
ON GENERAL MAGNETIC
RECONNECTION

Anthony Yeates
Department of Mathematical Sciences, Durham University, UK,

anthony.yeates@dur.ac.uk

Gunnar Hornig
Division of Mathematics, University of Dundee, UK

anthony.yeates@dur.ac.uk


Abstract

Recent work has shown that a scalar ”topological flux function” A is a complete
ideal invariant for a non-null magnetic field between two fixed boundaries (Yeates &
Hornig, 2013). In other words, one field can evolve ideally into another with the
same boundary condition if and only if they share the same A function.

This poster shows how the usual reconnection rate from GMR theory can be
recovered from time changes in A. In addition, dA/dt encodes spatial information
about the reconnection.
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1. Background: General Magnetic Reconnection

General Magnetic Reconnection was introduced by Schindler et al. (1988) as a
framework to understand magnetic reconnection in 3D non-null magnetic fields.

I New field-line connections are made along contours of
integrated parallel electric field

Ξ(x0) =

Z F (x0)

x0

E · d l.

Here F : D0 → D1 is the field-line mapping between
boundaries.

I An isolated reconnection site has a maximum Ξ
associated to a central topological field-line whose
connectivity is instantaneously unchanged (Hesse et al.,
2005).

I For more complicated reconnection patterns, there will
be a set of such “topological field-lines” given by
extrema of Ξ (maxima, minima, saddle points).



2. Background: Field-line Velocities

In our non-null field, we can always find a field-line velocity w such that, for some
scalar function ψ,

E + w × B = ∇ψ.

To find w (e.g., Roberts, 1967; Hornig, 2007):

1. Calculate ψ by integrating along a field-line:

ψ =

Z F (x0)

x0

E · d l.

2. While this fixes the parallel component of ∇ψ, one is free to choose the arbitrary
constant on each field-line (equivalently the value of ψ on the initial surface D0).

3. Once ψ is chosen, this determines the perpendicular component

w⊥ =
(E−∇ψ)× B

B2
.

4. Since the perpendicular components of ∇ψ depend on the initial values chosen,
w⊥ is not unique. But an alternative choice ψ′, w′⊥ must satisfy

w′⊥ × B−∇ψ′ = w⊥ × B−∇ψ.

5. Irrespective of the choice of w⊥, the parallel component of w is completely
arbitrary.



3. Topological Flux Function

The topological flux function A : D0 → R is the integral of A along the field-line:

A(x0) =

Z F (x0)

x0

A · d l.

This scalar function encodes the magnetic field structure (Yeates & Hornig,
2013a,b):

I Given a reference field ∇× Aref , then fixing n× A|∂V = n× Aref |∂V makes A an
ideal invariant (for v|∂V = 0).

I If Hr is the relative magnetic helicity then

Hr − Href =

Z
D0

A(x0)Bz (x0) d2x0, where Href =

Z
V

Aref · Bref d3x .

I If cx0,y0 is the net winding angle between two field-lines (Berger, 1988) then

A(x0) =

Z
D0

cx0,y0Bz (y0) d2y0.

I Imposing the further “canonical” gauge Aref
x = 0 (or Aref

y = 0) makes A a
complete invariant: two magnetic fields with the same Bz |D0,1

have the same
field-line mapping if and only if they have the same A.



4. Time Derivative of A
The material derivative of A under an arbitrary field-line velocity w is

DA
Dt

= −Ξ +

„
w · A−

A · B
Bn

wn − φ
«˛̨̨̨F (x0)

x0

where φ can be removed by a gauge transformation. To find the time-derivative at a
fixed position, choose w so that w|D0

= 0. This fixes w⊥ everywhere, but leaves w‖
free elsewhere. We choose w‖|D1

such that wn|D1
= 0. Then

∂A
∂t

(x0) = −Ξ(x0) + wh · Aref
h

`
F (x0)

´
.

I First term: change in toroidal flux around the field-line due to reconnection of
other field-lines.

I Second term: amount of poloidal flux reconnected with this field-line.

To see this, consider the flux enclosed by a moving field-line in infinitesimal
time dt. Ignoring change in A of the field-line, Stokes’ Theorem gives

dΦ = −dx · Aref
h =⇒

dΦ

dt
= −wh · Aref

h .

This is entirely determined by the endpoint displacement dx (due to its

reconnection) and reference field on D1.

I For field-lines with wh = 0, ∂A/∂t gives exactly the GMR rate. These field-lines
are the same for any choice of w and are precisely the topological field-lines of
GMR theory.



5. Example: Flux Rope Formation
We illustrate with a kinematic model for the formation of a twisted flux rope by
reconnection (introduced by Hesse et al., 2005 & Titov et al. 2009).

Magnetic field: B = 3ex −
„

z +
(1− z2)t

(1 + z2)2(1 + x2/36)

«
ey + yez ,

Electric field (to satisfy Faraday’s Law): E =
z

(1 + z2)(1 + x2/36)
ex ,

Vector potential: A = −
„

y2 + z2

2
+ tEx

«
ex + 3yez [Aref = A(t = 0)].

Above: Field-lines at t = 5 and t = 40, coloured by Ξ.
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Above: Decomposition of ∂A/∂t in the plane

D0 = {(x, y) : y > 0} at t = 5. Bottom right shows

squashing factor Q (Titov et al., 2002).

In this example, the w · A term dominates for large
times, because w · A ∼ −t(dΞ/dt).

1. Both −Ξ and w · A contribute to
∂A/∂t.

2. The term w · A vanishes at the
location of maximum Ξ (white
*), so ∂A/∂t = −Ξ there.

3. The “fastest reconnecting”
field-lines, with largest w · A, lie
in the QSL (region of highest
Q), as expected.
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Above: Verification that w⊥|D1
(arrows)

moves along contours of Ξ (lines).


