph of f (x ), so
that you can tell whether the answer you get from your numerical method is correct.

Example→ f (x ) = 1
x − a, for a > 0.

Clearly we know the root is exactly x∗ =
1
a , but this will serve as an example to test some of

our methods.

4.1 Interval bisection

If f is continuous and we can �nd an interval where it changes sign, then it must have a root
in this interval. Formally, this is based on

�eorem 4.1 (Intermediate Value �eorem). If f is continuous on [a,b] and c lies between f (a)

and f (b), then there is at least one point x ∈ [a,b] such that f (x ) = c .

If f (a) f (b) < 0, then f changes sign at least once in [a,b], so by �eorem 4.1 there must be a
point x∗ ∈ [a,b] where f (x∗) = 0.

We can turn this into the following iterative algorithm:

Algorithm 4.2 (Interval bisection). Let f be continuous on [a0,b0], with f (a0) f (b0) < 0.

• At each step, setmk = (ak + bk )/2.
• If f (ak ) f (mk ) ≥ 0 then set ak+1 =mk , bk+1 = bk , otherwise set ak+1 = ak , bk+1 =mk .

Example→ f (x ) = 1
x − 0.5.

1. Try a0 = 1, b0 = 3 so that f (a0) f (b0) = 0.5(−0.1666) < 0.
Now the midpoint ism0 = (1+ 3)/2 = 2, with f (m0) = 0. We are lucky and have already
stumbled on the root x∗ =m0 = 2!
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2. Suppose we had tried a0 = 1.5, b0 = 3, so f (a0) = 0.1666 and f (b0) = −0.1666, and again
f (a0) f (b0) < 0.
Nowm0 = 2.25, f (m0) = −0.0555. We have f (a0) f (m0) < 0, so we set a1 = a0 = 1.5 and
b1 =m0 = 2.25. �e root must lie in [1.5, 2.25].
Now m1 = 1.875, f (m1) = 0.0333, and f (a1) f (m1) > 0, so we take a2 = m1 = 1.875,
b2 = b1 = 2.25. �e root must lie in [1.875, 2.25].
We can continue this algorithm, halving the length of the interval each time.

Since the interval halves in size at each iteration, and always contains a root, we are guaranteed
to converge to a root provided that f is continuous. Stopping at step k , we get the minimum
possible error by choosingmk as our approximation.

Example→ Same example with initial interval [−0.5, 0.5].

In this case f (a0) f (b0) < 0, but there is no root in the interval.
�e rate of convergence is steady, so we can pre-determine how many iterations will be needed
to converge to a given accuracy. A�er k iterations, the interval has length

|bk − ak | =
|b0 − a0 |

2k
, (4.2)

so the error in the mid-point satis�es

|mk − x∗ | ≤
|b0 − a0 |

2k+1 . (4.3)

In order for |mk − x∗ | ≤ δ , we need n iterations, where
|b0 − a0 |

2n+1 ≤ δ =⇒ log |b0−a0 |−(n+1) log(2) ≤ log(δ ) =⇒ n ≥
log |b0 − a0 | − log(δ )

log(2) −1.
(4.4)

Example→With a0 = 1.5, b0 = 3, as in the above example, then for δ = ϵM = 1.1 × 10−16 we
would need

n ≥
log(1.5) − log(1.1 × 10−16)

log(2) − 1 =⇒ n ≥ 53 iterations.

I�is convergence is pre�y slow, but the method has the advantage of being very robust (i.e.,
use it if all else fails…). It has the more serious disadvantage of only working in one dimension.
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4.2 Fixed point iteration

�is is a very common type of root�nding method. �e idea is to transform f (x ) = 0 into the
form д(x ) = x , so that a root x∗ of f is a �xed point of д, meaning д(x∗) = x∗. To �nd x∗, we
start from some initial guess x0 and iterate

xk+1 = д(xk ) (4.5)

until |xk+1 − xk | is su�ciently small. For a given equation f (x ) = 0, there are many ways to
transform it into the form x = д(x ). Only some will result in a convergent iteration.

Example→ f (x ) = x2 − 2x − 3.
Note that the roots are −1 and 3. Consider some di�erent rearrangements, with x0 = 0.

(a) д(x ) =
√

2x + 3, gives xk → 3 [to machine accuracy a�er 33 iterations].
(b) д(x ) = 3/(x − 2), gives xk → −1 [to machine accuracy a�er 33 iterations].
(c) д(x ) = (x2 − 3)/2, gives xk → −1 [but very slowly!].
(d) д(x ) = x2 − x − 3, gives xk → ∞.
(e) д(x ) = (x2 + 3)/(2x − 2), gives xk → −1 [to machine accuracy a�er 5 iterations].

If instead we take x0 = 42, then (a) and (b) still converge to the same roots, (c) now diverges,
(d) still diverges, and (e) now converges to the other root xk → 3.

In this section, we will consider which iterations will converge, before addressing the rate of
convergence in Section 4.3.

One way to ensure that the iteration will work is to �nd a contraction mapping д, which is a
map L → L (for some closed interval L) satisfying

|д(x ) − д(y) | ≤ λ |x − y | (4.6)

for some λ < 1 and for all x , y ∈ L. �e sketch below shows the idea:

�eorem 4.3 (Contraction Mapping �eorem). If д is a contraction mapping on L = [a,b], then

1. �ere exists a unique �xed point x∗ ∈ L with д(x∗) = x∗.
2. For any x0 ∈ L, the iteration xk+1 = д(xk ) will converge to x∗ as k → ∞.

Proof. To prove existence, considerh(x ) = д(x )−x . Sinceд : L → L we haveh(a) = д(a)−a ≥ 0
and h(b) = д(b) − b ≤ 0. Moreover, it follows from the contraction property (4.6) that д is
continuous (think of “ϵδ”), therefore so is h. So �eorem 4.1 guarantees the existence of at
least one point x∗ ∈ L such that h(x∗) = 0, i.e. д(x∗) = x∗.
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For uniqueness, suppose x∗ and y∗ are both �xed points of д in L. �en

|x∗ − y∗ | = |д(x∗) − д(y∗) | ≤ λ |x∗ − y∗ | < |x∗ − y∗ |, (4.7)

which is a contradiction.

Finally, to show convergence, consider

|x∗ − xk+1 | = |д(x∗) − д(xk ) | ≤ λ |x∗ − xk | ≤ . . . ≤ λ
k+1 |x∗ − x0 |. (4.8)

Since λ < 1, we see that xk → x∗ as k → ∞. �

I �eorem 4.3 is also known as the Banach �xed point theorem, and was proved by Stefan
Banach in his 1920 PhD thesis.

To apply this result in practice, we need to know whether a given function д is a contraction
mapping on some interval.

If д is di�erentiable, then Taylor’s theorem says that there exists ξ ∈ (x ,y) with

д(x ) = д(y) + д′(ξ ) (x − y) =⇒ |д(x ) − д(y) | ≤
(

max
ξ∈L
|д′(ξ ) |

)
|x − y |. (4.9)

So if (a) д : L → L and (b) |д′(x ) | ≤ M for all x ∈ L with M < 1, then g is a contraction mapping
on L.

Example→ Iteration (a) from previous example, д(x ) =
√

2x + 3.
Here д′ = (2x + 3)−1/2, so we see that |д′(x ) | < 1 for all x > −1.

For д to be a contraction mapping on an interval L, we also need that д maps L into itself. Since
our particular д is continuous and monotonic increasing (for x > −3

2 ), it will map an interval
[a,b] to another interval whose end-points are д(a) and д(b). For example, д(−1

2 ) =
√

2 and
д(4) =

√
11, so the interval L = [−1

2 , 4] is mapped into itself. It follows by �eorem 4.3 that (1)
there is a unique �xed point x∗ ∈ [−1

2 , 4] (which we know is x∗ = 3), and (2) the iteration will
converge to x∗ for any x0 in this interval (as we saw for x0 = 0).

In practice, it is not always easy to �nd a suitable interval L. But knowing that |д′(x∗) | < 1 is
enough to guarantee that the iteration will converge if x0 is close enough to x∗.

�eorem 4.4 (Local Convergence �eorem). Let д and д′ be continuous in the neighbourhood
of an isolated �xed point x∗ = д(x∗). If |д′(x∗) | < 1 then there is an interval L = [x∗ − δ ,x∗ + δ ]
such that xk+1 = д(xk ) converges to x∗ whenever x0 ∈ L.

Proof. By continuity of д′, there exists some interval L = [x∗ − δ ,x∗ + δ ] with δ > 0 such that
|д′(x ) | ≤ M for some M < 1, for all x ∈ L. Now let x ∈ L. It follows that

|x∗ − д(x ) | = |д(x∗) − д(x ) | ≤ M |x∗ − x | < |x∗ − x | ≤ δ , (4.10)

so д(x ) ∈ L. Hence д is a contraction mapping on L and �eorem 4.3 shows that xk → x∗. �
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Example→ Iteration (a) again, д(x ) =
√

2x + 3.
Here we know that x∗ = 3, and |д′(3) | = 1

3 < 1, so �eorem 4.4 tells us that the iteration will
converge to 3 if x0 is close enough to 3.

Example→ Iteration (e) again, д(x ) = (x2 + 3)/(2x − 2).
Here we have

д′(x ) =
x2 − 2x − 3
2(x − 1)2 ,

so we see that д′(−1) = д′(3) = 0 < 1. So �eorem 4.4 tells us that the iteration will converge
to either root if we start close enough.

I As we will see, the fact that д′(x∗) = 0 is related to the fast convergence of iteration (e).

4.3 Orders of convergence

To measure the speed of convergence, we compare the error |x∗ − xk+1 | to the error at the
previous step, |x∗ − xk |.

Example→ Interval bisection.
Here we had |x∗ −mk+1 | ≤

1
2 |x∗ −mk |. �is is called linear convergence, meaning that we have

|x∗ − xk+1 | ≤ λ |x∗ − xk | for some constant λ < 1.

Example→ Iteration (a) again, д(x ) =
√

2x + 3.
Look at the sequence of errors in this case:
xk |3 − xk | |3 − xk |/|3 − xk−1 |
0.0000000000 3.0000000000 -
1.7320508076 1.2679491924 0.4226497308
2.5424597568 0.4575402432 0.3608506129
2.8433992885 0.1566007115 0.3422665304
2.9473375404 0.0526624596 0.3362849319
2.9823941860 0.0176058140 0.3343143126
2.9941256440 0.0058743560 0.3336600063

We see that the ratio |x∗ − xk |/|x∗ − xk−1 | is indeed less than 1, and seems to be converging to
λ ≈ 1

3 . So this is a linearly convergent iteration.

Example→ Iteration (e) again, д(x ) = (x2 + 3)/(2x − 2).
Now the sequence is:
xk |(−1) − xk | |(−1) − xk |/|(−1) − xk−1 |
0.0000000000 1.0000000000 -
-1.5000000000 0.5000000000 0.5000000000
-1.0500000000 0.0500000000 0.1000000000
-1.0006097561 0.0006097561 0.0121951220
-1.0000000929 0.0000000929 0.0001523926

Again the ratio |x∗ − xk |/|x∗ − xk−1 | is certainly less than 1, but this time we seem to have
λ → 0 as k → ∞. �is is called superlinear convergence, meaning that the convergence is in
some sense “accelerating”.
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In general, if xk → x∗ then we say that the sequence {xk} converges linearly if

lim
k→∞

|x∗ − xk+1 |

|x∗ − xk |
= λ with 0 < λ < 1. (4.11)

If λ = 0 then the convergence is superlinear.

I�e constant λ is called the rate or ratio.

I Clearly superlinear convergence is a desirable property for a numerical algorithm.

�eorem 4.5. Let д′ be continuous in the neighbourhood of a �xed point x∗ = д(x∗), and suppose
that xk+1 = д(xk ) converges to x∗ as k → ∞.

1. If |д′(x∗) | , 0 then the convergence will be linear with rate λ = |д′(x∗) |.
2. If |д′(x∗) | = 0 then the convergence will be superlinear.

Proof. By Taylor’s theorem, note that

x∗ − xk+1 = д(x∗) − д(xk ) = д(x∗) −
[
д(x∗) + д

′(ξk ) (xk − x∗)
]
= д′(ξk ) (x∗ − xk ) (4.12)

for some ξk between x∗ and xk . Since xk → x∗, we have ξk → x∗ as k → ∞, so

lim
k→∞

|x∗ − xk+1 |

|x∗ − xk |
= lim

k→∞
|д′(ξk ) | = |д

′(x∗) |. (4.13)

�is proves the result. �

Example→ Iteration (a) again, д(x ) =
√

2x + 3.
We saw before that д′(3) = 1

3 , so �eorem 4.5 shows that convergence will be linear with
λ = |д′(3) | = 1

3 as we found numerically.

Example→ Iteration (e) again, д(x ) = (x2 + 3)/(2x − 2).
We saw that д′(−1) = 0, so �eorem 4.5 shows that convergence will be superlinear, again
consistent with our numerical �ndings.

Although it is of limited practical importance in Numerical Analysis, we can further classify
superlinear convergence by the order of convergence, de�ned as

α = sup
{
β : lim

k→∞

|x∗ − xk+1 |

|x∗ − xk |β
< ∞

}
. (4.14)

For example, α = 2 is called quadratic convergence and α = 3 is called cubic convergence,
although for a general sequence α need not be an integer (e.g. the secant method below).

4.4 Newton’s method

�is is a particular �xed point iteration that is very widely used because (as we will see) it
usually converges superlinearly.
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Graphically, the idea of Newton’s method is simple: given xk , draw the tangent line to f at
x = xk , and let xk+1 be the x-intercept of this tangent. So

0 − f (xk )

xk+1 − xk
= f ′(xk ) =⇒ xk+1 = xk −

f (xk )

f ′(xk )
. (4.15)

I In fact, Newton only applied the method to polynomial equations, and without using cal-
culus. �e general form using derivatives (“�uxions”) was �rst published by �omas Simpson
in 1740. [See “Historical Development of the Newton-Raphson Method” by T.J. Ypma, SIAM
Review 37, 531 (1995).]

Another way to derive this iteration is to approximate f (x ) by the linear part of its Taylor
series centred at xk :

0 ≈ f (xk+1) ≈ f (xk ) + f ′(xk ) (xk+1 − xk ). (4.16)

�e iteration function for Newton’s method is

д(x ) = x −
f (x )

f ′(x )
, (4.17)

so using f (x∗) = 0 we see that д(x∗) = x∗. To assess the convergence, note that

д′(x ) = 1 − f ′(x ) f ′(x ) − f (x ) f ′′(x )

[f ′(x )]2 =
f (x ) f ′′(x )

[f ′(x )]2 =⇒ д′(x∗) = 0 if f ′(x∗) , 0. (4.18)

So if f ′(x∗) , 0, �eorem 4.4 shows that the iteration will converge for x0 close enough to x∗.
Moreover, since д′(x∗) = 0, �eorem 4.5 shows that this convergence will be superlinear.

Example→ Calculate a−1 using f (x ) = 1
x − a for a > 0.

Newton’s method gives the iterative formula

xk+1 = xk −

1
xk
− a

− 1
x2
k

= 2xk − ax2
k .

From the graph of f , it is clear that the iteration will converge for any x0 ∈ (0,a−1), but will
diverge if x0 is too large. With a = 0.5 and x0 = 1, Python gives
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xk |2 − xk | |2 − xk |/|2 − xk−1 | |2 − xk |/|2 − xk−1 |
2

1.0 1.0 - -
1.5 0.5 0.5 0.5
1.875 0.125 0.25 0.5
1.9921875 0.0078125 0.0625 0.5
1.999969482 3.051757812e-05 0.00390625 0.5
2.0 4.656612873-10 1.525878906e-05 0.5
2.0 1.084202172e-19 2.328396437e-10 0.5

In 6 steps, the error is below ϵM: pre�y rapid convergence! �e third column shows that the
convergence is superlinear. �e fourth column shows that |x∗ − xk+1 |/|x∗ − xk |

2 is constant,
indicating that the convergence is quadratic (order α = 2).

I Although the solution 1
a is known exactly, this method is so e�cient that it is sometimes

used in computer hardware to do division!

In practice, it is not usually possible to determine ahead of time whether a given starting value
x0 will converge.

I A robust computer implementation should catch any a�empt to take too large a step, and
switch to a less sensitive (but slower) algorithm (e.g. bisection).

However, it always makes sense to avoid any points where f ′(x ) = 0.

Example→ f (x ) = x3 − 2x + 2.
Here f ′(x ) = 3x2 − 2 so there are turning points at x = ±

√
2
3 where f ′(x ) = 0, as well as a

single real root at x∗ ≈ −1.769. �e presence of points where f ′(x ) = 0 means that care is
needed in choosing a starting value x0.

If we take x0 = 0, then x1 = 0 − f (0)/f ′(0) = 1, but then x2 = 1 − f (1)/f ′(1) = 0, so the
iteration gets stuck in an in�nite loop:

Other starting values, e.g. x0 = −0.5 can also be sucked into this in�nite loop! �e correct
answer is obtained for x0 = −1.0.
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I�e sensitivity of Newton’s method to the choice of x0 is beautifully illustrated by applying
it to a complex function such as f (z) = z3 − 1. �e following plot colours points z0 in the
complex plane according to which root they converge to (1, e2πi/3, or e−2πi/3):

�e boundaries of these basins of a�raction are fractal.

4.5 Newton’s method for systems

Newton’s method generalizes to higher-dimensional problems where we want to �nd x ∈ Rm

that satis�es f (x ) = 0 for some function f : Rm → Rm.

To see how it works, take m = 2 so that x = (x1,x2)
> and f = [f1(x ), f2(x )]>. Taking the

linear terms in Taylor’s theorem for two variables gives

0 ≈ f1(xk+1) ≈ f1(xk ) +
∂ f1
∂x1

�����xk
(x1,k+1 − x1,k ) +

∂ f1
∂x2

�����xk
(x2,k+1 − x2,k ), (4.19)

0 ≈ f2(xk+1) ≈ f2(xk ) +
∂ f2
∂x1

�����xk
(x1,k+1 − x1,k ) +

∂ f2
∂x2

�����xk
(x2,k+1 − x2,k ). (4.20)

In matrix form, we can write(
0
0

)
=

(
f1(xk )
f2(xk )

)
+

(
∂ f1/∂x1(xk ) ∂ f1/∂x2(xk )
∂ f2/∂x1(xk ) ∂ f2/∂x2(xk )

) (
x1,k+1 − x1,k
x2,k+1 − x2,k

)
. (4.21)

�e matrix of partial derivatives is called the Jacobian matrix J (xk ), so (for anym) we have

0 = f (xk ) + J (xk ) (xk+1 − xk ). (4.22)

To derive Newton’s method, we rearrange this equation for xk+1,

J (xk ) (xk+1 − xk ) = −f (xk ) =⇒ xk+1 = xk − J
−1(xk ) f (xk ). (4.23)
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So to apply the method, we need the inverse of J .
I Ifm = 1, then J (xk ) = ∂ f∂x (xk ), and J−1 = 1/J , so this reduces to the scalar Newton’s method.

Example → Apply Newton’s method to the simultaneous equations xy − y3 − 1 = 0 and
x2y + y − 5 = 0, with starting values x0 = 2, y0 = 3.
�e Jacobian matrix is

J (x ,y) =

(
y x − 3y2

2xy x2 + 1

)
=⇒ J−1(x ,y) =

1
y (x2 + 1) − 2xy (x − 3y2)

(
x2 + 1 3y2 − x
−2xy y

)
.

�e �rst iteration of Newton’s method gives(
x1
y1

)
=

(
2
3

)
−

1
3(5) − 12(2 − 27)

(
5 25
−12 3

) (
−22
10

)
=

(
1.55555556
2.06666667

)
.

Subsequent iterations give(
x2
y2

)
=

(
1.54720541
1.47779333

)
,

(
x3
y3

)
=

(
1.78053503
1.15886481

)
,

(
x4
y4

)
=

(
1.952843

1.02844269

)
,

(
x5
y5

)
=

(
1.99776297
1.00124041

)
,

so the method is converging accurately to the root x∗ = 2, y∗ = 1, shown in the following plot:

I By generalising the scalar analysis (beyond the scope of this course), it can be shown that
the convergence is quadratic for x0 su�ciently close to x∗, provided that J (x∗) is non-singular
(i.e., det[J (x∗)] , 0).
I In general, �nding a good starting point in more than one dimension is di�cult, particularly
because interval bisection is not available.

4.6 Aitken acceleration

�is is a simple trick for accelerating the convergence of a linearly convergent sequence {xk},
which (we recall) satis�es

lim
k→∞

|x∗ − xk+1 |

|x∗ − xk |
= λ. (4.24)
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If we had exactly
|x∗ − xk+1 |

|x∗ − xk |
= λ, (4.25)

then we could just take two neighbouring iterates and extrapolate directly to the answer,

x∗ =
xk+1 − λxk

1 − λ , (4.26)

with no need for any further iteration. Alternatively, we could use two successive iterations
to eliminate λ:

x∗ − xk+2
x∗ − xk+1

=
x∗ − xk+1
x∗ − xk

=⇒ (x∗ − xk+2) (x∗ − xk ) = (x∗ − xk+1)
2 (4.27)

=⇒ xk+2xk − (xk+2 + xk )x∗ = x2
k+1 − 2xk+1x∗ (4.28)

=⇒ x∗ =
xk+2xk − x

2
k+1

xk+2 − 2xk+1 + xk
= xk −

(xk+1 − xk )
2

xk+2 − 2xk+1 + xk
. (4.29)

�e idea of Aitken acceleration is that, even when the ratio between successive errors is not
precisely constant, the extrapolation (4.29) may still get closer to x∗ than a single step (or even
several steps) of the iteration. �e idea is to replace every third iterate by

x̂k+2 = xk −
(xk+1 − xk )

2

xk+2 − 2xk+1 + xk
. (4.30)

I You may see the forward di�erence notation ∆xk := xk+1 − xk , and ∆2xk := ∆(∆xk ).

I�e method was introduced by Alexander Aitken in 1926. He worked in Edinburgh, and at
Bletchley Park during WWII.

Example→ f (x ) = 1
x − 0.5 with д(x ) = x + 1

16 f (x ).
First we verify that this is a valid iteration. It is clear that д(2) = 2, and д′(x ) = 1 + 1

16 (−
1
x2 ),

so д′(2) = 0.984375, so by �eorem 4.4 the iteration will converge to x∗ = 2 if we start close
enough. Since д′(2) is non-zero, convergence is linear.

But since д′(2) is almost 1, we expect convergence to be slow. In Python, we get (to 7 s.f.):

x0 = 1.5
x1 = 1.510417
x2 = 1.520546
x3 = 1.530400
x4 = 1.539989
...

...
x818 = 1.999999

It takes 818 iterations to reduce the error to 10−6.
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Now we apply Aitken acceleration, and �nd the following

x0 = 1.5
x1 = 1.510417
x2 = 1.520546
x̂2 = x0 − (x1 − x0)

2/(x2 − 2x1 + x0) = 1.8776042
x3 = 1.8796413
x4 = 1.8816423
x̂4 = x̂2 − (x3 − x̂2)

2/(x4 − 2x3 + x̂2) = 1.9926343
...
...

x̂8 = 2.000000

�e error has reduced to 10−6 with only 8 evaluations of д.

I Aitken acceleration must be implemented with caution, as rounding error can a�ect ∆2xk .

When the original sequence {xk} comes from xk+1 = д(xk ), we can write

x̂k+1 = x̂k −
(xk+1 − x̂k )

2

xk+2 − 2xk+1 + x̂k
(4.31)

= x̂k −

(
д(x̂k ) − x̂k

)2

д(д(x̂k )) − 2д(x̂k ) + x̂k
= x̂k −

(
д(x̂k ) − x̂k

)2(
д(д(x̂k )) − д(x̂k )

)
−

(
д(x̂k ) − x̂k

) . (4.32)

Now suppose we are solving f (x ) = 0 with the iteration function д(x ) = x + f (x ). �en

x̂k+1 = x̂k −
f 2(x̂k )

f
(
f (x̂k ) + x̂k

)
− f (x̂k )

. (4.33)

�is is called Ste�ensen’s method.

I �is has the advantage of not requiring f ′, yet may be shown to converge quadratically
for x̂0 close enough to x∗ [proof omi�ed]. On the other hand, it does require two function
evaluations per step.

4.7 �asi-Newton methods

A drawback of Newton’s method is that the derivative f ′(xk ) must be computed at each itera-
tion. �is may be expensive to compute, or may not be available as a formula. Instead we can
use a quasi-Newton method

xk+1 = xk −
f (xk )

дk
, (4.34)

where дk is some easily-computed approximation to f ′(xk ).

Example→ Ste�ensen’s method:

дk =
f
(
f (xk ) + xk

)
− f (xk )

f (xk )
.

�is has the form 1
h

(
f (xk + h) − f (xk )

)
with h = f (xk ).
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Ste�ensen’s method requires two function evaluations per iteration. But once the iteration
has started, we already have two nearby points xk−1, xk , so we could approximate f ′(xk ) by a
backward di�erence

дk =
f (xk ) − f (xk−1)

xk − xk−1
=⇒ xk+1 = xk −

f (xk ) (xk − xk−1)

f (xk ) − f (xk−1)
. (4.35)

�is is called the secant method, and requires only one function evaluation per iteration (once
underway). �e name comes from its graphical interpretation:

I�e secant method was introduced by Newton.

Example→ f (x ) = 1
x − 0.5.

Now we need two starting values, so take x0 = 0.25, x1 = 0.5. �e secant method gives:
k xk |x∗ − xk |/|x∗ − xk−1 |
2 0.6875 0.75
3 1.01562 0.75
4 1.354 0.65625
5 1.68205 0.492188
6 1.8973 0.322998
7 1.98367 0.158976
8 1.99916 0.0513488

Convergence to ϵM is achieved in 12 iterations. Notice that the error ratio is decreasing, so the
convergence is superlinear.

�e secant method is a two-point method since xk+1 = д(xk−1,xk ). So �eorems 4.4 and 4.5 do
not apply.

I In general, one can have multipoint methods based on higher-order interpolation.

�eorem 4.6. If f ′(x∗) , 0 then the secant method converges for x0, x1 su�ciently close to x∗,
and the order of convergence is (1 +

√
5)/2 = 1.618 . . ..

I�is illustrates that orders of convergence need not be integers, and is also an appearance
of the golden ratio.

Proof. To simplify the notation, denote the truncation error by

εk := x∗ − xk . (4.36)
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Expanding in Taylor series around x∗, and using f (x∗) = 0, gives

f (xk−1) = −f
′(x∗)εk−1 +

f ′′(x∗)

2 ε2
k−1 + O (ε

3
k−1), (4.37)

f (xk ) = −f
′(x∗)εk +

f ′′(x∗)

2 ε2
k + O (ε

3
k ). (4.38)

So using the secant formula (4.35) we get

εk+1 = εk − (εk − εk−1)
−f ′(x∗)εk +

f ′′(x∗)
2 ε2

k
+ O (ε3

k
)

−f ′(x∗) (εk − εk−1) +
f ′′(x∗)

2 (ε2
k
− ε2

k−1) + O (ε
3
k−1)
, (4.39)

= εk −
−f ′(x∗)εk +

f ′′(x∗)
2 ε2

k
+ O (ε3

k
)

−f ′(x∗) +
f ′′(x∗)

2 (εk + εk−1) + O (ε
2
k−1)
, (4.40)

= εk +
−εk +

1
2ε

2
k
f ′′(x∗)/f

′(x∗) + O (ε
3
k
)

1 − 1
2 (εk + εk−1) f ′′(x∗)/f ′(x∗) + O (ε

2
k−1)
, (4.41)

= εk +

(
−εk +

f ′′(x∗)

2f ′(x∗)
ε2
k + O (ε

3
k )

) (
1 + (εk + εk−1)

f ′′(x∗)

2f ′(x∗)
+ O (ε2

k−1)

)
, (4.42)

= εk − εk +
f ′′(x∗)

2f ′(x∗)
ε2
k −

f ′′(x∗)

2f ′(x∗)
εk (εk + εk−1) + O (ε

3
k−1), (4.43)

= −
f ′′(x∗)

2f ′(x∗)
εkεk−1 + O (ε

3
k−1). (4.44)

�is is similar to the corresponding formula for Newton’s method, where we have

εk+1 = −
f ′′(x∗)

2f ′(x∗)
ε2
k + O (ε

3
k ).

Equation (4.44) tells us that the error for the secant method tends to zero faster than linearly,
but not quadratically (because εk−1 > εk ).

To �nd the order of convergence, note that εk+1 ∼ εkεk−1 suggests a power-law relation of the
form

|εk | = |εk−1 |
α

�����
f ′′(x∗)

2f ′(x∗)
�����

β

=⇒ |εk−1 | = |εk |
1/α

�����
f ′′(x∗)

2f ′(x∗)
�����

−β/α

. (4.45)

Pu�ing this in both sides of (4.44) gives

|εk |
α

�����
f ′′(x∗)

2f ′(x∗)
�����

β

= |εk |
(1+α )/α

�����
f ′′(x∗)

2f ′(x∗)
�����

(α−β )/α

. (4.46)

Equating powers gives

α =
1 + α
α

=⇒ α =
1 +
√

5
2 , β =

α − β

α
=⇒ β =

α

α + 1 =
1
α
. (4.47)

It follows that

lim
k→∞

|x∗ − xk+1 |

|x∗ − xk |α
= lim

k→∞

|εk+1 |

|εk |α
=

�����
f ′′(x∗)

2f ′(x∗)
�����

1/α
, (4.48)

so the secant method has order of convergence α . �
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5 Linear equations

How do we solve a linear system numerically?

Linear systems of the form
a11x1 + a12x2 + . . . + a1nxn = b1,
a21x1 + a22x2 + . . . + a2nxn = b2,
...

...
... =

...
an1x1 + an2x2 + . . . + annxn = bn

(5.1)

occur in many applications (o�en with very large n). It is convenient to express (5.1) in the
matrix form

Ax = b, (5.2)
where A is an n × n square matrix with elements aij , and x , b are n × 1 vectors.
We will need some basic facts from linear algebra:

1. A> is the transpose of A, so (a>)ij = aji .
2. A is symmetric if A = A>.
3. A is non-singular i� there exists a solution x ∈ Rn for every b ∈ Rn.
4. A is non-singular i� det(A) , 0.
5. A is non-singular i� there exists a unique inverse A−1 such that AA−1 = A−1A = I .

It follows from fact 5 that (5.2) has a unique solution i� A is non-singular, given by x = A−1b.
In this chapter, we will see how to solve (5.2) both e�ciently and accurately.
I Although this seems like a conceptually easy problem (just use Gaussian elimination!), it
is actually a hard one when n gets large. Nowadays, linear systems with n = 1 million arise
routinely in computational problems. And even for small n there are some potential pitfalls,
as we will see.
I If A is instead rectangular (m × n), then there are di�erent numbers of equations and un-
knowns, and we do not expect a unique solution. Nevertheless, we can still look for an ap-
proximate solution – this will be considered in Section 6.
Many algorithms are based on the idea of rewriting (5.2) in a form where the matrix is easier
to invert. Easiest to invert are diagonal matrices, followed by orthogonal matrices (where
A−1 = A>). However, the most common method for solving Ax = b transforms the system to
triangular form.

5.1 Triangular systems

If the matrix A is triangular, then Ax = b is straightforward to solve.
A matrix L is called lower triangular if all entries above the diagonal are zero:

L =

*.....
,

l11 0 · · · 0
l21 l22

. . .
...

...
. . . 0

ln1 · · · · · · lnn

+/////
-

. (5.3)
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�e determinant is just
det(L) = l11l22 · · · lnn, (5.4)

so the matrix will be non-singular i� all of the diagonal elements are non-zero.

Example→ Solve Lx = b for n = 4.
�e system is

*...
,

l11 0 0 0
l21 l22 0 0
l31 l32 l33 0
l41 l42 l43 l44

+///
-

*...
,

x1
x2
x3
x4

+///
-

=
*...
,

b1
b2
b3
b4

+///
-

⇐⇒

l11x1 = b1,
l21x1 + l22x2 = b2,
l31x1 + l32x2 + l33x3 = b3,
l41x1 + l42x2 + l43x3 + l44x4 = b4.

We can just solve step-by-step:

x1 =
b1
l11
, x2 =

b2 − l21x1
l22

, x3 =
b3 − l31x1 − l32x2

l33
, x4 =

b4 − l41x1 − l42x2 − l43x3
l44

.

�is is �ne since we know that l11, l22, l33, l44 are all non-zero when a solution exists.

In general, any lower triangular system Lx = b can be solved by forward substitution

xj =
bj −

∑j−1
k=1 ljkxk

ljj
, j = 1, . . . ,n. (5.5)

Similarly, an upper triangular matrix U has the form

U =

*.....
,

u11 u12 · · · u1n

0 u22
...

...
. . .

. . .
...

0 · · · 0 unn

+/////
-

, (5.6)

and an upper-triangular system Ux = b may be solved by backward substitution

xj =
bj −

∑n
k=j+1ujkxk

ujj
, j = n, . . . , 1. (5.7)

To estimate the computational cost of forward substitution, we can count the number of
�oating-point operations (+, −, ×, ÷).

Example→ Number of operations required for forward substitution.
Consider each xj . We have

j = 1→ 1 division
j = 2→ 1 division + [1 subtraction + 1 multiplication]
j = 3→ 1 division + 2×[1 subtraction + 1 multiplication]
...
j = n → 1 division + (n − 1) ×[1 subtraction + 1 multiplication]

So the total number of operations required is
n∑
j=1

(
1 + 2(j − 1)

)
= 2

n∑
j=1

j −
n∑
j=1

1 = n(n + 1) − n = n2.
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So solving a triangular system by forward (or backward) substitution takes n2 operations.

IWe say that the computational complexity of the algorithm is n2.

I In practice, this is only a rough estimate of the computational cost, because reading from
and writing to the computer’s memory also take time. �is can be estimated given a “memory
model”, but this depends on the particular computer.

5.2 Gaussian elimination

If our matrixA is not triangular, we can try to transform it to triangular form. Gaussian elimina-
tion uses elementary row operations to transform the system to upper triangular formUx = y.

Elementary row operations include swapping rows and adding multiples of one row to another.
�ey won’t change the solution x , but will change the matrix A and the right-hand side b.

Example→ Transform to upper triangular form the system

x1 + 2x2 + x3 = 0,
x1 − 2x2 + 2x3 = 4,

2x1 + 12x2 − 2x3 = 4.
A = *.

,

1 2 1
1 −2 2
2 12 −2

+/
-
, b = *.

,

0
4
4

+/
-
.

Stage 1. Subtract 1 times equation 1 from equation 2, and 2 times equation 1 from equation 3,
so as to eliminate x1 from equations 2 and 3:

x1 + 2x2 + x3 = 0,
−4x2 + x3 = 4,
8x2 − 4x3 = 4.

A(2) = *.
,

1 2 1
0 −4 1
0 8 −4

+/
-

b (2)
=

*.
,

0
4
4

+/
-
, m21 = 1, m31 = 2.

Stage 2. Subtract −2 times equation 2 from equation 3, to eliminate x2 from equation 3:

x1 + 2x2 + x3 = 0,
−4x2 + x3 = 4,
−2x3 = 12.

A(3) = *.
,

1 2 1
0 −4 1
0 0 −2

+/
-

b (3)
=

*.
,

0
4
12

+/
-
, m32 = −2.

Now the system is upper triangular, and back substitution gives x1 = 11, x2 = −
5
2 , x3 = −6.

We can write the general algorithm as follows.

Algorithm 5.1 (Gaussian elimination). Let A(1) = A and b (1)
= b. �en for each k from 1 to

n − 1, compute a new matrix A(k+1) and right-hand side b (k+1) by the following procedure:

1. De�ne the row multipliers

mik =
a (k )
ik

a (k )
kk

, i = k + 1, . . . ,n.

2. Use these to remove the unknown xk from equations k + 1 to n, leaving

a (k+1)
ij = a (k )ij −mika

(k )
kj
, b (k+1)

i = b (k )i −mikb
(k )
k
, i, j = k + 1, . . . ,n.

�e �nal matrix A(n) = U will then be upper triangular.
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�is procedure will work providing a (k )
kk
, 0 for every k . (We will worry about this later.)

What about the computational cost of Gaussian elimination?

Example→ Number of operations required to �nd U .
Computing A(k+1) requires:

• n − (k + 1) + 1 = n − k divisions to computemik .
• (n − k )2 subtractions and the same number of multiplications to compute a (k+1)

ij .

So in total A(k+1) requires 2(n −k )2 +n −k operations. Overall, we need to compute A(k+1) for
k = 1, . . . ,n − 1, so the total number of operations is

N =
n−1∑
k=1

(
2n2 + n − (4n + 1)k + 2k2

)
= n(2n + 1)

n−1∑
k=1

1 − (4n + 1)
n−1∑
k=1

k + 2
n−1∑
k=1

k2.

Recalling that
n∑

k=1
k = 1

2n(n + 1),
n∑

k=1
k2 = 1

6n(n + 1) (2n + 1),

we �nd

N = n(2n + 1) (n − 1) − 1
2 (4n + 1) (n − 1)n + 1

3 (n − 1)n(2n − 1) = 2
3n

3 − 1
2n

2 − 1
6n.

So the number of operations required to �nd U is O (n3).

I It is known that O (n3) is not optimal, and the best theoretical algorithm known for inverting
a matrix takes O (n2.3728639) operations (although this is not practically useful). But it remains
an open conjecture that there exists an O (n2+ϵ ) algorithm, for ϵ arbitrarily small.

5.3 LU decomposition

In Gaussian elimination, both the �nal matrix U and the sequence of row operations are de-
termined solely byA, and do not depend on b. We will see that the sequence of row operations
that transforms A to U is equivalent to le�-multiplying by a matrix F , so that

FA = U , Ux = Fb . (5.8)

To see this, note that step k of Gaussian elimination can be wri�en in the form

A(k+1) = F (k )A(k ), b (k+1)
= F (k )b (k ), where F (k ) :=

*............
,

1 0 · · · · · · · · · 0
0 . . .

. . .
...

...
. . . 1 . . .

...
... −mk+1,k

. . .
. . .

...
...

...
. . .

. . . 0
0 · · · −mn,k · · · 0 1

+////////////
-

.

(5.9)
Multiplying by F (k ) has the e�ect of subtractingmik times row k from row i , for i = k+1, . . . ,n.
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I A matrix with this structure (the identity except for a single column below the diagonal) is
called a Frobenius matrix.

Example→ You can check in the earlier example that

F (1)A = *.
,

1 0 0
−1 1 0
−2 0 1

+/
-

*.
,

1 2 1
1 −2 2
2 12 −2

+/
-
=

*.
,

1 2 1
1−1(1) −2−1(2) 2−1(1)
2−2(1) 12−2(2) −2−2(1)

+/
-
=

*.
,

1 2 1
0 −4 1
0 8 −4

+/
-
= A(2),

and

F (2)A(2) = *.
,

1 0 0
0 1 0
0 2 1

+/
-

*.
,

1 2 1
0 −4 1
0 8 −4

+/
-
=

*.
,

1 2 1
0 −4 1
0 8+2(−4) −4+2(1)

+/
-
=

*.
,

1 2 1
0 −4 1
0 0 −2

+/
-
= A(3) = U .

It follows that
U = A(n) = F (n−1)F (n−2) · · · F (1)A. (5.10)

Now the F (k ) are invertible, and the inverse is just given by adding rows instead of subtracting:

(F (k ) )−1 =

*............
,

1 0 · · · · · · · · · 0
0 . . .

. . .
...

...
. . . 1 . . .

...
... mk+1,k

. . .
. . .

...
...

...
. . .

. . . 0
0 · · · mn,k · · · 0 1

+////////////
-

. (5.11)

So we could write
A = (F (1) )−1(F (2) )−1 · · · (F (n−1) )−1U . (5.12)

Since the successive operations don’t “interfere” with each other, we can write

(F (1) )−1(F (2) )−1 · · · (F (n−1) )−1 =

*............
,

1 0 · · · · · · · · · 0
m2,1 1 . . .

...

m3,1 m3,2 1 . . .
...

m4,1 m4,2 m4,3
. . .

. . .
...

...
...

... 1 0
mn,1 mn,2 mn,3 · · · mn,n−1 1

+////////////
-

:= L. (5.13)

�us we have established the following result.

�eorem 5.2 (LU decomposition). Let U be the upper triangular matrix from Gaussian elimi-
nation of A (without pivoting), and let L be the unit lower triangular matrix (5.13). �en

A = LU .
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I Unit lower triangular means that there are all 1’s on the diagonal.

I�eorem 5.2 says that Gaussian elimination is equivalent to factorising A as the product of
a lower triangular and an upper triangular matrix. �is is not at all obvious from Algorithm
5.1! �e decomposition is unique up to a scaling LD, D−1U for some diagonal matrix D.

�e system Ax = b becomes LUx = b, which we can readily solve by se�ingUx = y. We �rst
solve Ly = b for y, then Ux = y for x . Both are triangular systems.

Moreover, if we want to solve several systems Ax = b with di�erent b but the same matrix,
we just need to compute L and U once. �is saves time because, although the initial LU fac-
torisation takes O (n3) operations, the evaluation takes only O (n2).

I�is matrix factorisation viewpoint dates only from the 1940s, and LU decomposition was
introduced by Alan Turing in a 1948 paper (Q. J. Mechanics Appl. Mat. 1, 287). Other common
factorisations used in numerical linear algebra are QR (which we will see later) and Cholesky.

Example→ Solve our earlier example by LU decomposition.

*.
,

1 2 1
1 −2 2
2 12 −2

+/
-

*.
,

x1
x2
x3

+/
-
=

*.
,

0
4
4

+/
-
.

We apply Gaussian elimination as before, but ignore b (for now), leading to

U = *.
,

1 2 1
0 −4 1
0 0 −2

+/
-
.

As we apply the elimination, we record the multipliers so as to construct the matrix

L = *.
,

1 0 0
1 1 0
2 −2 1

+/
-
.

�us we have the factorisation/decomposition

*.
,

1 2 1
1 −2 2
2 12 −2

+/
-
=

*.
,

1 0 0
1 1 0
2 −2 1

+/
-

*.
,

1 2 1
0 −4 1
0 0 −2

+/
-
.

With the matrices L and U , we can readily solve for any right-hand side b. We illustrate for
our particular b. Firstly, solve Ly = b:

*.
,

1 0 0
1 1 0
2 −2 1

+/
-

*.
,

y1
y2
y3

+/
-
=

*.
,

0
4
4

+/
-

=⇒ y1 = 0, y2 = 4 − y1 = 4, y3 = 4 − 2y1 + 2y2 = 12.

Notice that y is the right-hand side b (3) constructed earlier. �en, solve Ux = y:

*.
,

1 2 1
0 −4 1
0 0 −2

+/
-

*.
,

x1
x2
x3

+/
-
=

*.
,

0
4
12

+/
-

=⇒ x3 = −6, x2 = −
1
4 (4 − x3) = −

5
2 , x1 = −2x2 − x3 = 11.
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5.4 Pivoting

Gaussian elimination and LU factorisation will both fail if we ever hit a zero on the diagonal.
But this does not mean that the matrix A is singular.

Example→�e system

*.
,

0 3 0
2 0 0
0 0 1

+/
-

*.
,

x1
x2
x3

+/
-
=

*.
,

3
2
1

+/
-

obviously has solution x1 = x2 = x3 = 1 (the matrix has determinant −6). But Gaussian
elimination will fail because a (1)11 = 0, so we cannot calculatem21 andm31. However, we could
avoid the problem by changing the order of the equations to get the equivalent system

*.
,

2 0 0
0 3 0
0 0 1

+/
-

*.
,

x1
x2
x3

+/
-
=

*.
,

2
3
1

+/
-
.

Now there is no problem with Gaussian elimination (actually the matrix is already upper tri-
angular). Alternatively, we could have rescued Gaussian elimination by swapping columns:

*.
,

3 0 0
0 2 0
0 0 1

+/
-

*.
,

x2
x1
x3

+/
-
=

*.
,

3
2
1

+/
-
.

Swapping rows or columns is called pivoting. It is needed if the “pivot” element is zero, as in
the above example. But it is also used to reduce rounding error.

Example→ Consider the system (
10−4 1
−1 2

) (
x1
x2

)
=

(
1
1

)
.

1. Using Gaussian elimination with exact arithmetic gives

m21 = −104, a (2)22 = 2 + 104, b (2)2 = 1 + 104.

So backward substitution gives the solution

x2 =
1 + 104

2 + 104 = 0.9999, x1 =
1 − x2
a11

= 104
(
1 − 1 + 104

2 + 104

)
=

104

2 + 104 = 0.9998.

2. Now do the calculation in 3-digit arithmetic. We have

m21 = �(−104) = −104, a (2)22 = �(2 + 104)= 104, b (2)2 = �(1 + 104)= 104.

Now backward substitution gives

x2 = �
(

104

104

)
= 1, x1 = �

(
104(1 − 1)

)
= 0.

�e large value of m21 has caused a rounding error which has later led to a loss of sig-
ni�cance during the evaluation of x1.
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3. We do the calculation correctly in 3-digit arithmetic if we �rst swap the equations,(
−1 2

10−4 1

) (
x1
x2

)
=

(
1
1

)
.

Now,

m21 = �(−10−4) = −10−4, a (2)22 = �(1 + 10−4) = 1, b (2)2 = �(1 + 10−4) = 1,

and
x2 = �

(1
1

)
= 1, x1 = � (−[1 − 2(1)]) = 1.

Now both x1 and x2 are correct to 3 signi�cant �gures.

So pivoting is used to avoid large multipliersmik . A common strategy is partial pivoting, where
we interchange rows at the kth stage of Gaussian elimination to bring the largest element a (k )

ik

(for k ≤ i ≤ n) to the diagonal position a (k )
kk

. �is dramatically improves the stability of
Gaussian elimination.

I Gaussian elimination without pivoting is unstable: rounding errors can accumulate.

I �e ultimate accuracy is obtained by full pivoting, where both the rows and columns are
swapped to bring the largest element possible to the diagonal.

I If it is not possible to rearrange the columns or rows to remove a zero from position a (k )
kk

,
then A is singular.

If pivoting is applied, then the e�ect of Gaussian elimination is to produce a modi�ed LU
factorisation of the form

PA = LU , (5.14)

where P is a permutation matrix. �is is a matrix where every row and column has exactly one
non-zero element, which is 1.

I �e permutation matrices form a (sub)group, so a product of permutation matrices equals
another, di�erent, permutation matrix.

In this case, we solve Ly = Pb then Ux = y.

Example→ Consider again the system

*.
,

0 3 0
2 0 0
0 0 1

+/
-

*.
,

x1
x2
x3

+/
-
=

*.
,

3
2
1

+/
-
.

To swap rows 1 and 2, we can le�-multiply A by the permutation matrix

P = *.
,

0 1 0
1 0 0
0 0 1

+/
-

=⇒ PA = *.
,

2 0 0
0 3 0
0 0 1

+/
-
, Pb = *.

,

2
3
1

+/
-
.

Now we �nd the LU factorisation of PA, which is easy in this case:

PA = LU where L = *.
,

1 0 0
0 1 0
0 0 1

+/
-
, U = *.

,

2 0 0
0 3 0
0 0 1

+/
-
.
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Since LUx = Pb, we can then solve for x in two steps:

Ly = Pb =⇒ y = *.
,

2
3
1

+/
-
, Ux = y =⇒

*.
,

2x1
3x2
x3

+/
-
=

*.
,

2
3
1

+/
-

=⇒ x = *.
,

1
1
1

+/
-
.

5.5 Vector norms

To measure the error when the solution is a vector, as opposed to a scalar, we usually summa-
rize the error in a single number called a norm.

A vector norm on Rn is a real-valued function that satis�es

‖x +y‖ ≤ ‖x ‖ + ‖y‖ for every x ,y ∈ Rn, (N1)
‖αx ‖ = |α | ‖x ‖ for every x ∈ Rn and every α ∈ R, (N2)
‖x ‖ ≥ 0 for every x ∈ Rn and ‖x ‖ = 0 =⇒ x = 0. (N3)

Property (N1) is called the triangle inequality.

Example→�ere are three common examples:

1. �e `2-norm

‖x ‖2 :=

√√
n∑

k=1
x2
k
=
√
x>x .

�is is just the usual Euclidean length of x .
2. �e `1-norm

‖x ‖1 :=
n∑

k=1
|xk |.

�is is sometimes known as the taxicab or Manha�an norm, because it corresponds to
the distance that a taxi has to drive on a rectangular grid of streets to get to x ∈ R2.

3. �e `∞-norm
‖x ‖∞ := max

k=1,...,n
|xk |.

�is is sometimes known as the maximum norm.

We leave the proofs that these satisfy (N1)-(N3) to the problem sheet.

I�e norms in the example above are all special cases of the `p-norm,

‖x ‖p = *
,

n∑
k=1
|xk |

p+
-

1/p

,

which is a norm for any real number p ≥ 1. Increasing p means that more and more emphasis
is given to the maximum element |xk |.
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Example→ Consider the vectors a = (1,−2, 3)>, b = (2, 0,−1)>, and c = (0, 1, 4)>.
�e `1-, `2−, and `∞-norms are

‖a‖1 = 1 + 2 + 3 = 6 ‖b‖1 = 2 + 0 + 1 = 3 ‖c‖1 = 0 + 1 + 4 = 5
‖a‖2 =

√
1 + 4 + 9 ≈ 3.74 ‖b‖2 =

√
4 + 0 + 1 ≈ 2.24 ‖c ‖2 =

√
0 + 1 + 16 ≈ 4.12

‖a‖∞ = max{1, 2, 3} = 3 ‖b‖∞ = max{2, 0, 1} = 2 ‖c ‖∞ = max{0, 1, 4} = 4.

Notice that, for a single vector x , the norms satisfy the ordering ‖x ‖1 ≥ ‖x ‖2 ≥ ‖x ‖∞, but that
vectors may be ordered di�erently by di�erent norms.

Example→ Sketch the “unit circles” {x ∈ R2 : ‖x ‖p = 1} for p = 1, 2,∞.

5.6 Matrix norms

We also use norms to measure the “size” of matrices. Since the set Rn×n of n ×n matrices with
real entries is a vector space, we could just use a vector norm on this space. But usually we
add an additional axiom.

A matrix norm is a real-valued function ‖ · ‖ on Rn×n that satis�es:

‖A + B‖ ≤ ‖A‖ + ‖B‖ for every A,B ∈ Rn×n, (M1)
‖αA‖ = |α | ‖A‖ for every A ∈ Rn×n and every α ∈ R, (M2)
‖A‖ ≥ 0 for every A ∈ Rn×n and ‖A‖ = 0 =⇒ A = 0, (M3)
‖AB‖ ≤ ‖A‖‖B‖ for every A,B ∈ Rn×n . (M4)

�e new axiom (M4) is called consistency.

I We usually want this additional axiom because matrices are more than just vectors. Some
books call this a submultiplicative norm and de�ne a “matrix norm” to satisfy just (M1), (M2),
(M3), perhaps because (M4) only works for square matrices.

Example→ If we treat a matrix as a big vector with n2 components, then the `2-norm is called
the Frobenius norm of the matrix:

‖A‖F =

√√ n∑
i=1

n∑
j=1

a2
ij .

�is norm is rarely used in numerical analysis because it is not induced by any vector norm
(as we are about to de�ne).
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�e most important matrix norms are so-called induced or operator norms. Remember that
A is a linear map on Rn, meaning that it maps every vector to another vector. So we can
measure the size of A by how much it can stretch vectors with respect to a given vector norm.
Speci�cally, if ‖ · ‖p is a vector norm, then the induced norm is de�ned as

‖A‖p := sup
x,0

‖Ax ‖p

‖x ‖p
= max
‖x ‖p=1

‖Ax ‖p . (5.15)

To see that the two de�nitions here are equivalent, use the fact that ‖ · ‖p is a vector norm. So
by (N2) we have

sup
x,0

‖Ax ‖p

‖x ‖p
= sup

x,0


A

x

‖x ‖p

p
= sup
‖y‖p=1

‖Ay‖p = max
‖y‖p=1

‖Ay‖p . (5.16)

I Usually we use the same notation for the induced matrix norm as for the original vector
norm. �e meaning should be clear from the context.

Example→ Let

A =

(
0 1
3 0

)
.

In the `2-norm, a unit vector in R2 has the form x = (cosθ , sinθ )>, so the image of the unit
circle is

Ax =

(
sinθ

3 cosθ

)
.

�is is illustrated below:

�e induced matrix norm is the maximum stretching of this unit circle, which is

‖A‖2 = max
‖x ‖2=1

‖Ax ‖2 = max
θ

(
sin2 θ + 9 cos2 θ

)1/2
= max

θ

(
1 + 8 cos2 θ

)1/2
= 3.

�eorem 5.3. �e induced norm corresponding to any vector norm is a matrix norm, and the
two norms satisfy ‖Ax ‖ ≤ ‖A‖‖x ‖ for any matrix A ∈ Rn×n and any vector x ∈ Rn.
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Proof. Properties (M1)-(M3) follow from the fact that the vector norm satis�es (N1)-(N3). To
show (M4), note that, by the de�nition (5.15), we have for any vector y ∈ Rn that

‖A‖ ≥
‖Ay‖

‖y‖
=⇒ ‖Ay‖ ≤ ‖A‖‖y‖. (5.17)

Taking y = Bx for some x with ‖x ‖ = 1, we get

‖ABx ‖ ≤ ‖A‖‖Bx ‖ ≤ ‖A‖‖B‖. (5.18)

�is holds in particular for the vector x that maximises ‖ABx ‖, so

‖AB‖ = max
‖x ‖=1

‖ABx ‖ ≤ ‖A‖‖B‖. (5.19)

�

It is cumbersome to compute the induced norms from their de�nition, but fortunately there
are some very useful alternative formulae.

�eorem 5.4. �e matrix norms induced by the `1-norm and `∞-norm satisfy

‖A‖1 = max
j=1,...,n

n∑
i=1
|aij |, (maximum column sum)

‖A‖∞ = max
i=1,...,n

n∑
j=1
|aij |. (maximum row sum)

Proof. We will prove the result for the `1-norm and leave the `∞-norm to the problem sheet.
Starting from the de�nition of the `1 vector norm, we have

‖Ax ‖1 =
n∑
i=1

�������

n∑
j=1

aijxj

�������
≤

n∑
i=1

n∑
j=1
|aij | |xj | =

n∑
j=1
|xj |

n∑
i=1
|aij |. (5.20)

If we let

c = max
j=1,...,n

n∑
i=1
|aij |, (5.21)

then
‖Ax ‖1 ≤ c‖x ‖1 =⇒ ‖A‖1 ≤ c . (5.22)

Now letm be the column where the maximum sum is a�ained. If we choosey to be the vector
with components yk = δkm, then we have ‖Ay‖1 = c . Since ‖y‖1 = 1, we must have that

max
‖x ‖1=1

‖Ax ‖1 ≥ ‖Ay‖1 = c =⇒ ‖A‖1 ≥ c . (5.23)

�e only way to satisfy both (5.22) and (5.23) is if ‖A‖1 = c . �

Example→ For the matrix

A = *.
,

−7 3 −1
2 4 5
−4 6 0

+/
-
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we have
‖A‖1 = max{13, 13, 6} = 13, ‖A‖∞ = max{11, 11, 10} = 11.

What about the matrix norm induced by the `2-norm? �is turns out to be related to the
eigenvalues of A. Recall that λ ∈ C is an eigenvalue of A with associated eigenvector u if

Au = λu . (5.24)

We de�ne the spectral radius ρ (A) of A to be the maximum |λ | over all eigenvalues λ of A.

�eorem 5.5. �e matrix norm induced by the `2-norm satis�es

‖A‖2 =
√
ρ (A>A).

I As a result this is sometimes known as the spectral norm.

Example→ For our matrix

A =

(
0 1
3 0

)
,

we have
A>A =

(
0 3
1 0

) (
0 1
3 0

)
=

(
9 0
0 1

)
.

We see that the eigenvalues of A>A are λ = 1, 9, so ‖A‖2 =
√

9 = 3 (as we calculated earlier).

Proof. We want to show that

max
‖x ‖2=1

‖Ax ‖2 = max{√|λ | : λ eigenvalue of A>A}. (5.25)

For A real, A>A is symmetric, so has real eigenvalues λ1 ≤ λ2 ≤ . . . ≤ λn with corresponding
orthonormal eigenvectors u1, . . . ,un in Rn. (Orthonormal means that u>j uk = δjk .) Note also
that all of the eigenvalues are non-negative, since

A>Au1 = λ1u1 =⇒ λ1 =
u>1 A

>Au1

u>1u1
=
‖Au1‖

2
2

‖u1‖22
≥ 0. (5.26)

So we want to show that ‖A‖2 =
√
λn. �e eigenvectors form a basis, so every vector x ∈ Rn

can be expressed as a linear combination x =
∑n

k=1 αkuk . �erefore

‖Ax ‖22 = x>A>Ax = x>
n∑

k=1
αkλkuk =

n∑
j=1

αju
>
j

n∑
k=1

αkλkuk =

n∑
k=1

α2
kλk , (5.27)

where the last step uses orthonormality of the uk . It follows that

‖Ax ‖22 ≤ λn

n∑
k=1

α2
k . (5.28)

But if ‖x ‖2 = 1, then ‖x ‖22 =
∑n

k=1 α
2
k
= 1, so ‖Ax ‖22 ≤ λn. To show that the maximum of

‖Ax ‖22 is equal to λn, we can choose x to be the corresponding eigenvector x = un. In that
case, α1 = . . . = αn−1 = 0 and αn = 1, so ‖Ax ‖22 = λn. �
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5.7 Conditioning

Some linear systems are inherently more di�cult to solve than others, because the solution is
sensitive to small perturbations in the input.

Example→ Consider the linear system(
1 1
0 1

) (
x1
x2

)
=

(
1
1

)
=⇒

(
x1
x2

)
=

(
0
1

)
.

If we add a small rounding error 0 < δ � 1 to the data b1 then(
1 1
0 1

) (
x1
x2

)
=

(
1+δ

1

)
=⇒

(
x1
x2

)
=

(
δ
1

)
.

�e solution is within rounding error of the true solution, so the system is called well condi-
tioned.
Example→ Now let ϵ � 1 be a �xed positive number, and consider the linear system(

ϵ 1
0 1

) (
x1
x2

)
=

(
1+δ

1

)
=⇒

(
x1
x2

)
=

(
δ/ϵ

1

)
.

�e true solution is still (0, 1)>, but if the error δ is as big as the matrix entry ϵ , then the
solution for x1 will be completely wrong. �is system is much more sensitive to errors in b, so
is called ill-conditioned.
Graphically, this system (right) is more sensitive to δ than the �rst system (le�) because the
two lines are closer to parallel:

To measure the conditioning of a linear system, consider

|relative error in x |

|relative error in b |
=
‖δx ‖/‖x ‖

‖δb‖/‖b‖
=

(
‖δx ‖

‖x ‖

) (
‖b‖

‖δb‖

)
=

(
‖A−1δb‖

‖x ‖

) (
‖b‖

‖δb‖

)
≤
‖A−1‖‖δb‖

‖x ‖

(
‖b‖

‖δb‖

)
=
‖A−1‖‖b‖

‖x ‖
=
‖A−1‖‖Ax ‖

‖x ‖
≤ ‖A−1‖‖A‖. (5.29)

We de�ne the condition number of a matrix A in some induced norm ‖ · ‖∗ to be

κ∗(A) = ‖A
−1‖∗‖A‖∗. (5.30)

If κ∗(A) is large, then the solution will be sensitive to errors in b, at least for some b. A large
condition number means that the matrix is close to being non-invertible (i.e. two rows are
close to being linearly dependent).
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I �is is a “worst case” ampli�cation of the error by a given matrix. �e actual result will
depend on δb (which we usually don’t know if it arises from previous rounding error).

I Note that det(A) will tell you whether a matrix is singular or not, but not whether it is
ill-conditioned. Since det(αA) = αn det(A), the determinant can be made arbitrarily large or
small by scaling (which does not change the condition number). For instance, the matrix(

10−50 0
0 10−50

)
has tiny determinant but is well-conditioned.

Example→ Return to our earlier examples and consider the condition numbers in the 1-norm.
We have (assuming 0 < ϵ � 1) that

A =

(
1 1
0 1

)
=⇒ A−1 =

(
1 −1
0 1

)
=⇒ ‖A‖1 = ‖A

−1‖1 = 2 =⇒ κ1(A) = 4,

B =

(
ϵ 1
0 1

)
=⇒ B−1 =

1
ϵ

(
1 −1
0 ϵ

)
=⇒ ‖B‖1 = 2, ‖B−1‖1 =

1 + ϵ
ϵ

=⇒ κ1(B) =
2(1 + ϵ )

ϵ
.

For matrix B, κ1(B) → ∞ as ϵ → 0, showing that the matrix B is ill-conditioned.

Example→�e Hilbert matrix Hn is the n × n symmetric matrix with entries

(hn )ij =
1

i + j − 1 .

�ese matrices are notoriously ill-conditioned. For example, κ2(H5) ≈ 4.8×105, and κ2(H20) ≈

2.5× 1028. Solving an associated linear system in �oating-point arithmetic would be hopeless.

I A practical limitation of the condition number is that you have to know A−1 before you can
calculate it. We can always estimate ‖A−1‖ by taking some arbitrary vectors x and using

‖A−1‖ ≥
‖x ‖

‖b‖
.

5.8 Iterative methods

For large systems, the O (n3) cost of Gaussian elimination is prohibitive. Fortunately many
such systems that arise in practice are sparse, meaning that most of the entries of the matrix
A are zero. In this case, we can o�en use iterative algorithms to do be�er than O (n3).

In this course, we will only study algorithms for symmetric positive de�nite matrices. A matrix
A is called symmetric positive de�nite (or SPD) if x>Ax > 0 for every vector x , 0.

I Recall that a symmetric matrix has real eigenvalues. It is positive de�nite i� all of its eigen-
values are positive.

Example→ Show that the following matrix is SPD:

A = *.
,

3 1 −1
1 4 2
−1 2 5

+/
-
.
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With x = (x1,x2,x3)
>, we have

x>Ax = 3x2
1 + 4x2

2 + 5x2
3 + 2x1x2 + 4x2x3 − 2x1x3

= x2
1 + x

2
2 + 2x2

3 + (x1 + x2)
2 + (x1 − x3)

2 + 2(x2 + x3)
2.

�is is positive for any non-zero vector x ∈ R3, so A is SPD (eigenvalues 1.29, 4.14 and 6.57).

If A is SPD, then solving Ax = b is equivalent to minimizing the quadratic functional

f : Rn → R, f (x ) = 1
2x
>Ax − b>x . (5.31)

WhenA is SPD, this functional behaves like a U-shaped parabola, and has a unique �nite global
minimizer x∗ such that f (x∗) < f (x ) for all x ∈ Rn, x , x∗. To �nd x∗, we need to set ∇f = 0.
We have

f (x ) = 1
2

n∑
i=1

xi
*.
,

n∑
j=1

aijxj
+/
-
−

n∑
j=1

bjxj (5.32)

so

∂ f

∂xk
= 1

2
*.
,

n∑
i=1

xiaik +
n∑
j=1

akjxj
+/
-
− bk =

1
2

*.
,

n∑
i=1

akixi +
n∑
j=1

akjxj
+/
-
− bk =

n∑
j=1

akjxj − bk . (5.33)

In the penultimate step we used the symmetry of A to write aik = aki . It follows that

∇f = Ax − b, (5.34)

so locating the minimum of f (x ) is indeed equivalent to solving Ax = b.

I Minimizing functions is a vast sub-�eld of numerical analysis known as optimization. We
will only cover this speci�c case.

A popular class of methods for optimization are line search methods, where at each iteration
the search is restricted to a single search direction dk . �e iteration takes the form

xk+1 = xk + αkdk . (5.35)

�e step size αk is chosen by minimizing f (x ) along the line x = xk + αdk . For our functional
(5.31), we have

f (xk + αdk ) =
(

1
2d
>
k Adk

)
α2 +

(
1
2d
>
k Axk +

1
2x
>
k Adk − b

>dk

)
α + 1

2x
>
k Axk − b

>xk . (5.36)

Since A is symmetric, we have x>
k
Adk = x>

k
A>dk =

(
Axk

)>
dk = d>k Axk and b>dk = d>k b, so

we can simplify to

f (xk + αdk ) =
(

1
2d
>
k Adk

)
α2 + d>k

(
Axk − b

)
α + 1

2x
>
k Axk − b

>xk . (5.37)

�is is a quadratic in α , and the coe�cient of α2 is positive because A is positive de�nite. It is
therefore a U-shaped parabola and achieves its minimum when

∂ f

∂α
= d>k Adkα + d

>
k

(
Axk − b

)
= 0. (5.38)
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De�ning the residual rk := Axk − b, we see that the desired choice of step size is

αk = −
d>k rk

d>k Adk

. (5.39)

Di�erent line search methods di�er in how the search direction dk is chosen at each iteration.
For example, the method of steepest descent sets

dk = −∇f (xk ) = −rk , (5.40)

where we have remembered (5.34).

Example→ Use the method of steepest descent to solve the system(
3 2
2 6

) (
x1
x2

)
=

(
2
−8

)
.

Starting from x0 = (−2,−2)>, we get

d0 = b −Ax0 =

(
12
8

)
=⇒ α0 =

d>0 d0

d>0 Ad0
=

208
1200 =⇒ x1 = x0 + α0d0 ≈

(
0.08
−0.613

)
.

Continuing the iteration, xk proceeds towards the solution (2,−2)> as illustrated below. �e
coloured contours show the value of f (x1,x2).

Unfortunately, the method of steepest descent can be slow to converge. In the conjugate gra-
dient method, we still take d0 = −r 0, but subsequent search directions dk are chosen to be
A-conjugate, meaning that

d>k+1Adk = 0. (5.41)

�is means that minimization in one direction does not undo the previous minimizations.

In particular, we construct dk+1 by writing

dk+1 = −rk+1 + βkdk , (5.42)
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then choosing the scalar βk such that d>k+1Adk = 0. �is gives

0 =
(
− rk+1 + βkdk

)>
Adk = −r

>
k+1Adk + βkd

>
k Adk (5.43)

and hence
βk =

r>
k+1Adk

d>k Adk

. (5.44)

�us we get the basic conjugate gradient algorithm.

Algorithm 5.6 (Conjugate gradient method). Start with an initial guess x0 and initial search
direction d0 = −r 0 = b −Ax0. For each k = 0, 1, . . ., do the following:

1. Compute step size

αk = −
d>k rk

d>k Adk

.

2. Compute xk+1 = xk + αkdk .
3. Compute residual rk+1 = Axk+1 − b.
4. If ‖rk+1‖ < tolerance, output xk+1 and stop.
5. Determine new search direction

dk+1 = −rk+1 + βkdk where βk =
r>
k+1Adk

d>k Adk

.

Example→ Solve our previous example with the conjugate gradient method.
Starting with x0 = (−2,−2)>, the �rst step is the same as in steepest descent, giving x1 =

(0.08,−0.613)>. But then we take

r 1 = Ax1 − b =

(
−2.99
4.48

)
, β0 =

r>1 Ad0

d>0 Ad0
= 0.139, d1 = −r 1 + β0d0 =

(
4.66
−3.36

)
.

�e second iteration then gives

α1 = −
d>1 r 1

d>1 Ad1
= 0.412 =⇒ x2 = x1 + α1d1 =

(
2
−2

)
.

�is time there is no zig-zagging and the solution is reached in just two iterations:
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In exact arithmetic, the conjugate gradient method will always give the exact answer in n

iterations – one way to see this is to use the following.

�eorem 5.7. �e residuals rk := Axk − b at each stage of the conjugate gradient method are
mutually orthogonal, meaning r>j rk = 0 for j = 0, . . . ,k − 1.

Proof. See problem sheet. �

A�er n iterations, the only residual vector that can be orthogonal to all of the previous ones is
rn = 0, so xn must be the exact solution.

I In practice, conjugate gradients is not competitive as a direct method. It is computationally
intensive, and rounding errors can destroy the orthogonality, meaning that more than n iter-
ations may be required. Instead, its main use is for large sparse systems. For suitable matrices
(perhaps a�er preconditioning), it can converge very rapidly.

IWe can save computation by using the alternative formulae

rk+1 = rk + αkAdk , αk =
r>
k
rk

d>k Adk

, βk =
r>
k+1rk+1

r>
k
rk
.

With these formulae, each iteration requires only one matrix-vector product, two vector-
vector products, and three vector additions. Compare this to Algorithm 5.6 which requires
two matrix-vector products, four vector-vector products and three vector additions.
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6 Least-squares approximation

How do we �nd approximate solutions to overdetermined systems?

IfA is anm×n rectangular matrix withm > n, then the linear systemAx = b is overdetermined
and will usually have no solution. But we can still look for an approximate solution.

6.1 Orthogonality

Recall that the inner product between two column vectors x ,y ∈ Rn is de�ned as

x · y = x>y =
n∑

k=1
xkyk . (6.1)

�is is related to the `2-norm since ‖x ‖2 =
√
x>x . �e angle θ between x and y is given by

x>y = ‖x ‖2‖y‖2 cosθ .

Two vectors x and y are orthogonal if x>y = 0 (i.e. they lie at right angles in Rn).

Let S = {x1,x2, . . . ,xn} be a set of n vectors. �en S is called orthogonal if x>i x j = 0 for all
i, j ∈ {1, 2, . . . ,n} with i , j.

�eorem 6.1. An orthogonal set S of n vectors in Rn is a basis for Rn.

Proof. We know that a set of n vectors is a basis for Rn if the vectors are linearly independent.
If this is not the case, then some xk ∈ S could be expressed as a linear combination of the other
members,

xk =
n∑
i=1
i,k

cix i . (6.2)

Since xk , 0, we know that x>
k
xk = ‖xk ‖

2
2 > 0. But we would have

x>k xk =
n∑
i=1
i,k

cix
>
k xi = 0, (6.3)

where we used orthogonality. �is would be a contradiction, so we conclude that the vectors
in an orthogonal set are linearly independent. �

I Many of the best algorithms for numerical analysis are based on the idea of orthogonality.
We will see some examples this term.

An orthonormal set is an orthogonal set where all of the vectors have unit norm. Given
an orthogonal set S = {x1,x2, . . . ,xn}, we can always construct an orthonormal set S′ =
{x′1,x′2, . . . ,x′n} by normalisation, meaning

x′i =
1
‖xi ‖

xi . (6.4)
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�eorem 6.2. LetQ be anm×nmatrix. �e columns ofQ form an orthonormal set i�Q>Q = In.

Ifm = n, then such a Q is called an orthogonal matrix. Form , n, it is just called a matrix with
orthonormal columns.

Proof. Let q1,q2, . . . ,qn be the columns of Q . �en

Q>Q =
*....
,

q>1
q>2
...
q>n

+////
-

(
q1 q2 · · · qn

)
=

*....
,

q>1 q1 q>1 q2 · · · q>1 qn
q>2 q1 q>2 q2 · · · q>2 qn
...

...
. . .

...
q>nq1 q>nq2 · · · q>nqn

+////
-

. (6.5)

So orthonormality q>i qj = δij is equivalent to Q>Q = In, where In is the n × n identity matrix.
�

I Note that the columns of Q are a basis for range(Q ) = {Qx : x ∈ Rn}.

Example→�e set S =
{

1√
5 (2, 1)

>, 1√
5 (1,−2)>

}
.

�e two vectors in S are orthonormal, since

1√
5

(
2 1

)
1√
5

(
2
1

)
= 1, 1√

5

(
1 −2

)
1√
5

(
1
−2

)
= 1, 1√

5

(
2 1

)
1√
5

(
1
−2

)
= 0.

�erefore S forms a basis for R2. If x is a vector with components x1, x2 in the standard basis
{(1, 0)>, (0, 1)>}, then the components of x in the basis given by S are

*
,

2√
5

1√
5

1√
5 − 2√

5

+
-

(
x1
x2

)
I Inner products are preserved under multiplication by orthogonal matrices, since (Qx )>Qy =
x>(Q>Q )y = x>y. �is means that angles between vectors and the lengths of vectors are
preserved. Multiplication by an orthogonal matrix corresponds to a rigid rotation (if det(Q ) =

1) or a re�ection (if det(Q ) = −1).

6.2 Discrete least squares

�e discrete least squares problem: �nd x that minimizes the `2-norm of the residual, ‖Ax−b‖2.

Example→ Polynomial data ��ing.
An overdetermined system arises if we try to �t a polynomial

pn (x ) = c0 + c1x + . . . + cnx
n

to a function f (x ) at m + 1 > n + 1 nodes x0, . . . ,xm. In the natural basis, this leads to a
rectangular system

*.......
,

1 x0 · · · xn0
1 x1 · · · xn1
1 x2 · · · xn2
...
...

...
1 xm · · · xnm

+///////
-

*.....
,

c0
c1
...

cn

+/////
-
=

*.......
,

f (x0)
f (x1)
f (x2)
...

f (xm )

+///////
-

.
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We can’t �nd coe�cients ck to match the function at allm+1 points. Instead, the least squares
approach is to �nd coe�cients that minimize

m∑
i=1

���p (xi ) − f (xi )
���
2
.

We will see how to do this shortly.

To solve the problem it is useful to think geometrically. �e range of A, wri�en range(A), is
the set of all possible vectors Ax ∈ Rm, where x ∈ Rn. �is will only be a subspace of Rm, and
in particular it will not, in general, contain b. We are therefore looking for x ∈ Rn such that
Ax is as close as possible to b in Rm (as measured by the `2-norm/Euclidean distance).

�e distance from Ax to b is given by ‖r ‖2 = ‖Ax − b‖2. Geometrically, we see that ‖r ‖2 will
be minimized by choosing r orthogonal to Ax , i.e.,

(Ax )>(Ax − b) = 0 ⇐⇒ x>(A>Ax −A>b) = 0. (6.6)

�is will be satis�ed if x satis�es the n × n linear system

A>Ax = A>b, (6.7)

called the normal equations.

�eorem 6.3. �e matrix A>A is invertible i� the columns of A are linearly independent, in
which case Ax = b has a unique least-squares solution x = (A>A)−1A>b.

Proof. IfA>A is singular (non-invertible), thenA>Ax = 0 for some non-zero vector x , implying
that

x>A>Ax = 0 =⇒ ‖Ax ‖22 = 0 =⇒ Ax = 0. (6.8)

�is implies that A is rank-de�cient (i.e. its columns are linearly dependent).

Conversely, if A is rank-de�cient, then Ax = 0 for some x , 0, implying A>Ax = 0 and hence
that A>A is singular. �

I �e n ×m matrix (A>A)−1A> is called the Moore-Penrose pseudoinverse of A. In practice,
we would solve the normal equations (6.7) directly, rather than calculating the pseudoinverse
itself.
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Example→ Polynomial data ��ing.
For the matrix A in our previous example, we have aij = x ji for i = 0, . . . ,m and j = 0, . . . ,n.
So the normal matrix has entries

(A>A)ij =
m∑
k=0

akiakj =
m∑
k=0

xikx
j
k
=

m∑
k=0

xi+j
k
,

and the normal equations have the form
n∑
j=0

cj

m∑
k=0

xi+j
k
=

m∑
j=0

xij f (xj ) for i = 0, . . .n.

Example→ Fit a least-squares straight line to the data f (−3) = f (0) = 0, f (6) = 2.
Here n = 1 (��ing a straight line) and m = 2 (3 data points), so x0 = −3, x1 = 0 and x2 = 6.
�e overdetermined system is

*.
,

1 −3
1 0
1 6

+/
-

(
c0
c1

)
=

*.
,

0
0
2

+/
-
,

and the normal equations have the form(
3 x0 + x1 + x2

x0 + x1 + x2 x2
0 + x

2
1 + x

2
2

) (
c0
c1

)
=

(
f (x0) + f (x1) + f (x2)

x0 f (x0) + x1 f (x1) + x2 f (x2)

)
⇐⇒

(
3 3
3 45

) (
c0
c1

)
=

(
2
12

)
=⇒

(
c0
c1

)
=

(
3/7
5/21

)
.

So the least-squares approximation by straight line is p1(x ) =
3
7 +

5
21x .
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6.3 QR decomposition

In practice the normal matrix A>A can o�en be ill-conditioned. A be�er method is based on
another matrix factorization.

�eorem 6.4 (QR decomposition). Any realm × n matrix A, withm ≥ n, can be wri�en in the
formA = QR, whereQ is anm×nmatrix with orthonormal columns and R is an upper-triangular
n × n matrix.

Proof. We will show this by construction… �

�e simplest way to compute Q and R is by Gram-Schmidt orthogonalization.

Algorithm 6.5 (Gram-Schmidt). Let {u1, . . . ,un} be a set of n vectors in Rm, not necessarily
orthogonal. �en we can construct an orthonormal set {q1, . . . ,qn} by

pk = uk −

k−1∑
i=1

(u>k qi )qi , qk =
pk
‖pk ‖2

for k = 1, . . . ,n.

Notice that each pk is constructed from uk by subtracting the orthogonal projections of uk on
each of the previous qi for i < k .

Example→Use the Gram-Schmidt process to construct an orthonormal basis forW = Span{u1,u2},
where u1 = (3, 6, 0)> and u2 = (1, 2, 2)>.
We take

p1 = u1 =
*.
,

3
6
0

+/
-

=⇒ q1 =
p1
‖p1‖2

=
1
√

45
*.
,

3
6
0

+/
-
.

�en

p2 = u2 − (u>2 q1)q1 =
*.
,

1
2
2

+/
-
−

15
45

*.
,

3
6
0

+/
-
=

*.
,

0
0
2

+/
-

=⇒ q2 =
p2
‖p2‖2

=
*.
,

0
0
1

+/
-
.

�e set {q1,q2} is orthonormal and spansW .

How do we use this to construct ourQR decomposition of A? We simply apply Gram-Schmidt
to the set of columns of A, {a1, . . . ,an}, which are vectors in Rm. �is produces a set of
orthogonal vectors qi ∈ Rm. Moreover, we have

‖pk ‖2qk = ak −
k−1∑
i=1

(a>k qi )qi =⇒ ak = ‖pk ‖2qk +
k−1∑
i=1

(a>k qi )qi . (6.9)

Taking the inner product withqk and using orthonormality of theqi shows that ‖pk ‖2 = a>
k
qk ,

so we can write the columns of A as

ak =
k∑
i=1

(a>k qi )qi . (6.10)
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In matrix form this may be wri�en

A =

*......
,

q1 q2 . . . qn

+//////
-︸                 ︷︷                 ︸

Q (m × n)

*....
,

a>1 q1 a>2 q1 · · · a>nq1
0 a>2 q2 · · · a>nq2
...

. . .
. . .

...
0 · · · 0 a>nqn

+////
-︸                             ︷︷                             ︸

R (n × n)

(6.11)

IWhat we have done here is express each column of A in the orthonormal basis given by the
columns of Q . �e coe�cients in the new basis are stored in R, which will be non-singular if
A has full column rank.

How does this help in least squares? If A = QR then

A>Ax = A>b ⇐⇒ (QR)>QRx = (QR)>b (6.12)
⇐⇒ R>(Q>Q )Rx = R>Q>b (6.13)
⇐⇒ R>

(
Rx −Q>b

)
= 0 (6.14)

⇐⇒ Rx = Q>b . (6.15)

In the last step we assumed that R is invertible. We see that the problem is reduced to an
upper-triangular system, which may be solved by back-substitution.

Example→ Use QR decomposition to �nd our earlier least-squares straight line, where

*.
,

1 −3
1 0
1 6

+/
-

(
c0
c1

)
=

*.
,

0
0
2

+/
-
.

�e columns of A are a1 = (1, 1, 1)> and a2 = (−3, 0, 6)>. So applying Gram-Schmidt gives

p1 = a1 =
*.
,

1
1
1

+/
-

=⇒ q1 =
p1
‖p1‖2

=
1
√

3
*.
,

1
1
1,

+/
-

and

p2 = a2 − (a>2 q1)q1 =
*.
,

−3
0
6

+/
-
−
√

3 1
√

3
*.
,

1
1
1

+/
-
=

*.
,

−4
−1
5

+/
-

=⇒ q2 =
p2
‖p2‖2

=
1
√

42
*.
,

−4
−1
5

+/
-
.

�erefore A = QR with

Q =
*..
,

1/
√

3 −4/
√

42
1/
√

3 −1/
√

42
1/
√

3 5/
√

42

+//
-
, R =

(
a>1 q1 a>2 q1

0 a>2 q2

)
=

(√
3
√

3
0
√

42

)
.

�e normal equations may then be wri�en

Rx = Q>b =⇒

(√
3
√

3
0
√

42

) (
c0
c1

)
=

(
2/
√

3
10/
√

42

)
=⇒

(
c0
c1

)
=

(
3/7
5/21

)
,
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which agrees with our earlier solution.

I In practice, Gram-Schmidt orthogonalization is not very numerically stable. Alternative
methods of computing the QR decomposition such as the Householder algorithm are preferred
(but beyond the scope of this course).

6.4 Continuous least squares

We have seen how to approximate a function f (x ) by a polynomial pn (x ), by minimising
the sum of squares of errors at m > n nodes. In this section, we will see how to �nd an
approximating polynomial that minimizes the error over all x ∈ [a,b].

I �ink of taking m → ∞, so that our matrix A is in�nitely tall. Happily, since pn still has
�nitely many coe�cients, we will end up with an n × n system of normal equations to solve.

Let f , д belong to the vector space C[a,b] of continuous real-valued functions on [a,b]. We
can de�ne an inner product by

( f ,д) =

∫ b

a
f (x )д(x )w (x ) dx (6.16)

for any choice of weight functionw (x ) that is positive, continuous, and integrable on (a,b).

I�e purpose of the weight function will be to assign varying degrees of importance to errors
on di�erent portions of the interval.

Since (6.16) is an inner product, we can de�ne a norm satisfying (N1), (N2), (N3) by

‖ f ‖ :=
√
( f , f ) =

(∫ b

a
| f (x ) |2w (x ) dx

)1/2

. (6.17)

Example→ Inner product.
For the weight function w (x ) = 1 on the interval [0, 1], we have, for example,

(1,x ) =
∫ 1

0
x dx = 1

2 , ‖x ‖ =
√
(x ,x ) =

(∫ 1

0
x2 dx

)1/2
= 1√

3 .

�e continuous least squares problem is to �nd the polynomialpn ∈ Pn that minimizes pn − f ,
in a given inner product. �e analogue of the normal equations is the following.

�eorem 6.6 (Continuous least squares). Given f ∈ C[a,b], the polynomial pn ∈ Pn minimizes
qn − f  among all qn ∈ Pn if and only if

(pn − f , qn ) = 0 for all qn ∈ Pn .

I Notice the analogy with discrete least squares: we are again se�ing the “error” orthogonal
to the space of “possible functions” Pn.
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Proof. If (pn − f , qn ) = 0 for all qn ∈ Pn, then for any qn , pn we have
qn − f 2

= (qn − pn ) + (pn − f )2
= qn − pn2

+ pn − f 2 > pn − f 2 , (6.18)

i.e., pn minimizes qn − f .
Conversely, suppose (pn − f ,qn ) , 0 for some qn ∈ Pn, and consider

(pn − f ) + λqn2
= pn − f 2

+ 2λ (pn − f ,qn ) + λ
2 qn2 . (6.19)

If we choose λ = −(pn − f ,qn )/‖qn‖
2 then we see that

(pn + λqn ) − f 2
= pn − f 2

−
(pn − f ,qn )

2

‖qn‖2
< pn − f 2 , (6.20)

showing that pn does not minimize qn − f . �

I �e theorem holds more generally for best approximations in any subspace of an inner
product space. It is an important result in the subject of Approximation �eory.

Example → Find the least squares polynomial p1(x ) = c0 + c1x that approximates f (x ) =

sin(πx ) on the interval [0, 1] with weight function w (x ) = 1.
We can use �eorem 6.6 to �nd c0 and c1 by requiring orthogonality for both functions in the
basis {1,x} for P1. �is will guarantee that p1 − f is orthogonal to every polynomial in P1.
We get a system of two linearly independent equations



(p1 − f , 1) = 0
(p1 − f ,x ) = 0

⇐⇒



(p1, 1) = ( f , 1)
(p1,x ) = ( f ,x )

⇐⇒



∫ 1
0 (c0 + c1x ) dx =

∫ 1
0 sin(πx ) dx∫ 1

0 (c0 + c1x )x dx =
∫ 1

0 sin(πx )x dx

which may be wri�en as the linear system( ∫ 1
0 dx

∫ 1
0 x dx∫ 1

0 x dx
∫ 1

0 x2 dx

) (
c0
c1

)
=

( ∫ 1
0 sin(πx ) dx∫ 1

0 x sin(πx ) dx

)
�ese are analogous to the normal equations for the discrete polynomial approximation, with
sums over xk replaced by integrals. Evaluating the integrals, we have(

1 1/2
1/2 1/3

) (
c0
c1

)
=

(
2/π
1/π

)
=⇒

(
c0
c1

)
=

(
2/π

0

)
=⇒ p1(x ) =

2
π .
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6.5 Orthogonal polynomials

Just as with discrete least squares, we can make our life easier by working in an orthonormal
basis for Pn.
A family of orthogonal polynomials associated with the inner product (6.16) is a set {ϕ0, ϕ1,
ϕ2, . . .} where each ϕk is a polynomial of degree exactly k and the polynomials satisfy the
orthogonality condition

(ϕj ,ϕk ) = 0, k , j . (6.21)

I�is condition implies that each ϕk is orthogonal to all polynomials of degree less than k .
�e condition (6.21) determines the family uniquely up to normalisation, since multiplying
each ϕk by a constant factor does not change their orthogonality. �ere are three common
choices of normalisation:

1. Require each ϕk to be monic (leading coe�cient 1).
2. Require orthonormality, (ϕj ,ϕk ) = δjk .
3. Require ϕk (1) = 1 for all k .

I�e �nal one is the standard normalisation for Chebyshev and Legendre polynomials.
As in �eorem 6.1, a set of orthogonal polynomials {ϕ0,ϕ1, . . . ,ϕn} will form a basis for Pn.
Since this is a basis, the least-squares solution pn ∈ Pn may be wri�en

pn (x ) = c0ϕ0(x ) + c1ϕ1(x ) + . . . + cnϕn (x ) (6.22)

where c0, . . . , cn are the unknown coe�cients to be found. �en according to �eorem 6.6 we
can �nd these coe�cients by requiring

(pn − f ,ϕk ) = 0 for k = 0, . . . ,n, (6.23)
⇐⇒ c0(ϕ0,ϕk ) + c1(ϕ1,ϕk ) + . . . cn (ϕn,ϕk ) = ( f ,ϕk ) for k = 0, . . . ,n, (6.24)

⇐⇒ ck =
( f ,ϕk )

(ϕk ,ϕk )
for k = 0, . . . ,n. (6.25)

So compared to the natural basis, the number of integrals required is greatly reduced (at least
once you have the orthogonal polynomials).
We can construct an orthogonal basis using the same Gram-Schmidt algorithm as in the dis-
crete case. For simplicity, we will construct a set of monic orthogonal polynomials. Start with
the monic polynomial of degree 0,

ϕ0(x ) = 1. (6.26)
�en construct ϕ1(x ) from x by subtracting the orthogonal projection of x on ϕ0, giving

ϕ1(x ) = x −
(xϕ0,ϕ0)

(ϕ0,ϕ0)
ϕ0(x ) = x −

(x , 1)
(1, 1) . (6.27)

In general, given the orthogonal set {ϕ0,ϕ1, . . . ,ϕk}, we construct ϕk+1(x ) by starting with
xϕk (x ) and subtracting its orthogonal projections on ϕ0, ϕ1, . . . ,ϕk . �us

ϕk+1(x ) = xϕk (x )−
(xϕk ,ϕ0)

(ϕ0,ϕ0)
ϕ0(x )−

(xϕk ,ϕ1)

(ϕ1,ϕ1)
ϕ1(x )−. . .−

(xϕk ,ϕk−1)

(ϕk−1,ϕk−1)
ϕk−1(x )−

(xϕk ,ϕk )

(ϕk ,ϕk )
ϕk (x ).

(6.28)
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Now all of these projections except for the last two vanish, since, e.g., (xϕk ,ϕ0) = (ϕk ,xϕ0) = 0
using the fact that ϕk is orthogonal to all polynomials of lower degree. �e penultimate term
may be simpli�ed similarly since (xϕk ,ϕk−1) = (ϕk ,xϕk−1) = (ϕk ,ϕk ) So we get:

�eorem 6.7 (�ree-term recurrence). �e set of monic orthogonal polynomials under the inner
product (6.16) satisfy the recurrence relation

ϕ0(x ) = 1, ϕ1(x ) = x −
(x , 1)
(1, 1) ,

ϕk+1(x ) = xϕk (x ) −
(xϕk ,ϕk )

(ϕk ,ϕk )
ϕk (x ) −

(ϕk ,ϕk )

(ϕk−1,ϕk−1)
ϕk−1(x ) for k ≥ 1.

Example→ Legendre polynomials.
�ese are generated by the inner product with w (x ) ≡ 1 on the interval (−1, 1). Starting with
ϕ0(x ) = 1, we �nd that

ϕ1(x ) = x −

∫ 1
−1 x dx∫ 1
−1 dx

= x , ϕ2(x ) = x2 −

∫ 1
−1 x

3 dx∫ 1
−1 x

2 dx
x −

∫ 1
−1 x

2 dx∫ 1
−1 dx

= x2 − 1
3 , . . .

I Traditionally, the Legendre polynomials are then normalised so that ϕk (1) = 1 for all k . In
that case, the recurrence relation reduces to

ϕk+1(x ) =
(2k + 1)xϕk (x ) − kϕk−1(x )

k + 1 .

Example→ Use a basis of orthogonal polynomials to �nd the least squares polynomial p1 =

c0+c1x that approximates f (x ) = sin(πx ) on the interval [0, 1] with weight functionw (x ) = 1.
Starting with ϕ0(x ) = 1, we compute

ϕ1(x ) = x −

∫ 1
0 x dx∫ 1
0 dx

= x − 1
2 .

�en the coe�cients are given by

c0 =
( f ,ϕ0)

(ϕ0,ϕ0)
=

∫ 1
0 sin(πx ) dx∫ 1

0 dx
= 2

π ,

c1 =
( f ,ϕ1)

(ϕ1,ϕ1)
=

∫ 1
0 (x −

1
2 ) sin(πx ) dx∫ 1

0 (x −
1
2 )

2 dx
= 0,

so we recover our earlier approximation p1(x ) =
2
π .
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7 Numerical integration

How do we calculate integrals numerically?

�e de�nite integral

I ( f ) :=
∫ b

a
f (x ) dx (7.1)

can usually not be evaluated in closed form. To approximate it numerically, we can use a
quadrature formula

In ( f ) :=
n∑

k=0
σk f (xk ), (7.2)

where x0, . . . ,xn are a set of nodes and σ0, . . . ,σn are a set of corresponding weights.

I�e nodes are also known as quadrature points or abscissas, and the weights as coe�cients.

Example→�e trapezium rule

I1( f ) =
b − a

2

(
f (a) + f (b)

)
.

�is is the quadrature formula (7.2) with x0 = a, x1 = b, σ0 = σ1 =
1
2 (b − a).

For example, with a = 0, b = 2, f (x ) = ex , we get

I1( f ) =
2 − 0

2
(
e0 + e2

)
= 8.389 to 4 s.f.

�e exact answer is
I ( f ) =

∫ 2

0
ex dx = e2 − e0 = 6.389 to 4 s.f.

Graphically, I1( f ) measures the area under the straight line that interpolates f at the ends:
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7.1 Newton-Cotes formulae

We can derive a family of “interpolatory” quadrature formulae by integrating interpolating
polynomials of di�erent degrees. We will also get error estimates using �eorem 2.6.

Let x0, . . . ,xn ∈ [a,b], where x0 < x1 < · · · < xn, be a set of n + 1 nodes, and let pn ∈ Pn be
the polynomial that interpolates f at these nodes. �is may be wri�en in Lagrange form as

pn (x ) =
n∑

k=0
f (xk )`k (x ), where `k (x ) =

n∏
j=0
j,k

x − xj

xk − xj
. (7.3)

To approximate I ( f ), we integrate pn (x ) to de�ne the quadrature formula

In ( f ) :=
∫ b

a

n∑
k=0

f (xk )`k (x ) dx =
n∑

k=0
f (xk )

∫ b

a
`k (x ) dx . (7.4)

In other words,

In ( f ) :=
n∑

k=0
σk f (xk ), where σk =

∫ b

a
`k (x ) dx . (7.5)

When the nodes are equidistant, this is called a Newton-Cotes formula. If x0 = a and xn = b, it
is called a closed Newton-Cotes formula.

I An open Newton-Cotes formula has nodes xi = a + (i + 1)h for h = (b − a)/(n + 2).

Example→ Trapezium rule.
�is is the closed Newton-Cotes formula with n = 1. To see this, let x0 = a, x1 = b. �en

`0(x ) =
x − b

a − b
=⇒ σ0 =

∫ b

a
`0(x ) dx = 1

a − b

∫ b

a
(x − b) dx = 1

2(a − b) (x − b)
2���
b

a
=
b − a

2 ,

and

`1(x ) =
x − a

b − a
=⇒ σ1 =

∫ b

a
`1(x ) dx = 1

b − a

∫ b

a
(x − a) dx = 1

2(b − a) (x − a)
2���
b

a
=
b − a

2 .

So
I1( f ) = σ0 f (a) + σ1 f (b) =

b − a

2
(
f (a) + f (b)

)
.

�eorem 7.1. Let f be continuous on [a,b] with n + 1 continuous derivatives on (a,b). �en the
Newton-Cotes formula (7.5) satis�es the error bound

���I ( f ) − In ( f )
��� ≤

maxξ∈[a,b] | f
(n+1) (ξ ) |

(n + 1)!

∫ b

a

���(x − x0) (x − x1) · · · (x − xn )
��� dx .
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Proof. First note that the error in the Newton-Cotes formula may be wri�en

���I ( f ) − In ( f )
��� =

�����

∫ b

a
f (x ) dx −

∫ b

a
pn (x ) dx

�����
=

�����

∫ b

a

[
f (x ) − pn (x )

]
dx

�����
(7.6)

≤

∫ b

a

���f (x ) − pn (x )
��� dx . (7.7)

Now recall �eorem 2.6, which says that, for each x ∈ [a,b], we can write

f (x ) − pn (x ) =
f (n+1) (ξ )

(n + 1)! (x − x0) (x − x1) · · · (x − xn ) (7.8)

for some ξ ∈ (a,b). �e theorem simply follows by inserting this into inequality (7.7). �

Example→ Trapezium rule.
Let M2 = maxξ∈[a,b] | f

′′(ξ ) |. Here �eorem 7.1 reduces to

���I ( f ) − I1( f )
��� ≤

M2
(1 + 1)!

∫ b

a

���(x − a) (x − b)
��� dx = M2

2!

∫ b

a

(
x − a) (b − x ) dx = (b − a)3

12 M2.

For our earlier example with a = 0, b = 2, f (x ) = ex , the estimate gives

���I ( f ) − I1( f )
��� ≤

1
12 (2

3)e2 ≈ 4.926.

�is is an overestimate of the actual error which was ≈ 2.000.

I�eorem 7.1 suggests that the accuracy of In is limited both by the smoothness of f (outside
our control) and by the location of the nodes xk . If the nodes are free to be chosen, then we
can use Gaussian integration (see later).

I As with interpolation, taking a high n is not usually a good idea. One can prove for the
closed Newton-Cotes formula that

n∑
k=0
|σk | → ∞ as n → ∞.

�is makes the quadrature vulnerable to rounding errors for large n.

7.2 Composite Newton-Cotes formulae

Since the Newton-Cotes formulae are based on polynomial interpolation at equally-spaced
points, the results do not converge as the number of nodes increases. A be�er way to improve
accuracy is to divide the interval [a,b] intom subintervals [xi−1,xi] of equal length

h := b − a

m
, (7.9)

and use a Newton-Cotes formula of small degree n on each subinterval.
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Example→ Composite trapezium rule.
Applying the trapezium rule I1( f ) on each subinterval gives

C1,m ( f ) =
h

2 [f (x0) + f (x1) + f (x1) + f (x2) + . . . + f (xm−1) + f (xm )] ,

= h
[

1
2 f (x0) + f (x1) + f (x2) + . . . + f (xm−1) +

1
2 f (xm )

]
.

We are e�ectively integrating a piecewise-linear approximation of f (x ); here we show m = 3
for our test problem f (x ) = ex on [0, 2]:

Look at what happens as we increasem for our test problem:
m h C1,m ( f ) |I ( f ) −C1,m ( f ) |
1 2 8.389 2.000
2 1 6.912 0.524
4 0.5 6.522 0.133
8 0.25 6.422 0.033
16 0.125 6.397 0.008
32 0.0625 6.391 0.002

When we halve the sub-interval h, the error goes down by a factor 4, suggesting that we have
quadratic convergence, i.e., O (h2).

To show this theoretically, we can apply �eorem 7.1 in each subinterval. In [xi−1,xi] we have

���I ( f ) − I1( f )
��� ≤

maxξ∈[xi−1,xi ] | f
′′(ξ ) |

2!

∫ xi

xi−1

���(x − xi−1) (x − xi )
��� dx

Note that∫ xi

xi−1

���(x − xi−1) (x − xi )
��� dx =

∫ xi

xi−1

(x − xi−1) (xi − x ) dx =
∫ xi

xi−1

[
− x2 + (xi−1 + xi )x − xi−1xi

]
dx

=
[
− 1

3x
3 + 1

2 (xi−1 + xi )x
2 − xi−1xix

]xi
xi−1
= 1

6x
3
i −

1
2xi−1x

2
i +

1
2x

2
i−1xi −

1
6x

3
i−1

= 1
6 (xi − xi−1)

3 = 1
6h

3.
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So overall

���I ( f ) −C1,m ( f )
��� ≤

1
2 max

i

(
max

ξ∈[xi−1,xi ]
| f ′′(ξ ) |

)
m
h3

6 =
mh3

12 max
ξ∈[a,b]

| f ′′(ξ ) | =
b − a

12 h2 max
ξ∈[a,b]

| f ′′(ξ ) |.

As long as f is su�ciently smooth, this shows that the composite trapezium rule will converge
asm → ∞. Moreover, the convergence will be O (h2).

7.3 Exactness

From �eorem 7.1, we see that the Newton-Cotes formula In ( f ) will give the exact answer if
f (n+1) = 0. In other words, it will be exact if f ∈ Pn.

Example→�e trapezium rule I1( f ) is exact for all linear polynomials f ∈ P1.

�e degree of exactness of a quadrature formula is the largest integer n for which the formula
is exact for all polynomials in Pn.

To check whether a quadrature formula has degree of exactness n, it su�ces to check whether
it is exact for the basis 1, x , x2, . . . ,xn.

Example→ Simpson’s rule.
�is is the n = 2 closed Newton-Cotes formula

I2( f ) =
b − a

6

[
f (a) + 4f

(
a + b

2

)
+ f (b)

]
,

derived by integrating a quadratic interpolating polynomial. Let us �nd its degree of exactness:

I (1) =
∫ b

a
dx = (b − a), I2(1) =

b − a

6 [1 + 4 + 1] = b − a = I (1),

I (x ) =

∫ b

a
x dx = b2 − a2

2 , I2(x ) =
b − a

6 [a + 2(a + b) + b] = (b − a) (b + a)

2 = I (x ),

I (x2) =

∫ b

a
x2 dx = b3 − a3

3 , I2(x
2) =

b − a

6
[
a2 + (a + b)2 + b2

]
=

2(b3 − a3)

6 = I (x2),

I (x3) =

∫ b

a
x3 dx = b4 − a4

4 , I2(x
3) =

b − a

6
[
a3 + 1

2 (a + b)
3 + b3

]
=
b4 − a4

4 = I (x3).

�is shows that the degree of exactness is at least 3 (contrary to what might be expected from
the interpolation picture). You can verify that I2(x4) , I (x4), so the degree of exactness is
exactly 3.

I �is shows that the term f ′′′(ξ ) in the error formula for Simpson’s rule (�eorem 7.1) is
misleading. In fact, it is possible to write an error bound proportional to f (4) (ξ ).

I In terms of degree of exactness, Simpson’s formula does be�er than expected. In general,
Newton-Cotes formulae with even n have degree of exactness n + 1. But this is by no means
the highest possible (next section).
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7.4 Gaussian quadrature

�e idea of Gaussian quadrature is to choose not only the weights σk but also the nodes xk , in
order to achieve the highest possible degree of exactness.

Firstly, we will illustrate the brute force method of undetermined coe�cients.

Example→ Gaussian quadrature formula G1( f ) =
∑1

k=0 σk f (xk ) on the interval [−1, 1].
Here we have four unknowns x0, x1, σ0 and σ1, so we can impose four conditions:

G1(1) = I (1) =⇒ σ0 + σ1 =

∫ 1

−1
dx = 2,

G1(x ) = I (x ) =⇒ σ0x0 + σ1x1 =

∫ 1

−1
x dx = 0,

G1(x
2) = I (x2) =⇒ σ0x

2
0 + σ1x

2
1 =

∫ 1

−1
x2 dx = 2

3 ,

G1(x
3) = I (x3) =⇒ σ0x

3
0 + σ1x

3
1 =

∫ 1

−1
x3 dx = 0.

To solve this system, the symmetry suggests that x1 = −x0 and σ0 = σ1. �is will automatically
satisfy the equations for x and x3, leaving the two equations

2σ0 = 2, 2σ0x
2
0 =

2
3 ,

so that σ0 = σ1 = 1 and x1 = −x0 = 1/
√

3. �e resulting Gaussian quadrature formula is

G1( f ) = f

(
−

1
√

3

)
+ f

(
1
√

3

)
.

�is formula has degree of exactness 3.

In general, the Gaussian quadrature formula with n nodes will have degree of exactness 2n+1.

�e method of undetermined coe�cients becomes unworkable for larger numbers of nodes,
because of the nonlinearity of the equations. A much more elegant method uses orthogonal
polynomials. In addition to what we learned before, we will need the following result.

Lemma 7.2. If {ϕ0,ϕ1, . . . ,ϕn} is a set of orthogonal polynomials on [a,b] under the inner prod-
uct (6.16) and ϕk is of degree k for each k = 0, 1, . . . ,n, then ϕk has k distinct real roots, and these
roots lie in the interval [a,b].

Proof. Let x1, . . . ,xj be the points where ϕk (x ) changes sign in [a,b]. If j = k then we are done.
Otherwise, suppose j < k , and consider the polynomial

qj (x ) = (x − x1) (x − x2) · · · (x − xj ). (7.10)

Since qj has lower degree than ϕk , they must be orthogonal, meaning

(qj ,ϕk ) = 0 =⇒

∫ b

a
qj (x )ϕk (x )w (x ) dx = 0. (7.11)
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On the other hand, notice that the product qj (x )ϕk (x ) cannot change sign in [a,b], because
each sign change in ϕk (x ) is cancelled out by one in qj (x ). �is means that∫ b

a
qj (x )ϕk (x )w (x ) dx , 0, (7.12)

which is a contradiction. �

Remarkably, these roots are precisely the optimum choice of nodes for a quadrature formula
to approximate the (weighted) integral

Iw ( f ) =

∫ b

a
f (x )w (x ) dx . (7.13)

�eorem 7.3 (Gaussian quadrature). Let ϕn+1 be a polynomial in Pn+1 that is orthogonal on
[a,b] to all polynomials in Pn, with respect to the weight function w (x ). If x0,x1, . . . ,xn are the
roots of ϕn+1, then the quadrature formula

Gn,w ( f ) :=
n∑

k=0
σk f (xk ), σk =

∫ b

a
`k (x )w (x ) dx

approximates (7.13) with degree of exactness 2n + 1 (the largest possible).

I Like Newton-Cotes, we see that Gaussian quadrature is based on integrating an interpolating
polynomial, but now the nodes are the roots of an orthogonal polynomial, rather than equally
spaced points.

Example→ Gaussian quadrature with n = 1 on [−1, 1] and w (x ) = 1 (again).
To �nd the nodes x0, x1, we need to �nd the roots of the orthogonal polynomial ϕ2(x ). For
this inner product, we already computed this (Legendre polynomial) in Chapter 6, where we
found

ϕ2(x ) = x2 − 1
3 .

�us the nodes are x0 = −1/
√

3,x1 = 1/
√

3. Integrating the Lagrange polynomials gives the
corresponding weights

σ0 =

∫ 1

−1
`0(x ) dx =

∫ 1

−1

x − 1√
3

− 2√
3

dx = −
√

3
2

[
1
2x

2 − 1√
3x

]1
−1 = 1,

σ1 =

∫ 1

−1
`1(x ) dx =

∫ 1

−1

x + 1√
3

2√
3

dx =
√

3
2

[
1
2x

2 + 1√
3x

]1
−1 = 1,

as before.

I Using an appropriate weight function w (x ) can be useful for integrands with a singularity,
since we can incorporate this in w (x ) and still approximate the integral with Gn,w .

Example→ Gaussian quadrature for
∫ 1

0 cos(x )x−
1
2 dx , with n = 0.

�is is a Fresnel integral, with exact value 1.80905 . . . Let us compare the e�ect of using an
appropriate weight function.
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1. Unweighted quadrature (w (x ) ≡ 1). �e orthogonal polynomial of degree 1 is

ϕ1(x ) = x −

∫ 1
0 x dx∫ 1
0 dx

= x − 1
2 =⇒ x0 =

1
2 .

�e corresponding weight may be found by imposing G0(1) = I (1), which gives σ0 =∫ 1
0 dx = 1. �en our estimate is

G0

(
cos(x )
√
x

)
=

cos
(

1
2

)
√

1
2

= 1.2411 . . .

2. Weighted quadrature withw (x ) = x−
1
2 . �is time we get

ϕ1(x ) = x −

∫ 1
0 x

1
2 dx∫ 1

0 x−
1
2 dx

= x −
2
3
2 =⇒ x0 =

1
3 .

�e corresponding weight isσ0 =
∫ 1

0 x−
1
2 dx = 2, so the new estimate is the more accurate

G0,w
(

cos(x )
)
= 2 cos

(
1
3

)
= 1.8899 . . .

Proof of �eorem 7.3. First, recall that any interpolatory quadrature formula based on n + 1
nodes will be exact for all polynomials in Pn (this follows from �eorem 7.1, which can be
modi�ed to include the weight function w (x )). So in particular, Gn,w is exact for pn ∈ Pn.

Now let p2n+1 ∈ P2n+1. �e trick is to divide this by the orthogonal polynomial ϕn+1 whose
roots are the nodes. �is gives

p2n+1(x ) = ϕn+1(x )qn (x ) + rn (x ) for some qn, rn ∈ Pn . (7.14)

�en

Gn,w (p2n+1) =
n∑

k=0
σkp2n+1(xk ) =

n∑
k=0

σk

[
ϕn+1(xk )qn (xk ) + rn (xk )

]
=

n∑
k=0

σkrn (xk ) = Iw (rn ),

(7.15)

where we have used the fact that Gn,w is exact for rn ∈ Pn. Now, since qn has lower degree
than ϕn+1, it must be orthogonal to ϕn+1, so

Iw (ϕn+1qn ) =

∫ b

a
ϕn+1(x )qn (x )w (x ) dx = 0 (7.16)

and hence

Gn,w (p2n+1) = Iw (rn ) + 0 = Iw (rn ) + Iw (ϕn+1qn ) = Iw (ϕn+1qn + rn ) = Iw (p2n+1). (7.17)

�
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I Unlike Newton-Cotes formulae with equally-spaced points, it can be shown thatGn,w ( f ) →

Iw ( f ) as n → ∞, for any continuous function f . �is follows (with a bit of analysis) from
the fact that all of the weights σk are positive, along with the fact that they sum to a �xed
number

∫ b
a w (x ) dx . For Newton-Cotes, the signed weights still sum to a �xed number, but∑n

k=0 |σk | → ∞ which destroys convergence.

Not surprisingly, we can derive an error formula that depends on f (2n+2) (ξ ) for some ξ ∈ (a,b).
To do this, we will need the following result from calculus.

�eorem 7.4 (Mean value theorem for integrals). If f ,д are continuous on [a,b] and д(x ) ≥ 0
for all x ∈ [a,b], then there exists ξ ∈ (a,b) such that∫ b

a
f (x )д(x ) dx = f (ξ )

∫ b

a
д(x ) dx .

Proof. Let m and M be the minimum and maximum values of f on [a,b], respectively. Since
д(x ) ≥ 0, we have that

m

∫ b

a
д(x ) dx ≤

∫ b

a
f (x )д(x ) dx ≤ M

∫ b

a
д(x ) dx . (7.18)

Now let I =
∫ b
a д(x ) dx . If I = 0 then д(x ) ≡ 0, so

∫ b
a f (x )д(x ) dx = 0 and the theorem holds

for every ξ ∈ (a,b). Otherwise, we have

m ≤
1
I

∫ b

a
f (x )д(x ) dx ≤ M . (7.19)

By the Intermediate Value �eorem (�eorem 4.1), f (x ) a�ains every value betweenm and M

somewhere in (a,b), so in particular there exists ξ ∈ (a,b) with

f (ξ ) =
1
I

∫ b

a
f (x )д(x ) dx . (7.20)

�

�eorem 7.5 (Error estimate for Gaussian quadrature). Let ϕn+1 ∈ Pn+1 be monic and orthogo-
nal on [a,b] to all polynomials in Pn, with respect to the weight functionw (x ). Let x0,x1, . . . ,xn
be the roots of ϕn+1, and letGn,w ( f ) be the Gaussian quadrature formula de�ned by �eorem 7.3.
If f has 2n + 2 continuous derivatives on (a,b), then there exists ξ ∈ (a,b) such that

Iw ( f ) −Gn,w ( f ) =
f (2n+2) (ξ )

(2n + 2)!

∫ b

a
ϕ2
n+1(x )w (x ) dx .

Proof. A neat trick is to use Hermite interpolation. Since the xk are distinct, there exists a
unique polynomial p2n+1 such that

p2n+1(xk ) = f (xk ) and p′2n+1(xk ) = f ′(xk ) for k = 0, . . . ,n. (7.21)

In addition (see problem sheet), there exists λ ∈ (a,b), depending on x , such that

f (x ) − p2n+1(x ) =
f (2n+2) (λ)

(2n + 2)!

n∏
i=0

(x − xi )
2. (7.22)
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Now we know that (x − x0) (x − x1) · · · (x − xn ) = ϕn+1(x ), since we �xed ϕn+1 to be monic.
Hence ∫ b

a
f (x )w (x ) dx −

∫ b

a
p2n+1(x )w (x ) dx =

∫ b

a

f (2n+2) (λ)

(2n + 2)! ϕ
2
n+1(x )w (x ) dx . (7.23)

Now we know that Gn,w must be exact for p2n+1, so
∫ b

a
p2n+1(x )w (x ) dx = Gn,w (p2n+1) =

n∑
k=0

σkp2n+1(xk ) =
n∑

k=0
σk f (xk ) = Gn,w ( f ). (7.24)

For the right-hand side, we can’t take f (2n+2) (λ) outside the integral since λ depends on x . But
ϕ2
n+1(x )w (x ) ≥ 0 on [a,b], so we can apply the mean value theorem for integrals and get

Iw ( f ) −Gn,w ( f ) =
f (2n+2) (ξ )

(2n + 2)!

∫ b

a
ϕ2
n+1(x )w (x ) dx (7.25)

for some ξ ∈ (a,b) that does not depend on x . �
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