The impact of magnetic topology on plasma dynamics

Anthony Yeates (Durham)

with

Alexander Russell and Gunnar Hornig (Dundee)

MREP 2017, Cambridge, 12-Sep-2017

Relaxation magnetic therepy [sic] mattress topper

The Parker problem...

Current Sheet Formation in Magnetostatic Equilibria

ELLEN G. ZWEIBEL

Department of Astrophysical, Planetary and Atmospheric Sciences, University of Colorado, Boulder, CO 80309, U.S.A.

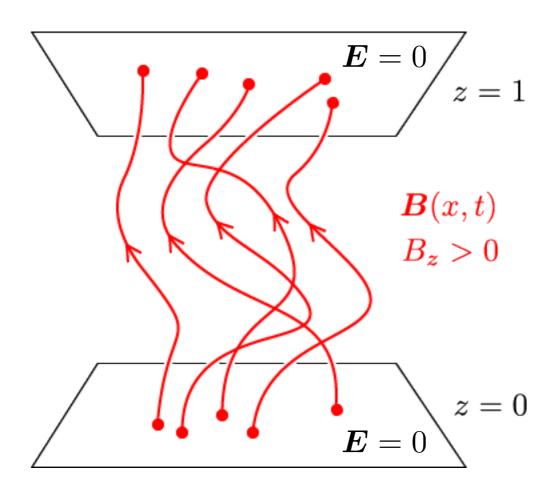
MICHAEL R.E. PROCTOR

Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Silver Street, Cambridge CB3 9EW, U.K.

The quasi-static evolution of two-dimensional magnetostatic equilibria is examined in the case where there is a separatrix field line separating regions of different fieldline connectivity. It is shown that in general there will be a current sheet on this separatrix for arbitrarily small displacements of the footpoints. A nonlinear analysis confirms the main results of the linearized theory.

1990

• What is the final state of a **resistive** relaxation with end-points fixed?

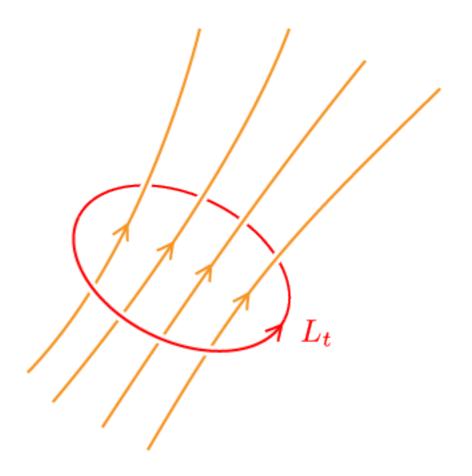


$$rac{\partial m{B}}{\partial t} = -
abla imes m{E}$$

$$oldsymbol{E} = -oldsymbol{v} imes oldsymbol{B} + \eta oldsymbol{j}$$

- The ultimate end-state is a **potential field** j = 0.
- On a dynamical timescale, Taylor (*PRL*, 1974) suggests that we reach a linear force-free field $j = \alpha_0 B$, determined by total magnetic helicity.

• In ideal MHD, the magnetic flux through every closed field line is invariant.

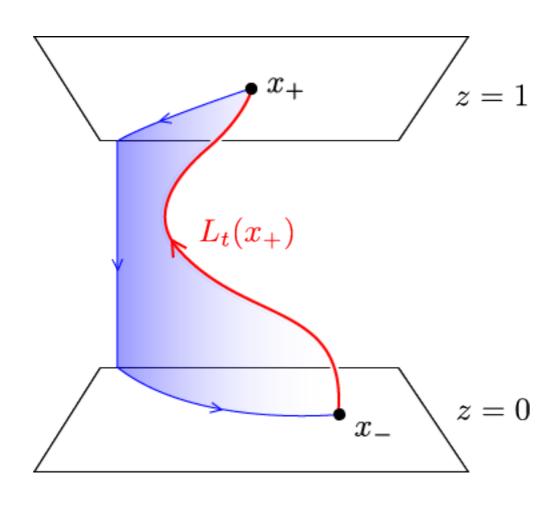


$$\frac{\mathrm{d}}{\mathrm{d}t} \int_{\boldsymbol{L}_t} \boldsymbol{A} \cdot \, \mathrm{d}\boldsymbol{l} = 0$$

$$oldsymbol{B} =
abla imes oldsymbol{A}$$

Field line helicity

• To define an ideal invariant flux we complete the loop by a curve on the boundary.



• Whatever the choice of surface, there is a gauge of *A* in which

$$[flux] = \int_{L_t(x_+)} \mathbf{A} \cdot d\mathbf{l} := \mathcal{A}(x_+, t)$$

— called **field line helicity**

The field line helicity is a density for magnetic helicity in this gauge:

$$\int_{z=1} \mathcal{A}(x_+, t) B_z(x_+) \, dS = \int_V \mathbf{A} \cdot \mathbf{B} \, dV = H$$

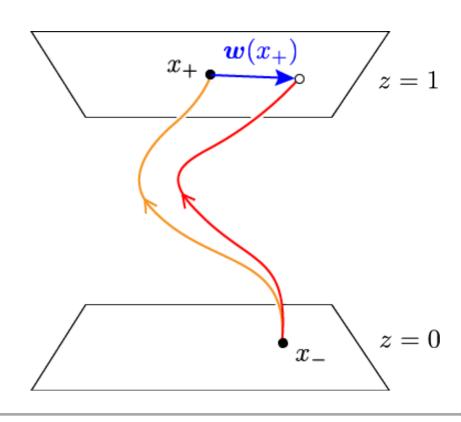
Evolution — 1. Ohm's law

• Trick: since $B \neq 0$, recognise that the field lines are frozen-in to a flow w.

$$m{E} = -m{v} imes m{B} \, + \, \eta m{j} \qquad \qquad \eta m{j} = -m{u} imes m{B} \, + \,
abla \psi \qquad \qquad \psi(x) = \int_{x_-}^x \eta m{j} \, \cdot \, \mathrm{d}m{l}$$

$$\Longrightarrow E = -\underbrace{(v+u)}_{w} \times B + \nabla \psi$$
 — so field lines move with the flow w (Newcomb, *Annal. Phys.*, 1958).

- Since E = 0 on the boundaries, we have $\mathbf{w} = 0$ and $\psi = 0$ on z = 0, but not on z = 1.
- The parallel component of w is arbitrary, so we can set $w_z = 0$.
- Then $w(x_+)$ tells you how the upper end-points of the field lines are moving due to reconnection.



Evolution — 2. Field line helicity

• Knowing that L_t is frozen-in to the flow w, we can calculate

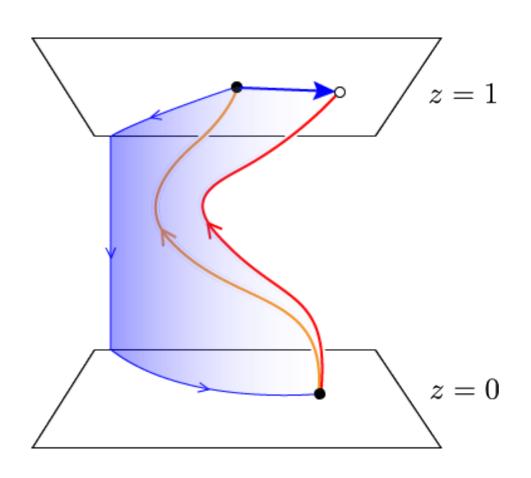
$$\frac{\mathrm{d}\mathcal{A}(x_{+},t)}{\mathrm{d}t} = \frac{\mathrm{d}}{\mathrm{d}t} \int_{L_{t}(x_{+})} \mathbf{A} \cdot \mathrm{d}\mathbf{l} = \int_{L_{t}(x_{+})} \mathrm{d}\mathbf{l} \cdot \nabla \left(\mathbf{w} \cdot \mathbf{A} - \mathbf{\psi} - \mathbf{\phi}\right)$$

$$\frac{\partial \mathbf{A}}{\partial t} = -\mathbf{E} - \nabla \phi$$

$$= \mathbf{w}(x_+) \cdot \mathbf{A}(x_+) - \psi(x_+).$$

• On z = 1, we have

$$\frac{\partial \mathcal{A}}{\partial t} + \boldsymbol{w} \cdot \nabla \mathcal{A} = \boldsymbol{w} \cdot \boldsymbol{A} - \psi$$



Scaling analysis

$$\frac{\partial \mathcal{A}}{\partial t} + \boldsymbol{w} \cdot \nabla \mathcal{A} = \boldsymbol{w} \cdot \boldsymbol{A} - \psi$$

• Suppose *B* and *E* vary on the lengthscale *L*. So

$$\mathcal{A} \sim LA$$
 $A \sim LB$

$$A \sim LB$$

From Ohm's law,

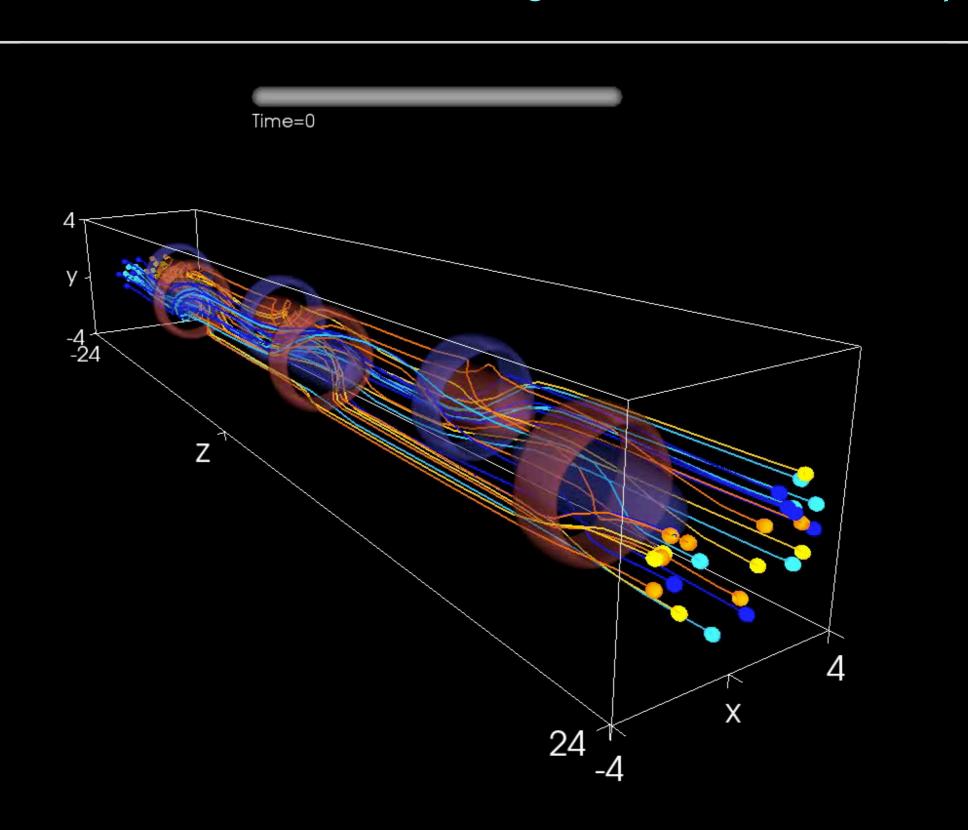
$$m{w} imes m{B} =
abla \psi - m{E} \qquad \Longrightarrow \qquad w \sim rac{1}{\ell B} \psi$$

where ℓ is the lengthscale on which $\nabla \psi$ varies.

$$|\boldsymbol{w}\cdot\boldsymbol{A}|\sim\frac{L}{\ell}\psi$$
 $|\boldsymbol{w}\cdot\nabla\boldsymbol{A}|\sim\left(\frac{L}{\ell}\right)^2\psi$

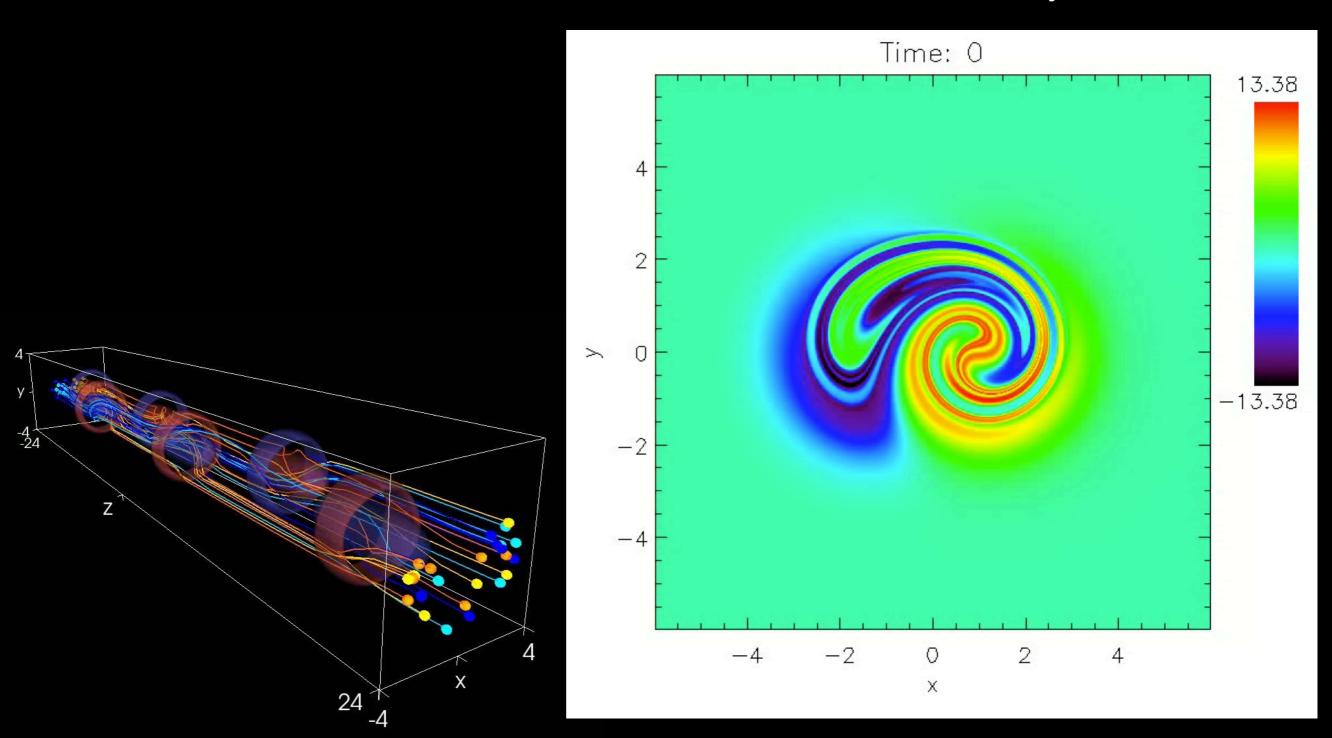
In a magnetic field with even moderately complex field line mapping,

$$|\psi \ll |\boldsymbol{w} \cdot \boldsymbol{A}| \ll |\boldsymbol{w} \cdot \nabla \mathcal{A}|$$



A numerical demonstration

field line helicity:



Conclusion

- Total helicity is not the only invariant in a turbulent magnetic relaxation.
- In a sufficiently complex field line mapping, field line helicity is efficiently redistributed by reconnection, but not destroyed!

- Russell, Yeates, Hornig & Wilmot-Smith, "Evolution of field line helicity during magnetic reconnection", *Phys. Plasmas* **22**, 032106 (2015).
- Yeates, Russell & Hornig, "Physical role of topological constraints in localized magnetic relaxation", *Proc. R. Soc. A* **471**, 20150012.

http://www.maths.dur.ac.uk/~bmjg46/

LEVERHULME TRUST _____

ADVANCED TOPICS IN MHD

Advanced School coordinated by

Andrew Hillier University of Exeter UK

David MacTaggart University of Glasgow UK

Udine June 11 - 15 2018