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Abstract

Recent work has shown that a scalar " topological flux function” A is a complete
ideal invariant for a non-null magnetic field between two fixed boundaries (Yeates &
Hornig, 2013). In other words, one field can evolve ideally into another with the
same boundary condition if and only if they share the same A function.

This poster shows how the usual reconnection rate from GMR theory can be
recovered from time changes in A. In addition, d.A/dt encodes spatial information
about the reconnection.
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1. Background: General Magnetic Reconnection

General Magnetic Reconnection was introduced by Schindler et al. (1988) as a
framework to understand magnetic reconnection in 3D non-null magnetic fields.

> New field-line connections are made along contours of
integrated parallel electric field

F(x0)
=(x) :/ E. dl.

X0

non-ideal

Here F : Dy — D is the field-line mapping between region

boundaries.

» An isolated reconnection site has a maximum =
associated to a central topological field-line whose
connectivity is instantaneously unchanged (Hesse et al.,
2005).

» For more complicated reconnection patterns, there will
be a set of such “topological field-lines” given by
extrema of = (maxima, minima, saddle points).




2. Background: Field-line Velocities

In our non-null field, we can always find a field-line velocity w such that, for some
scalar function ),
E+wxB=Vy.

To find w (e.g., Roberts, 1967; Hornig, 2007):
1. Calculate ¢ by integrating along a field-line:

F(xo)
¥ =/ E-dl
X0

2. While this fixes the parallel component of V1, one is free to choose the arbitrary
constant on each field-line (equivalently the value of i on the initial surface Dp).

3. Once 9 is chosen, this determines the perpendicular component
_(E-VY)xB
W, = T

4. Since the perpendicular components of Vi) depend on the initial values chosen,
w | is not unique. But an alternative choice v/, W/J_ must satisfy

w| XxB—-Vy' =w, xB— V.

5. Irrespective of the choice of w , the parallel component of w is completely
arbitrary.



3. Topological Flux Function

The topological flux function A : Dy — R is the integral of A along the field-line:

F(xo)
A(XO):/ A dl.

X0

This scalar function encodes the magnetic field structure (Yeates & Hornig,
2013a,b):
> Given a reference field V x A'f, then fixing n x Alogy =n x Aref| 5, makes A an
ideal invariant (for v|gy = 0).

> If H, is the relative magnetic helicity then

Hy — H® = | A(x0)B:(x0) d?x0,  where  H™f = / A B oBx.
Doy v

> If cxy,y is the net winding angle between two field-lines (Berger, 1988) then
A0) = [ 6q0B200) 0.
Do

> Imposing the further “canonical” gauge A;ef =0 (or A;,ef =0) makes A a
complete invariant: two magnetic fields with the same B;|p, ; have the same
field-line mapping if and only if they have the same A.



4. Time Derivative of A

The material derivative of A under an arbitrary field-line velocity w is

. F(x0)
DA:—E+ (W'A—%Wn_(b)

Dt n

X0

where ¢ can be removed by a gauge transformation. To find the time-derivative at a
fixed position, choose w so that w|D0 = 0. This fixes w, everywhere, but leaves w)|
free elsewhere. We choose wj|p, such that wya|p, = 0. Then

0A —

By 0) = —=(x0) +wp - AT (F(x0))-

» First term: change in toroidal flux around the field-line due to reconnection of
other field-lines.

» Second term: amount of poloidal flux reconnected with this field-line.

To see this, consider the flux enclosed by a moving field-line in infinitesimal
time dt. Ignoring change in A of the field-line, Stokes’ Theorem gives

do o

I = —Wp - Ah .
This is entirely determined by the endpoint displacement dx (due to its
reconnection) and reference field on D;.

> For field-lines with wy = 0, 0.A/0t gives exactly the GMR rate. These field-lines
are the same for any choice of w and are precisely the topological field-lines of
GMR theory.

do = —dx- A —




5. Example: Flux Rope Formation

We illustrate with a kinematic model for the formation of a twisted flux rope by
reconnection (introduced by Hesse et al., 2005 & Titov et al. 2009).

Magnetic field B = 3e ( + (- Zz)t ) e, + ye

ic field: = |z ,
& x (11 22)2(1+x2/36) ) & 77
Electric field (to satisfy Faraday's Law): E z ey,

T (1+22)(1 + x2/36)
y2 +22

Vector potential: A=— ( + tEX) ex+3ye, [A®f =A(t=0)].
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Above: Field-lines at t = 5 and t = 40, coloured by =.



dAfdt
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Above: Decomposition of .A4/0t in the plane
Do = {(x,y) : y > 0} at t = 5. Bottom right shows
squashing factor Q (Titov et al., 2002).

In this example, the w - A term dominates for large
times, because w - A ~ —t(d=/dt).
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1. Both —= and w - A contribute to
0A/Ot.

2. The term w - A vanishes at the
location of maximum = (white
*), so 0A/0t = —= there.

3. The “fastest reconnecting”
field-lines, with largest w - A, lie
in the QSL (region of highest
Q), as expected.
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Above: Verification that w, |p, (arrows)
moves along contours of = (lines).



