How good is the bipolar approximation of active regions for surface flux transport?

Anthony R. Yeates, Solar Physics 295, 119 (2020)

- Aim: how does approximating active regions as bipolar magnetic regions (BMRs) affect the end-of-cycle polar field predicted by SFT models?
[specific measure: axial dipole moment]

- Motivation:

- BMRs are often used in SFT and dynamo models, especially for predictions.
- When driven by observed BMRs, these models typically overestimate the polar field, usually fixed by eitherreducing tilt angles vs observations or reducing meridional flow (citing active region inflows).
- Recent studies highlight that the axial dipole for more complex region shapes can evolve differently. [lijima-Hotta-Imada ApJ 2019; Jiang et al. ApJ 2019]
- Main conclusion: For Cycle 24 (HMI data), approximating active regions by BMRs leads to $>20 \%$ overestimate of the polar field/axial dipole.

Methodology

1. New BMR database extracted automatically from HMI/SHARPs data.

- Python code for extracting database: https://github.com/antyeates1983/sharps-bmrs
- Ready-prepared file: https://doi.org/10.7910/DVN/1Z7YMT (Harvard Dataverse) for May 2010 to April 2020:

2. 1D SFT simulations of dipole moment [all regions + individual regions separately].

$$
\frac{\partial \bar{B}}{\partial t}=\frac{\partial}{\partial s}\left[\frac{D}{R_{\odot}^{2}}\left(1-s^{2}\right) \frac{\partial \bar{B}}{\partial s}-\frac{v_{s}(s)}{R_{\odot}} \sqrt{1-s^{2}} \bar{B}\right] \quad s=\cos \theta
$$

Bipolar Magnetic Region database

- Fit single magnetogram for each SHARP, at time closest to central-meridian.
- Fitted 1090 SHARPs out of 3671 [sufficiently bipolar, large enough, no repeats].
- Parameters chosen to match magnetic flux, size and tilt angle, but also axial dipole [at time of observation].

SFT driven by SHARPs

SFT driven by BMRs

Observed

Axial dipole

Dipole "amplification"

- Compare ratio of SFT-predicted final to initial axial dipole moment [individual runs]
- For BMRs, this is a Gaussian depending primarily on latitude [Jiang-CameronSchüssler ApJ 2014; Petrovay-Nagy-Yeates JSWSC 2020]

- For real shapes, there is scatter compared to the BMR model.
- More regions are below the curve than above, leading to the weaker dipole [these are non-dipolar regions with enhanced cancellation].

