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The Dundee braiding experiment

‣ Idea: start with a complex magnetic structure and let it relax under resistive MHD.

‣ highly “mixed”

‣ unstable: launches torsional Alfvén waves 
generating turbulence with thin current 
sheets and reconnection

‣ final state shows self-organisation into 
two oppositely-twisted flux tubes

[simulations: Lare3D - Arber et al.]

[Review: Pontin et al., PPCF 58, 054008, 2016]



Taylor relaxation

‣ Classical theory for turbulent magnetic relaxation: assume total (magnetic) helicity is 
the only invariant, implying a linear force-free final state,
[Taylor, Rev Mod Phys 58, 741, 1986]

‣ We observe weak flattening, 
but only within each tube.



Topological degree

‣ Preservation of two tubes is a consequence of spatial localisation of the dynamics.

‣ Degree of the field line mapping is determined by its initial structure in the ideal 
region around the edge where it remains unchanged. [+ continuity]

[Yeates, Hornig & Wilmot-Smith, PRL 105, 085002, 2010;  
Yeates, Russell & Hornig, Proc R Soc 471, 20150012, 2015]
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Figure 1. Themagnetic field given by (2.2), showing the colour map (in grey scale) and selectedmagnetic field lines. There are
three fixed points with T(D)= 1 for the region shown. (Online version in colour.)

be a subregion of D0. The topological degree of f on D, denoted T(D), is defined to be the total
(net) fixed point index, obtained by summing the indices of all isolated fixed points of f in D. One
may express T(D) as the Kronecker integral

T(D) = 1
2π
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)]
, (2.1)

around the boundary of D [20]. As T(D) is an integer, the only way it can change under a
continuous time-evolution of f is if one or more fixed points cross into or out of the boundary
of D. So if f is fixed on the boundary of our turbulent region D, then T(D) must be preserved in
time. In particular, this means that the relaxed state may be forced to contain more than one fixed
point, implying certain magnetic substructure.

We use the convenient colour map technique introduced by Polymilis et al. [20] for visualizing
fixed points of f, their indices and T(D). This is illustrated in figure 1 with the magnetic field

B = ∇ × Aez + ez

and A = 0.6 sin2 x cos(0.5y ) + cos(0.3x ) cos(0.3y ).

⎫
⎬

⎭ (2.2)

The colour map assigns one of four colours (in this paper, we use shades of grey) to each point
(x , y ) in D0, according to the relative signs of fx − x and fy − y . Fixed points are readily identified
as places where all four colours intersect. Furthermore, the topological degree T(D) of a region
D ⊂ D0 may be identified by noting the anticlockwise sequence of colours around the boundary
of D. In particular, the number of times that the full sequence of four colours (in the correct order)
is repeated. For example, the degree of the full region shown in figure 1 is +1. Correspondingly,
there is a net anticlockwise rotation of field lines around the boundary. Inside D, there are
three fixed points: two ‘elliptic’ points with degree +1 and one ‘hyperbolic’ point in the centre
with degree −1.
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Figure 4. Time sequence of colour maps from the braided magnetic field simulation (see [10] for
details of the simulation). Letters y, g, b, r indicate the colours yellow, green, blue, and red (for
readers viewing in grey scale).

we can make a stronger statement not just about the fixed points in isolation but about the
local structure of the mapping around them. This is expressed through a topological property
called the (Poincaré/Hopf) index of each fixed point.

3.1. Index of a fixed point

The index of a fixed point of f depends on the local mapping around the fixed point, so to
assign an index to fixed points lying on the boundary ∂D0, the mapping f must be extended
outside the disc r = R. To this end, following [15], define the extended mapping

f̃ (x 0) =
{

f (x 0) if |x 0| ! R,

f (Rx 0/|x 0|) if |x 0| > R,
(8)

which is continuous and introduces no additional fixed points. (An alternative extension is
used in [16].)

Let " be a closed curve enclosing an isolated fixed point x 0 ∈ D0 but enclosing no
other fixed point. The index of x 0, denoted indx 0f , is the winding number of the closed
curve v f̃ (") about the origin [15]. It is an integer and so invariant under homotopy: it is a
topological property of the local mapping around the fixed point. The extension f̃ means that
this definition applies both to interior fixed points and to those on ∂D0. Note that there are a
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Substructure of the tubes?

‣ Field line helicity is a useful measure.

‣ Taylor knew that FLH is an ideal invariant, but conjectured it uninteresting for 
relaxation because individual values could be changed by reconnection.

[Berger, Astron Astrophys 201, 355, 1988; Aly, Fluid Dyn Res 50, 011408, 2018]

‣ But FLH evolution equation suggests values are primarily redistributed for high Rm.
[Russell et al., Phys Plasmas, 22, 032106, 2015]

‣ For this type of magnetic field, it is a “complete” invariant (same field line mapping iff 
same FLH). [Yeates & Hornig, Phys Plasmas 20, 012102, 2013]
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New results

1. Final FLH pattern seems to converge with increasing Lundquist number.
S = 10000 S = 20000

2. FLH is strikingly uniform/flat within each of the final flux tubes.
y = 0 cut  [S=10000]

```

y = 0 cut  [S=10000]

```



Cause of the flatness?

‣ Hypothesis: uniform FLH is caused by the Taylor relaxation tendency:
‣ constant jz implies uniform-twist field which has constant FLH. 
‣ FLH is the average winding with all other field lines, so less sensitive to fluctuations.

‣ e.g. simple toy model (uniform twist + local fluctuations):

[cf. Prior & Yeates, Astrophys J 787, 100, 2014]



Conclusions

‣ Magnetic braids seem to relax to flux tubes with uniform field line helicity 
(independent of Lundquist number).

A.J.B. Russell, A.R. Yeates, G. Hornig & A.L. Wilmot-Smith, Evolution of field 
line helicity during magnetic reconnection, Phys Plasmas 22, 032106, 2015.

A.R. Yeates, A.J.B. Russell & G. Hornig, Evolution of field line helicity in magnetic 
relaxation, in preparation.

‣ Open question: how general is this behaviour?


