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Motivation

‣Magneto-friction: ideal induction equation

2

with artificial “frictional” velocity

‣ Leads to monotonic relaxation towards a force-free equilibrium:

dates at least back to Chodura & Schlüter, J Comp Phys [1981]

‣Motivation for this study:

1. Recent comparison of relaxation methods for coronal loop footpoint shearing 
experiment – Goldstraw et al., A&A [2018]

‣ MF gives excellent match to full MHD (Lare2D) for low plasma-beta.

A&A 610, A48 (2018)

Fig. 1. By/B0 as a function of y for the loop axes x = 0 (upper) and x = l/2 (lower) using the magneto-frictional relaxation method. The horizontal
scale is expanded at the two ends to illustrate the resolved boundary layers at y = ±L and compressed in the middle to demonstrate that there is no
variation with y there.

The pressure is a function of A, which is determined by the en-
ergy equation, and Bz is determined by the shearing introduced
by the footpoint displacement. For shearing motions defined in
Eqs. (6)–(9), the photospheric footpoint displacement is given
by integrating a fieldline from its initial position, (x0, y0), to its
final one at (x, y). Hence, it is a function of the flux function and
is given by
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As shown in the above papers and from the magneto-frictional
relaxation results, away from the boundaries we can ignore the
boundary layers and assume that the field lines are essentially
straight over most of the loop. A value of l/L ⌧ 1 is always
assumed. Away from the boundary layers A is independent of y
and this implies that the integrand is independent of y. Therefore,
we can determine Bz(A) in terms of the footpoint displacement.
Following Mellor et al. (2005), we have

Bz(A) = �d(A)
L

dA

dx
· (17)

For the shearing motion used above, we have at y = L that d(A) =
V0(t � t1) sin kx, where k = ⇡/l and A(x, L) = �B0x. Hence,
d(A) = �V0(t�t1) sin(kx) = �D sin(kA/B0), where D = V0(t�t1)
is the maximum footpoint displacement.

The simple 1D approximation can be modified to include the
gas pressure. Conservation of flux and mass between any two

fieldlines implies that
By

⇢
=

B0

⇢0
, (18)

where B0 and ⇢0 are the initial unsheared values. Next, if the
e↵ect of viscous heating is small, the entropy remains constant
between any two fieldlines so that
p
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· (19)

Rearranging the last two equations gives the pressure in terms of
By as
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where �@A/@x > 0. Hence, the Grad-Shafranov equations re-
duces to a 1D pressure balance equation of the form
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This implies that the total pressure is constant away from the
boundary layers and there is no magnetic tension force. Compu-
tationally, it is easier to express all variables in terms of the flux
function, A, and solve
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Motivation

‣Magneto-friction: ideal induction equation

2

with artificial “frictional” velocity

‣ Leads to monotonic relaxation towards a force-free equilibrium:

dates at least back to Chodura & Schlüter, J Comp Phys [1981]

‣Motivation for this study:

1. Recent comparison of relaxation methods for coronal loop footpoint shearing 
experiment – Goldstraw et al., A&A [2018]

‣ MF gives excellent match to full MHD (Lare2D) for low plasma-beta.

2. Some objections to the method – Low, ApJ [2013]

(i) Null points cannot move. 
(ii) Discontinuous current sheets will form at null points in finite time.

Aim – test the MF method in a simple case that includes null points.



Test design

‣ 1D magnetic field [known “target” solution; sure of controlling numerical diffusion]:
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on periodic domain

‣ Initial condition:
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Finding 1 – current sheets should form

‣ For our 1D field, 
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‣ Ideal relaxation would imply conservation of fluxes between the nulls. Can show that

with nulls

‣ So force-free equilibria satisfy cf. Bajer & Moffatt, ApJ [2013]



MF solution in 1D

‣ In 1D the MF equation reduces to the nonlinear diffusion equation

5

(i) linear diffusion
(ii) “ambipolar diffusion”
(iii) linear diffusion with limiting



MF solution in 1D

‣ In 1D the MF equation reduces to the nonlinear diffusion equation
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(i) linear diffusion
(ii) “ambipolar diffusion”
(iii) linear diffusion with limiting

‣ Numerics: Crank-Nicolson method with Picard iteration for nonlinearity.



Finding 2 – flux is not conserved!

‣ Linear case: diffusion always gives flux cancellation at nulls.
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‣ Breakdown time (cf. Low/Aly):

‣ Nonlinear cases: flux is conserved only until the solution becomes discontinuous.
cf. Hoyos et al, MNRAS [2010]



Finding 3 – nulls can move
7

‣ Linear case: diffusion causes nulls to move in general.

‣ Nonlinear cases: “nulls” (current sheets) move once the solution becomes discontinuous.

‣ e.g. ambipolar diffusion case
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‣ dashed curves show predictions from Rankine-Hugoniot/jump conditions with 
estimated jumps [see paper]



Possible solution: viscous relaxation

‣ An alternative “viscous relaxation” scheme converges neatly.
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Bajer & Moffatt, ApJ [2013]
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‣ Also ensures monotonic energy decay:



The elephant in the room…
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The relaxed state under ideal-MHD would not be force-free.



Ideal-MHD relaxed state
10

‣ Now the relaxed state is a total 
pressure balance

‣ Gas pressure builds up at the nulls to 
counter the low magnetic pressure.



Ideal-MHD relaxed state
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‣ Now the relaxed state is a total 
pressure balance

‣ Gas pressure builds up at the nulls to 
counter the low magnetic pressure.

‣ Solution computed with ATHENA code 
https://princetonuniversity.github.io/Athena-
Cversion/

[shown with some viscosity but similar 
conclusion without it]

More details: A.R. Yeates, “On the limitations of magneto-frictional relaxation”, 
GAFD, 2022. https://doi.org/10.1080/03091929.2021.2021197
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