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Motivation

‣ The surface flux transport (SFT) model 
is remarkably effective at mimicking the 
large-scale decay of active region 
magnetic fields. 
[cf. Jiang et al., Space Sci Rev 2014; 
Wang, Space Sci Rev 2017]

‣ Current interest: 
‣ Making solar cycle predictions before 

the end of the previous cycle. 
‣ Driving continuous simulations of the 

coronal magnetic field.

What is lost by the traditional assumption 
of symmetric bipolar magnetic sources?
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Appendix A: Coordinate Rotation

Here we derive the coordinate transformation from the frame (s,φ) where the BMR is cen-
tred at s = φ = 0 to the frame (s ′,φ′) where it is centred at (s0,φ0) with tilt γ . This amounts
to a rotation, which is easiest to express in Cartesian coordinates

x = cosφ
√

1 − s2, y = sinφ
√

1 − s2, z = s. (15)

Multiplying by the rotation matrices for the sequence of rotations indicated in Figure 11
shows that Cartesian coordinates in the rotated frame are
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where s0 = sinλ0. From these we determine φ′ = arctan(y ′/x ′) and s ′ = z′.

Appendix B: Analytical Expressions

Here we note some analytical expressions for a meridional flow of the form in Equation 13,
which the reader may find useful (see also DeVore, Boris, and Sheeley, 1984). Firstly, one
can show that the flow peaks at latitudes s = ±(1 + p)−1/2 with speed

vmax = ±Dup
p/2(1 + p)−(1+p)/2. (18)

Figure 11 The sequence of rotations to transform to coordinates where the BMR is at s′ = φ′ = 0 with
γ ′ = 0: (i) rotate angle φ0 around the z-axis; (ii) rotate angle λ0 = arcsin(s0) around the (new) y-axis; and
(iii) rotate angle γ around the (new) x-axis.



Leading/following asymmetry

‣ Following polarities are often more diffuse.

‣ Iijima-Hotta-Imada 2019 -  
SFT simulations to investigate the effect 
(tilt angle proportional to latitude, all same 
asymmetry).

‣ Accounting for asymmetry weakens 
dipole and gives better reversal time.

area ratio 1.0

area ratio 0.4



Complexity

‣ Jiang et al. 2019 -  
case studies of SFT evolution for two 
active regions.

AR 12674

AR 12673

AR 12674

AR 12673

AR 12674

AR 12673
‣ Axial dipole changes sign for the 

more complex region.



My work

‣ Automated database of Bipolar Magnetic Regions from HMI/SHARPs. 

‣ Compare SFT models with BMRs vs original SHARPs.

A.R. Yeates, How good is the bipolar approximation of active regions for surface flux 
transport?, Solar Physics 295, 119 (2020)

‣ Python code for extracting database: https://github.com/antyeates1983/sharps-bmrs

‣ Ready-prepared file: https://doi.org/10.7910/DVN/1Z7YMT (Harvard Dataverse) for 
May 2010 to April 2020:

https://doi.org/10.7910/DVN/1Z7YMT
https://doi.org/10.7910/DVN/1Z7YMT


Building the Database



SHARP data

‣ I use hmi.sharp_cea_720s — “definitive” data (after full-disk package).

http://jsoc.stanford.edu/doc/data/hmi/sharp/sharp.htm



Magnetogram extraction

‣ Single observation for each SHARP — when flux-weighted centroid closest to CM.
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Bipolar approximation

‣ Fit based on polarity centroids:
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‣ Rotate to correct location and tilt angle.
‣ Scale unsigned flux to match.

‣ Parameter a controls dipole moment for given flux. Set a = 0.56 so axial dipole 
moment of BMR matches that of original SHARP.
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Filtering

1. Remove SHARPs with too much flux imbalance. 
[2323 regions, total flux 0.18e25 Mx] 

2. Remove SHARPs where separation too small to resolve on computational grid. 
[114 regions, total flux 0.004e25 Mx] 

3. Remove repeat observations. 
[143 regions, total flux 0.17e25 Mx]

‣ Initially: 3671 regions, total flux 1.4e25 Mx

‣ Remaining: 1090 regions, total flux 1.0e25 Mx.



Automated removal of repeats

‣ Every SHARP is compared with those passing CM between 20-34 days earlier.
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‣ A “repeat” is where an earlier SHARP had more flux in its derotated footprint.
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Summary of emergence-time properties
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‣ Database includes predicted final dipole moment from Surface Flux Transport of (a) 
the BMR and (b) the original SHARP.



Evolution



Surface flux transport model

‣ To compute the axial dipole moment we only need to evolve the 1D longitude-
averaged field:

supergranular 
diffusion

meridional flow

‣ No exponential decay term [didn’t seem to be needed to match observed evolution].

‣ Parameters set using full simulation [all SHARPs, initialised with smoothed HMI 
synoptic map].

[same profile as Whitbread-Y-Muñoz-J 2018, but faster flow and slower diffusion]

2



Complete simulation

SHARPs

BMRs

[here I ran in 2D for illustration]



Complete simulation
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[1D results]

−1.0

−0.5

0.0

0.5

1.0

S
in
e
L
at
it
u
d
e (a) SHARPs

−10.0 −7.5 −5.0 −2.5 0.0 2.5 5.0 7.5 10.0

−1.0

−0.5

0.0

0.5

1.0

S
in
e
L
at
it
u
d
e (b) BMRs

−1.0

−0.5

0.0

0.5

1.0

S
in
e
L
at
it
u
d
e (c) HMI

2011 2012 2013 2014 2015 2016 2017 2018 2019 2020
Year

−1

0

1

2

b
1
,
0
[G

]

(d)
SHARPs Du = 0.041

SHARPs Du = 0.055

BMRs Du = 0.041

BMRs Du = 0.055

HMI

‣ BMRs overestimate dipole 
moment by 24%.
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Individual evolutions
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‣ Solve with finite-differences 
for each region individually 
[10 years to steady state].

e.g.
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Dipole amplification

‣ Ratio of final to initial dipole moment [Jiang-Cameron-Schüssler 2014].

‣ There are more SHARPs below the curve than above => weaker dipole.

‣ These are “non-dipolar” regions with enhanced cancellation.

‣ As explained by Petrovay-Nagy-Yeates 2020 this follows a Gaussian in latitude for 
BMR sources.
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‣ But for SHARPs not all regions fall on the curve:



Regions with the largest discrepancy
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following polarity 
more diffuse 
[cf. Iijima-Hotta-
Imada 2019]

more complex 
initial shape 
[cf. Jiang et al 
2019]



Reflections

‣ Suggests that active region inflows are not the cause of the overestimate of dipole 
from BMRs. 
[inflows may be accounted for already with my faster meridional flow]

‣ If SHARPs are used, dipole reverses at correct time even without decay term. 
[cf. Petrovay-Talafha 2019]

faster meridional flow

−1.0

−0.5

0.0

0.5

1.0

S
in
e
L
at
it
u
d
e (a) BMRs - Du = 0.041

−10.0 −7.5 −5.0 −2.5 0.0 2.5 5.0 7.5 10.0

−1.0

−0.5

0.0

0.5

1.0

S
in
e
L
at
it
u
d
e (b) BMRs - Du = 0.055

−1.0

−0.5

0.0

0.5

1.0

S
in
e
L
at
it
u
d
e (b) BMRs - Du = 0.041, g = 0.76

−1.0

−0.5

0.0

0.5

1.0

S
in
e
L
at
it
u
d
e (d) HMI

2011 2012 2013 2014 2015 2016 2017 2018 2019 2020
Year

−1

0

1

2

b 1
,0

[G
]

(e)
(a)

(b)

(c)

HMI

‣ Reducing the tilt angles has the same effect as slowing down the meridional flow:

original

82% tilt angles
HMI

increased meridional flow



Driving Coronal Simulations
[work in progress]



Magnetofrictional model

‣ Quasi-static evolution but preserving 
magnetic topology with induction equation 
[van Ballegooijen-Priest-Mackay 2000; 
Yeates 2014].

‣ Previous simulations were driven by emergence of analytical bipoles 
[e.g. Yeates-Mackay-van Ballegooijen 2008].

‣ Boundary conditions:

‣ zero gradient on 

‣ on              set
differential 
rotation

supergranular 
diffusion

emergence



How to emerge SHARPs

1.  Compute local A on photosphere for the new region.

e.g. local inductive

‣ “Local inductive” method: 
 minimize               subject to                           with boundary condition                       .

after smoothing

‣ Jumps in A.n are then removed by applying a “curl-free smoothing”                          . 



Why is the localization necessary?

‣ Avoids spurious energization of the coronal field outside the emergence region.

* local inductive *global inductiveglobal sparse

cf. Fisher et al (ApJS) 2020 - electric field inversion techniques. 

cf. Yeates 2017 - sparse electric fields.



How to emerge SHARPs

‣ Still testing: addition of twist informed by HMI measurements of 

2.  Apply steady electric field A/dt for fixed emergence time - e.g. dt=12 hours.



Full simulation [preliminary]
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Conclusion

‣ Automated database of Bipolar Magnetic Regions from HMI/SHARPs. 

‣ Flux transport model with BMRs overestimates end-of-cycle dipole by 24% compared 
to model with original SHARP shapes.

A.R. Yeates, How good is the bipolar approximation of active regions for surface flux 
transport?, Solar Physics 295, 119 (2020)

‣ Python code for extracting database: https://github.com/antyeates1983/sharps-bmrs

‣ Ready-prepared file: https://doi.org/10.7910/DVN/1Z7YMT (Harvard Dataverse) for 
May 2010 to April 2020.

‣ Ongoing work [with postdoc Prantika Bhowmik]: 
magnetofrictional simulations of Cycle 24 — how does 
coronal field depend on 

‣ bipolar approximation? 

‣ emergence electric field? 

‣ twisting of emerging regions?

https://doi.org/10.7910/DVN/1Z7YMT
https://doi.org/10.7910/DVN/1Z7YMT


The End!


