The Internal Topology of Magnetic Flux Tubes

Gunnar Hornig - University of Dundee Chris Prior - Durham University

Maths Seminar - University of Dundee, 15-Oct-2013

Hmmm, when I take the curl of the Navier Stokes Equation, I get the Kelvin Circulation Theorem, which I use to prove Helmholt'z Theorem, ... but then again in a carefully isolated system it will rotate in the other direction in the other Hemisphere!

Kleckner \& Irvine 2013, Nature Phys. 9, 253.

Vorticity equation (inviscid, barotropic fluid):

$$
\frac{\partial \boldsymbol{\omega}}{\partial t}=\nabla \times(\mathbf{v} \times \boldsymbol{\omega}) \quad \Longrightarrow \quad \frac{d}{d t} \int_{S(t)} \boldsymbol{\omega} \cdot \mathbf{n} d^{2} x=0 \quad \text { (Kelvin's Theorem) }
$$

Vorticity equation (inviscid, barotropic fluid):

$$
\frac{\partial \boldsymbol{\omega}}{\partial t}=\nabla \times(\mathbf{v} \times \boldsymbol{\omega}) \quad \Longrightarrow \quad \frac{d}{d t} \int_{S(t)} \boldsymbol{\omega} \cdot \mathbf{n} d^{2} x=0 \quad \text { (Kelvin's Theorem) }
$$

Induction equation (ideal magnetohydrodynamics):
$\frac{\partial \mathbf{B}}{\partial t}=\nabla \times(\mathbf{v} \times \mathbf{B}) \quad \Longrightarrow \quad \frac{d}{d t} \int_{S(t)} \mathbf{B} \cdot \mathbf{n} d^{2} x=0 \quad$ (Alfvén's Theorem)

Hannes Alfvén receiving the Nobel Prize in Physics, 1970.

after Moffatt 1985, JFM 159, 359.

Magnetic helicity

$$
H=\int_{V} \mathbf{A} \cdot \mathbf{B} d^{3} x, \quad \text { where } \quad \mathbf{B}=\nabla \times \mathbf{A}
$$

Magnetic helicity

$$
H=\int_{V} \mathbf{A} \cdot \mathbf{B} d^{3} x, \quad \text { where } \quad \mathbf{B}=\nabla \times \mathbf{A}
$$

- Under a gauge transformation $\mathbf{A} \rightarrow \mathbf{A}+\nabla \chi$,

$$
H \rightarrow H+\oint_{\partial V} \chi B_{n} d^{2} x .
$$

Magnetic helicity

$$
H=\int_{V} \mathbf{A} \cdot \mathbf{B} d^{3} x, \quad \text { where } \quad \mathbf{B}=\nabla \times \mathbf{A}
$$

- Under a gauge transformation $\mathbf{A} \rightarrow \mathbf{A}+\nabla \chi$,

$$
H \rightarrow H+\oint_{\partial V} \chi B_{n} d^{2} x .
$$

- Under an ideal evolution $\partial \mathbf{A} / \partial t=\mathbf{v} \times \mathbf{B}+\nabla \phi$,

$$
\frac{d H}{d t}=\oint_{\partial V} \phi B_{n} d^{2} x+\oint_{\partial V}\left(\mathbf{A} \cdot \mathbf{v} B_{n}-\mathbf{A} \cdot \mathbf{B} v_{n}\right) d^{2} x .
$$

Magnetic helicity

$$
H=\int_{V} \mathbf{A} \cdot \mathbf{B} d^{3} x, \quad \text { where } \quad \mathbf{B}=\nabla \times \mathbf{A}
$$

- Under a gauge transformation $\mathbf{A} \rightarrow \mathbf{A}+\nabla \chi$,

$$
H \rightarrow H+\oint_{\partial V} \chi B_{n} d^{2} x .
$$

- Under an ideal evolution $\partial \mathbf{A} / \partial t=\mathbf{v} \times \mathbf{B}+\nabla \phi$,

$$
\frac{d H}{d t}=\oint_{\partial V} \phi B_{n} d^{2} x+\oint_{\partial V}\left(\mathbf{A} \cdot \mathbf{v} B_{n}-\mathbf{A} \cdot \mathbf{B} v_{n}\right) d^{2} x .
$$

$\Longrightarrow H$ is an ideal invariant in a closed magnetic volume $\left.v_{n}\right|_{\partial v}=\left.B_{n}\right|_{\partial v}=0$.

For two thin flux tubes,

$$
H=\int_{V_{1}} \mathbf{A} \cdot \mathbf{B} d^{3} x+\int_{V_{2}} \mathbf{A} \cdot \mathbf{B} d^{3} x
$$

For two thin flux tubes,

$$
\begin{aligned}
H & =\int_{V_{1}} \mathbf{A} \cdot \mathbf{B} d^{3} x+\int_{V_{2}} \mathbf{A} \cdot \mathbf{B} d^{3} x \\
& \downarrow \quad \mathbf{B} d^{3} x \approx \Phi d \mathbf{l} \\
& =\Phi_{1} \oint_{C_{1}} \mathbf{A} \cdot d \mathbf{l}+\Phi_{2} \oint_{C_{2}} \mathbf{A} \cdot d \mathbf{l}
\end{aligned}
$$

For two thin flux tubes,

$$
\begin{aligned}
H & =\int_{V_{1}} \mathbf{A} \cdot \mathbf{B} d^{3} x+\int_{V_{2}} \mathbf{A} \cdot \mathbf{B} d^{3} x \\
& \downarrow \\
& =\Phi_{1} \oint_{C_{1}} \mathbf{A} \cdot d d^{3} x \approx \Phi d \mathbf{l}+\Phi_{2} \oint_{C_{2}} \mathbf{A} \cdot d \mathbf{l} \\
& =2 \Phi_{1} \Phi_{2}
\end{aligned}
$$

For two thin flux tubes,

For a collection of discrete flux tubes,

$$
H=2 \sum_{i<j} L k\left(C_{i}, C_{j}\right) \Phi_{i} \Phi_{j} .
$$

Moffatt 1992, Proc. R. Soc. Lond. A 439, 411.

Taylor 1974, PRL 33, $1139 \rightarrow H$ is the only surviving invariant

Counterexamples?

1. Candelaresi \& Brandenburg 2011, PRE 84, 01646.

2. Pontin et al. 2011, A\&A 525, A57.

Aims

1. How do we quantify 3D reconnection?
2. What (quasi)-invariants play a role in magnetic relaxation?

Field line helicities

$$
\lim _{\epsilon \rightarrow 0} \int_{V(\epsilon)} \mathbf{A} \cdot \mathbf{B} d^{3} x
$$

Taylor 1986, Rev. Mod. Phys. 58, 741.
Berger 1988, A\&A 201, 355. \rightarrow energy formula for force-free fields

Our flux tube

Our flux tube

$B_{z}>0$

The relative helicity

$$
H_{\mathbf{B}^{\prime}}(\mathbf{B})=\int_{V}\left(\mathbf{A}+\mathbf{A}^{\prime}\right) \cdot\left(\mathbf{B}-\mathbf{B}^{\prime}\right) d^{3} x, \quad \text { where }\left.\quad B_{n}^{\prime}\right|_{\partial v}=\left.B_{n}\right|_{\partial v},
$$

is independent of the gauges of $\mathbf{A}, \mathbf{A}^{\prime}$ and ideal invariant for $\left.\mathbf{v}\right|_{\partial v}=0$.
Berger \& Field 1984, JFM 147, 133.
Finn \& Antonsen 1985, Comm. Plasma Phys. Contr. Fusion 9, 111.

Our flux tube

$B_{z}>0$

The relative helicity

$$
H_{B^{\prime}}(\mathbf{B})=\int_{V}\left(\mathbf{A}+\mathbf{A}^{\prime}\right) \cdot\left(\mathbf{B}-\mathbf{B}^{\prime}\right) d^{3} x, \quad \text { where } \quad B_{n}^{\prime}\left|\partial v=B_{n}\right|_{\partial v},
$$

is independent of the gauges of $\mathbf{A}, \mathbf{A}^{\prime}$ and ideal invariant for $\left.\mathbf{v}\right|_{\partial v}=0$.
Berger \& Field 1984, JFM 147, 133.
Finn \& Antonsen 1985, Comm. Plasma Phys. Contr. Fusion 9, 111.

Topological flux function

$$
\mathcal{A}\left(x_{0}\right)=\int_{F_{z}\left(x_{0}\right)} \mathbf{A} \cdot d \mathbf{l} .
$$

Topological flux function

Topological flux function

$$
\mathcal{A}\left(x_{0}\right)=\int_{F_{z}\left(x_{0}\right)} \mathbf{A} \cdot d \mathbf{l} .
$$

$$
\begin{aligned}
\int_{S_{0}} \mathcal{A}\left(x_{0}\right) B_{z}\left(x_{0}\right) d^{2} x_{0} & =\int_{S_{0}} \int_{0}^{h} \frac{\mathbf{A}(x(z)) \cdot \mathbf{B}(x(z))}{B_{z}(x(z))} B_{z}\left(x_{0}\right) d z d^{2} x_{0} \\
& =\int_{V} \mathbf{A}(x(z)) \cdot \mathbf{B}(x(z)) d^{3} x
\end{aligned}
$$

Topological flux function

$$
\mathcal{A}\left(x_{0}\right)=\int_{F_{z}\left(x_{0}\right)} \mathbf{A} \cdot d \mathbf{l} .
$$

$$
\begin{aligned}
\int_{S_{0}} \mathcal{A}\left(x_{0}\right) B_{z}\left(x_{0}\right) d^{2} x_{0} & =\int_{S_{0}} \int_{0}^{h} \frac{\mathbf{A}(x(z)) \cdot \mathbf{B}(x(z))}{B_{z}(x(z))} B_{z}\left(x_{0}\right) d z d^{2} x_{0} \\
& =\int_{V} \mathbf{A}(x(z)) \cdot \mathbf{B}(x(z)) d^{3} x \\
& =H
\end{aligned}
$$

Winding number

$$
C\left(x_{0}, y_{0}\right)=\frac{1}{2 \pi} \int_{0}^{h} \frac{d}{d z} \Theta\left(x_{0}, y_{0}, z\right) d z
$$

where

$$
\begin{aligned}
\Theta\left(x_{0}, y_{0}, z\right) & =\arctan \left(\frac{r_{2}}{r_{1}}\right) \\
\mathbf{r}\left(x_{0}, y_{0}, z\right) & =\left(x_{1}-y_{1}, x_{2}-y_{2}, 0\right)
\end{aligned}
$$

Winding number

$$
C\left(x_{0}, y_{0}\right)=\frac{1}{2 \pi} \int_{0}^{h} \frac{d}{d z} \Theta\left(x_{0}, y_{0}, z\right) d z
$$

where

$$
\begin{aligned}
\Theta\left(x_{0}, y_{0}, z\right) & =\arctan \left(\frac{r_{2}}{r_{1}}\right) \\
\mathbf{r}\left(x_{0}, y_{0}, z\right) & =\left(x_{1}-y_{1}, x_{2}-y_{2}, 0\right) .
\end{aligned}
$$

In the Biot-Savart gauge

$$
\mathbf{A}^{B S}(x)=\frac{1}{2 \pi} \int_{S_{z}} \frac{\mathbf{B}\left(y_{1}, y_{2}, z\right) \times \mathbf{r}}{|\mathbf{r}|^{2}} d^{2} y,
$$

we can write

$$
\mathcal{A}\left(x_{0}\right)=\int_{S_{0}} C\left(x_{0}, y_{0}\right) B_{z}\left(y_{0}\right) d^{2} y_{0}:=\mathcal{A}^{B S} .
$$

Simple example

$$
\mathbf{B}=B_{0} \mathbf{e}_{z}+B_{1} r z \mathbf{e}_{\phi}
$$

Simple example

$$
\mathbf{B}=B_{0} \mathbf{e}_{z}+B_{1} r z \mathbf{e}_{\phi}
$$

A rare example where we can integrate $\mathbf{A}^{B S}$ explicitly:

$$
\mathbf{A}^{B S}=\frac{B_{0} r}{2} \mathbf{e}_{\phi}-\frac{B_{1} z}{2}\left(r^{2}-R_{0}^{2}\right) \mathbf{e}_{z}
$$

Simple example

$$
\mathbf{B}=B_{0} \mathbf{e}_{z}+B_{1} r z \mathbf{e}_{\phi}
$$

A rare example where we can integrate $\mathbf{A}^{B S}$ explicitly:

$$
\mathbf{A}^{B S}=\frac{B_{0} r}{2} \mathbf{e}_{\phi}-\frac{B_{1} z}{2}\left(r^{2}-R_{0}^{2}\right) \mathbf{e}_{z}
$$

The field lines are

$$
r(z)=r_{0}, \quad \phi(z)=\phi_{0}+\frac{B_{1}}{2 B_{0}} z^{2}
$$

Simple example

$$
\mathbf{B}=B_{0} \mathbf{e}_{z}+B_{1} r z \mathbf{e}_{\phi}
$$

A rare example where we can integrate $\mathbf{A}^{B S}$ explicitly:

$$
\mathbf{A}^{B S}=\frac{B_{0} r}{2} \mathbf{e}_{\phi}-\frac{B_{1} z}{2}\left(r^{2}-R_{0}^{2}\right) \mathbf{e}_{z}
$$

The field lines are

$$
r(z)=r_{0}, \quad \phi(z)=\phi_{0}+\frac{B_{1}}{2 B_{0}} z^{2}
$$

which have uniform pairwise winding number

$$
C\left(x_{0}, y_{0}\right)=\frac{B_{1} h^{2}}{4 \pi B_{0}}
$$

Simple example

$$
\mathbf{B}=B_{0} \mathbf{e}_{z}+B_{1} r z \mathbf{e}_{\phi}
$$

A rare example where we can integrate $\mathbf{A}^{B S}$ explicitly:

$$
\mathbf{A}^{B S}=\frac{B_{0} r}{2} \mathbf{e}_{\phi}-\frac{B_{1} z}{2}\left(r^{2}-R_{0}^{2}\right) \mathbf{e}_{z}
$$

The field lines are

$$
r(z)=r_{0}, \quad \phi(z)=\phi_{0}+\frac{B_{1}}{2 B_{0}} z^{2}
$$

which have uniform pairwise winding number

$$
C\left(x_{0}, y_{0}\right)=\frac{B_{1} h^{2}}{4 \pi B_{0}}
$$

and uniform

$$
\mathcal{A}^{B S}\left(r_{0}, \phi_{0}\right)=\frac{B_{1} R_{0}^{2} h^{2}}{4}
$$

Gauge dependence

$$
\mathbf{A} \rightarrow \mathbf{A}+\nabla \chi \quad \Longrightarrow \quad \mathcal{A} \quad \rightarrow \quad \mathcal{A}+F^{*} \chi-\chi
$$

In a rotated frame,

$$
\begin{aligned}
& r_{1}^{\prime}=r_{1} \cos \theta_{0}-r_{2} \sin \theta_{0}, \\
& r_{2}^{\prime}=r_{1} \sin \theta_{0}+r_{2} \cos \theta_{0},
\end{aligned}
$$

we get

$$
\Theta^{\prime}=\arctan \left(\frac{r_{2}^{\prime}}{r_{1}^{\prime}}\right)=\Theta+\theta_{0}
$$

In a rotated frame,

$$
\begin{aligned}
& r_{1}^{\prime}=r_{1} \cos \theta_{0}-r_{2} \sin \theta_{0}, \\
& r_{2}^{\prime}=r_{1} \sin \theta_{0}+r_{2} \cos \theta_{0},
\end{aligned}
$$

we get

$$
\Theta^{\prime}=\arctan \left(\frac{r_{2}^{\prime}}{r_{1}^{\prime}}\right)=\Theta+\theta_{0}
$$

In a general gauge,

$$
\mathcal{A}\left(x_{0}\right)=\int_{S_{0}} C^{\prime}\left(x_{0}, y_{0}\right) B_{z}\left(y_{0}\right) d^{2} y_{0}
$$

where C^{\prime} is the winding with respect to some frame field $\theta_{0}\left(x_{0}, z\right)$.

In a rotated frame,

$$
\begin{aligned}
& r_{1}^{\prime}=r_{1} \cos \theta_{0}-r_{2} \sin \theta_{0}, \\
& r_{2}^{\prime}=r_{1} \sin \theta_{0}+r_{2} \cos \theta_{0},
\end{aligned}
$$

we get

$$
\Theta^{\prime}=\arctan \left(\frac{r_{2}^{\prime}}{r_{1}^{\prime}}\right)=\Theta+\theta_{0}
$$

In a general gauge,

$$
\mathcal{A}\left(x_{0}\right)=\int_{S_{0}} C^{\prime}\left(x_{0}, y_{0}\right) B_{z}\left(y_{0}\right) d^{2} y_{0}
$$

where C^{\prime} is the winding with respect to some frame field $\theta_{0}\left(x_{0}, z\right)$.
Special case: If $\theta_{0}=\theta_{0}(z)$ then
$F^{*} \chi-\chi=$ constant $\Longrightarrow \mathcal{A}=\mathcal{A}^{B S}+$ constant

The Biot-Savart helicity

$$
H^{B S}(\mathbf{B})=\int_{V} \mathbf{A}^{B S} \cdot \mathbf{B} d^{3} x
$$

For any reference field,

$$
H_{\mathbf{B}^{\prime}}(\mathbf{B})=H^{B S}(\mathbf{B})-H^{B S}\left(\mathbf{B}^{\prime}\right) .
$$

cf. Hornig, A universal magnetic helicity integral, 2008 (gauge $\left.\nabla_{\perp} \cdot \mathbf{A}_{\perp}\right|_{\partial V}=0$).

Completeness theorem

(a) Let $\mathbf{B}, \mathbf{B}^{\prime}$ share the same B_{n} on ∂V, with $\mathbf{n} \times\left.\mathbf{A}^{\prime}\right|_{\partial V}=\mathbf{n} \times\left.\mathbf{A}\right|_{\partial V}$. Then

$$
F^{\prime}=F \text { with same rotation number } \quad \Longrightarrow \quad \mathcal{A}^{\prime}=\mathcal{A}
$$

Completeness theorem

(a) Let $\mathbf{B}, \mathbf{B}^{\prime}$ share the same B_{n} on ∂V, with $\mathbf{n} \times\left.\mathbf{A}^{\prime}\right|_{\partial V}=\mathbf{n} \times\left.\mathbf{A}\right|_{\partial V}$. Then

$$
F^{\prime}=F \text { with same rotation number } \quad \Longrightarrow \quad \mathcal{A}^{\prime}=\mathcal{A}
$$

If the difference in rotation numbers $n \in \mathbb{Z}$ is non-zero, then $\mathcal{A}^{\prime}=\mathcal{A}+n \Phi_{0}$.

Completeness theorem

(b1) Let $\mathbf{B}, \mathbf{B}^{\prime}$ share the same B_{n} on ∂V, with $\mathbf{n} \times\left.\mathbf{A}^{\prime}\right|_{\partial v}=\mathbf{n} \times\left.\mathbf{A}\right|_{\partial v}$. Then
$\mathcal{A}^{\prime}=\mathcal{A} \quad$ for every gauge $\quad \Longleftrightarrow \quad F^{\prime}=F$ with same rotation number.

Proof.
We need $\left(F^{\prime}\right)^{*} \chi-F^{*} \chi=0$ for an arbitrary gauge transformation $\mathbf{A} \rightarrow \mathbf{A}+\nabla \chi$, so must have $F^{\prime}=F$.

Completeness theorem

(b2) Let $\mathbf{B}, \mathbf{B}^{\prime}$ share the same B_{n} on ∂V, with $\mathbf{n} \times\left.\mathbf{A}^{\prime}\right|_{\partial V}=\mathbf{n} \times\left.\mathbf{A}\right|_{\partial V}$, in the specific gauge $A_{r} \mid S_{0}, S_{h}=0$. Then

$$
\mathcal{A}^{\prime}=\mathcal{A} \quad \Longleftrightarrow \quad F^{\prime}=F \text { with the same rotation number. }
$$

Yeates \& Hornig 2013, PoP 20, 012102.; Yeates \& Hornig 2013, arXiv:1304.8064.

Completeness theorem

(b2) Let $\mathbf{B}, \mathbf{B}^{\prime}$ share the same B_{n} on ∂V, with $\mathbf{n} \times\left.\mathbf{A}^{\prime}\right|_{\partial V}=\mathbf{n} \times\left.\mathbf{A}\right|_{\partial V}$, in the specific gauge $A_{r} \mid s_{0}, S_{h}=0$. Then

$$
\mathcal{A}^{\prime}=\mathcal{A} \quad \Longleftrightarrow \quad F^{\prime}=F \text { with the same rotation number. }
$$

Proof
Let $G=F^{\prime} \circ F^{-1}$ and aim to show $G=\mathrm{id}$.

Completeness theorem

(b2) Let B, \mathbf{B}^{\prime} share the same B_{n} on ∂V, with $\mathbf{n} \times\left.\mathbf{A}^{\prime}\right|_{\partial V}=\mathbf{n} \times\left.\mathbf{A}\right|_{\partial V}$, in the specific gauge $A_{r} \mid s_{0}, S_{h}=0$. Then

$$
\mathcal{A}^{\prime}=\mathcal{A} \quad \Longleftrightarrow \quad F^{\prime}=F \text { with the same rotation number. }
$$

Proof

1. If $A_{r}=0$ then $B_{z}>0 \Longrightarrow r A_{\phi}>0$ for $r>0$.

Completeness theorem

(b2) Let B, \mathbf{B}^{\prime} share the same B_{n} on ∂V, with $\mathbf{n} \times\left.\mathbf{A}^{\prime}\right|_{\partial V}=\mathbf{n} \times\left.\mathbf{A}\right|_{\partial V}$, in the specific gauge $A_{r} \mid S_{0}, S_{h}=0$. Then

$$
\mathcal{A}^{\prime}=\mathcal{A} \quad \Longleftrightarrow \quad F^{\prime}=F \text { with the same rotation number. }
$$

Proof

1. If $A_{r}=0$ then $B_{z}>0 \Longrightarrow r A_{\phi}>0$ for $r>0$.
2. Two loops on the boundary imply

$$
\int_{F_{\phi}^{\prime}}^{F_{\phi}} r A_{\phi} d \phi=0
$$

so by step $1,\left.G\right|_{\partial S_{0}}=\mathrm{id}$.

Completeness theorem

(b2) Let $\mathbf{B}, \mathbf{B}^{\prime}$ share the same B_{n} on ∂V, with $\mathbf{n} \times\left.\mathbf{A}^{\prime}\right|_{\partial V}=\mathbf{n} \times\left.\mathbf{A}\right|_{\partial V}$, in the specific gauge $A_{r} \mid S_{0}, S_{h}=0$. Then

$$
\mathcal{A}^{\prime}=\mathcal{A} \quad \Longleftrightarrow \quad F^{\prime}=F \text { with the same rotation number. }
$$

Proof

3. For any curve $\gamma \in S_{1}$ from x_{0} to y_{0},

$$
\mathcal{A}^{\prime}=\mathcal{A} \quad \Longrightarrow \quad \int_{G(\gamma)} \mathbf{A} \cdot d \mathbf{l}=\int_{\gamma} \mathbf{A} \cdot d \mathbf{l} .
$$

Completeness theorem

(b2) Let B, \mathbf{B}^{\prime} share the same B_{n} on ∂V, with $\mathbf{n} \times\left.\mathbf{A}^{\prime}\right|_{\partial V}=\mathbf{n} \times\left.\mathbf{A}\right|_{\partial V}$, in the specific gauge $A_{r} \mid S_{0}, S_{h}=0$. Then

$$
\mathcal{A}^{\prime}=\mathcal{A} \quad \Longleftrightarrow \quad F^{\prime}=F \text { with the same rotation number. }
$$

Proof

3. For any curve $\gamma \in S_{1}$ from x_{0} to y_{0},

$$
\begin{gather*}
\mathcal{A}^{\prime}=\mathcal{A} \quad \Longrightarrow \quad \int_{G(\gamma)} \mathbf{A} \cdot d \mathbf{l}=\int_{\gamma} \mathbf{A} \cdot d \mathbf{l} . \\
\text { i.e. } \quad A_{\phi}(G(r, \phi)) \frac{\partial G_{\phi}}{\partial r}=0, \tag{1}\\
G_{r} A_{\phi}(G(r, \phi)) \frac{\partial G_{\phi}}{\partial \phi}-r A_{\phi}(r, \phi)=0 . \tag{2}
\end{gather*}
$$

Completeness theorem

(b2) Let B, \mathbf{B}^{\prime} share the same B_{n} on ∂V, with $\mathbf{n} \times\left.\mathbf{A}^{\prime}\right|_{\partial V}=\mathbf{n} \times\left.\mathbf{A}\right|_{\partial V}$, in the specific gauge $A_{r} \mid s_{0}, S_{h}=0$. Then

$$
\mathcal{A}^{\prime}=\mathcal{A} \quad \Longleftrightarrow \quad F^{\prime}=F \text { with the same rotation number. }
$$

Proof

4. By (1), $G_{\phi}=g(\phi)$, then the boundary implies $g(\phi)=\phi$.
5. Then (2) gives $G_{r} A_{\phi}(G(r, \phi))=r A_{\phi}(r, \phi)$.

But the Jacobian of the transformation from (r, ϕ) to $\left(r A_{\phi}, \phi\right)$ in each plane is non-zero by step 1 .
Hence $G_{r}=r$ and $G=\mathrm{id}$.

Conclusion

We have identified a finer-grained invariant than magnetic helicity and shown that it is complete.

Conclusion

We have identified a finer-grained invariant than magnetic helicity and shown that it is complete.

Ideas we are working on:

- How to measure discrete reconnection rates with the flux function? Yeates \& Hornig 2011, PoP 18, 102118.
- Which functions of \mathcal{A} are the most robust invariants?
- How to extend to more general magnetic fields?

Conclusion

We have identified a finer-grained invariant than magnetic helicity and shown that it is complete.

Ideas we are working on:

- How to measure discrete reconnection rates with the flux function? Yeates \& Hornig 2011, PoP 18, 102118.
- Which functions of \mathcal{A} are the most robust invariants?
- How to extend to more general magnetic fields?

The ordinary magnetic helicity is a meaningful quantity whichever gauge you choose, but the Biot-Savart gauge is the best choice.

Science \& Technology Facilities Council

