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Smoke

Micro-bubbles

Kleckner & lIrvine 2013,
Nature Phys. 9, 253.



Vorticity equation (inviscid, barotropic fluid):

ow

d
—= = — nd’*x = Kelvin's Th
5 Vx(vxw) = p /S(t)wn x =0 (Kelvin's Theorem)



Vorticity equation (inviscid, barotropic fluid):

dw _ V x (vxw) = i/ wnd?’x =0 (Kelvin's Theorem)
ot dt Js

Induction equation (ideal magnetohydrodynamics):

0B d
— =Vx (VXB) = — B:nd?’x =0 (Alfvén’s Theorem)
ot dt Js



Hannes Alfvén receiving the Nobel Prize in Physics, 1970.



after Moffatt 1985, JFM 159, 359.
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Magnetic helicity

H:/ABf&
14

where

B=VxA
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Magnetic helicity

H:/A«Bd3x, where B=V x A
14

» Under a gauge transformation A — A + Vy,

H— H+f x B, d*x.
ov

» Under an ideal evolution A/t = v x B + V¢,

dH
ek B, d? A.-vB,— A Bv,)d’x.
g 7{9v¢ dx—&—jg‘/( v v)dx

= H is an ideal invariant in a closed magnetic volume
Vn‘@V - Bn‘BV =0.



For two thin flux tubes,

H= [ A-Bd®x+
Vi

Vs

A-Bd3x



For two thin flux tubes,
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For two thin flux tubes,

H:/ A-Bd3x+/ A-Bd3x
V1 V2

l Bd3x ~ ¢ dl

:¢1j{ A- d|+¢2]{ A dl
C1 C2

= 20,0,

G

For a collection of discrete flux tubes,

H=2) " Lk(C;, G)b;®,.

i<j

Moffatt 1992, Proc. R. Soc. Lond. A 439, 411.



Taylor 1974, PRL 33, 1139 — H is the only surviving invariant



Counterexamples?

1. Candelaresi & Brandenburg 2011, PRE 2. Pontin et al. 2011, A&A 525, A57.
84, 01646.




Aims

1. How do we quantify 3D reconnection?

2. What (quasi)-invariants play a role in magnetic relaxation?



Field line helicities

Taylor 1986, Rev. Mod. Phys. 58, 741.
Berger 1988, A&A 201, 355. — energy formula for force-free fields
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Our flux tube

F(x)
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Our flux tube
Flw)

The relative helicity
Hg/(B) = / (A+A)-(B-B)d*, where  Bl|av = Balav,
v

is independent of the gauges of A, A’ and ideal invariant for v|gy = 0.

Berger & Field 1984, JFM 147, 133.
Finn & Antonsen 1985, Comm. Plasma Phys. Contr. Fusion 9, 111.
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Our flux tube
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The relative helicity
Hg/(B) = / (A+A)-(B-B)d*, where  Bl|av = Balav,
v

is independent of the gauges of A, A’ and ideal invariant for v|gy = 0.

Berger & Field 1984, JFM 147, 133.
Finn & Antonsen 1985, Comm. Plasma Phys. Contr. Fusion 9, 111.
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Topological flux function

F(x)
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Topological flux function
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Topological flux function
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Se

Winding number

1 ["d
C(XOaYO):E | EG(XO,YO,Z)dZ

where

©(xo0, Yo, z) = arctan <r2> ,

n
r(XOa.yf)aZ) = (Xl — Y1, X2 — Y270)-
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Winding number

1 ["d
C(Xo,)/o)zg | EG(XO,YOaZ)dz

where
r
©(xo0, Yo, z) = arctan <2) ,
n

r(x0,¥0,2) = (X1 — y1, X2 — ¥2,0).

In the Biot-Savart gauge

ABS(X) 1 / B(Y17}/2az) xXr de7

o |r|?

we can write

A(Xo) = s C(XO7)/O)B (YO) = AP,
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Simple example

B = Bye, + Birzey
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Simple example

B = Bye, + Birzey

A rare example where we can integrate AB° explicitl
g p y

ABS:@eqﬁ—%

2

2

(r* — R3)e,.
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Simple example

B = Bye, + Birzey

A rare example where we can integrate AB> explicitly:
g p y

B B
ABS — %edj - %Z(r2 — R2)e,.

The field lines are

B
r(z) = ro, &(z) = ¢o + ﬁzﬁ
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Simple example

B = Bye, + Birzey

A rare example where we can integrate ABS explicitly:

- Bor Blz

ABS = Te¢ — T(rz — Ro2)ez.

The field lines are

By
— 72
0

#(z) = ¢o + °B

r(z) = ro,

which have uniform pairwise winding number

By h?
47 Bo

C(XOa }’0) =

16
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Simple example

B = Bye, + Blrze¢,

A rare example where we can integrate ABS explicitly

Bor Blz
AP = — 5y e~ — (r r’ — Rj)e.

The field lines are
B ,

r(z) = r, ¢(Z):¢o+ﬁz
which have uniform pairwise winding number

By h?
C(x0, y0) = 4;80

and uniform
B th2
S(r07¢ ) - 17

16
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Gauge dependence

A— A+ Vy = A — A+Fy—x

18 /24



In a rotated frame,

r{ =n COS@Q — N sin 90,

ry = rysinfy + ry cos g,

we get

/
©’ = arctan (?) =0 + 6.
1
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we get
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where C’ is the winding with respect to some frame field 6o(xo, ).

/
©’ = arctan (E) =0 + 6.
1

19/24



In a rotated frame,

r{ =n C0590 — N sin 90,

ry = rysinfy + ry cos g,

we get

In a general gauge,

Alxo) = /5 o, ) Bl P

where C’ is the winding with respect to some frame field 6o(xo, ).

Special case: If 6y = 0y(z) then
F*x — x = constant = A = AB 4 constant

/
©’ = arctan (E) =0 + 6.
1
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The Biot-Savart helicity

HB5(B) = / ABS . B d3x.
%
For any reference field,

Hg/(B) = HB5(B) — HB5(B').

cf. Hornig, A universal magnetic helicity integral, 2008 (gauge V.- AJ_|8V = 0).
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Completeness theorem

(a) Let B, B’ share the same B, on 9V, with n X A’|sy =n X A|sy.
Then

F’ = F with same rotation number = A = A.
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Completeness theorem

(a) Let B, B’ share the same B, on 9V, with n X A’|sy =n X A|sy.
Then

F’ = F with same rotation number = A = A.

If the difference in rotation numbers n € Z is non-zero, then
A=A+ ndg.




Completeness theorem

(b1) Let B, B’ share the same B, on 9V, with n x A’|sy =n x Aly.
Then

A" = A for every gauge <=  F’ = F with same rotation number.

Proof.
We need (F')*x — F*x = 0 for an arbitrary gauge transformation
A — A+ Vy, so must have F/ = F. O]



Completeness theorem

(b2) Let B, B’ share the same B, on 9V, with n x A’'|gy = n X Algy, in
the specific gauge A,|s,.s, = 0. Then

A=A <= F' = F with the same rotation number.

Yeates & Hornig 2013, PoP 20, 012102.;Yeates & Hornig 2013, arXiv:1304.8064.



Completeness theorem

(b2) Let B, B’ share the same B, on 9V, with n x A’'|gy = n X Algy, in
the specific gauge A,|s,.s, = 0. Then

A=A <= F' = F with the same rotation number.

Proof
Let G = F' o F~1 and aim to show G = id.
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Completeness theorem

(b2) Let B, B’ share the same B, on 9V, with n x A’'|gy = n X Algy, in
the specific gauge A,|s,.s, = 0. Then

A=A <= F' = F with the same rotation number.

Proof

1. If A, =0then B, >0 = rAg > 0 for
r> 0.



Completeness theorem

(b2) Let B, B’ share the same B, on 9V, with n x A’|sy = n x A|sy, in
the specific gauge A/|s,.s, = 0. Then

A=A <= F' = F with the same rotation number.

Proof

1. If A, =0then B, >0 = rAg > 0 for
r>0.

2. Two loops on the boundary imply

Fo
/ rAg d¢ =0,
F

’

@

so by step 1, Glgs, = id.




Completeness theorem

(b2) Let B, B’ share the same B, on 9V, with n x A’|sy = n x A|sy, in
the specific gauge A/|s,.s, = 0. Then

A=A <=  F' = F with the same rotation number.

Proof

3. For any curve v € 5 from xg to yp,
A=A = A~d|:/A~dI.
G(v) ¥

"




Completeness theorem

(b2) Let B, B’ share the same B, on 9V, with n x A’|sy = n x A|sy, in
the specific gauge A/|s,.s, = 0. Then

A=A <=  F' = F with the same rotation number.

Proof

3. For any curve v € 5 from xg to yp,

A=A — A~d|:/A~dI.
G(7v) y

((,qs))a% 0, (1)
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Completeness theorem

(b2) Let B, B’ share the same B, on 9V, with n x A’|s5y = n x A|sy, in
the specific gauge A/|s,.s, = 0. Then

A=A <=  F' = F with the same rotation number.

Proof
4. By (1), Gy, = g(¢), then the boundary
implies g(¢) = ¢.

5. Then (2) gives G,A4(G(r, d)) = rAs(r, ¢).
But the Jacobian of the transformation
from (r, ¢) to (rAg, @) in each plane is
non-zero by step 1.

Hence G, = r and G = id. O



Conclusion

We have identified a finer-grained invariant than magnetic helicity and
shown that it is complete.
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Ideas we are working on:

» How to measure discrete reconnection rates with the flux function?
Yeates & Hornig 2011, PoP 18, 102118.

» Which functions of A are the most robust invariants?

» How to extend to more general magnetic fields?
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Conclusion

We have identified a finer-grained invariant than magnetic helicity and
shown that it is complete.

Ideas we are working on:

» How to measure discrete reconnection rates with the flux function?
Yeates & Hornig 2011, PoP 18, 102118.

» Which functions of A are the most robust invariants?

» How to extend to more general magnetic fields?

The ordinary magnetic helicity is a meaningful quantity whichever
gauge you choose, but the Biot-Savart gauge is the best choice.
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