New Topological Constraints on Magnetic Relaxation

Durham University

IUTAM Symposium, University College Dublin

July 2012

 Dundee simulation: relaxation of a braided magnetic field.

[Pontin et al. 2011; Wilmot-Smith et al. 2011]

 Dundee simulation: relaxation of a braided magnetic field.

[Pontin et al. 2011; Wilmot-Smith et al. 2011]

 Net effect of many "extreme" reconnection events.

 Dundee simulation: relaxation of a braided magnetic field.

[Pontin et al. 2011; Wilmot-Smith et al. 2011]

- Net effect of many "extreme" reconnection events.
- Taylor [1974]:

Turbulent reconnection destroys all ideal invariants except for total magnetic helicity \implies predict final state by minimising energy subject to constrained helicity.

^{-0.27 -0.18 -0.09 0.00 0.09 0.18 0.27}

 Dundee simulation: relaxation of a braided magnetic field.

[Pontin et al. 2011; Wilmot-Smith et al. 2011]

- Net effect of many "extreme" reconnection events.
- Taylor [1974]:

Turbulent reconnection destroys all ideal invariants except for total magnetic helicity \implies predict final state by minimising energy subject to constrained helicity.

Why is the Taylor state not reached?

Dundee simulation: relaxation of a braided magnetic field.

[Pontin et al. 2011; Wilmot-Smith et al. 2011]

- Net effect of many "extreme" reconnection events.
- Taylor [1974]:

Turbulent reconnection destroys all ideal invariants except for total magnetic helicity \implies predict final state by minimising energy subject to constrained helicity.

Why is the Taylor state not reached?

Previous ideas:

- Constrain multiple partial helicities over sub-volumes [Bhattacharjee & Dewar 1982; Dixon et al. 1989; Turnbull 2012]
- ► High-order linking of field lines [Ruzmaikin & Akhmetiev 1994; Hornig & Mayer 2002]

Magnetic Braids

Magnetic field B(r, φ, z, t) on a cylinder, satisfying

$$B \neq 0,$$
 (1)

$$B_r|_{r=R}=0, \qquad (2)$$

$$B_{z}|_{D_{0}} = B_{z}|_{D_{1}} > 0. \tag{3}$$

- Field line mapping
 - $f: D_0 \rightarrow D_1.$

Fixed Points

• Visualise with a "vector field" v = f - id.

Example: uniform twist field

Fixed Points

- Visualise with a "vector field" v = f id.
- Colour map [Polymilis et al. 2003].

Fixed Points

- Visualise with a "vector field" v = f id.
- Colour map [Polymilis et al. 2003].

Each fixed point x₀ has a Poincaré index:

Boundary Fixed Points

► To define index of fixed points on f |_{∂D₀}, extend f outside D₀.

[Brown & Greene 1994; Ma & Wang 2001]

Boundary Fixed Points

► To define index of fixed points on f |_{∂D₀}, extend f outside D₀.

[Brown & Greene 1994; Ma & Wang 2001]

Boundary Fixed Points

► To define index of fixed points on f |_{∂D₀}, extend f outside D₀.

[Brown & Greene 1994; Ma & Wang 2001]

Two types of boundary fixed point:

Global Constraint

Define

- ► Total (net) interior index T_{int} (topological degree/Lefschetz number).
- Total (net) boundary index T_{∂} .

Global Constraint

Define

- ► Total (net) interior index T_{int} (topological degree/Lefschetz number).
- Total (net) boundary index T_{∂} .

Theorem [Hopf, 1929]

For the disc, $T_{int} = 1 - T_{\partial}$.

Heinz Hopf

Global Constraint

Define

- ► Total (net) interior index T_{int} (topological degree/Lefschetz number).
- Total (net) boundary index T_{∂} .

Theorem [Hopf, 1929]

For the disc, $T_{int} = 1 - T_{\partial}$.

 \implies If f remains fixed on the boundary, then T_{int} must be conserved.

Heinz Hopf

Boundary shows that T_{int} = 2.

Boundary shows that T_{int} = 2.

Boundary shows that T_{int} = 2.

 Boundary shows that $T_{int} = 2.$

Boundary shows that T_{int} = 2.

Boundary shows that T_{int} = 2.

- Boundary shows that T_{int} = 2.
- T_{int} = 2 is conserved, explaining failure to reach Taylor state.

The Silver Braid

▶ New initial state with T_{int} = 3 (inspired by "silver mixer" [Finn & Thiffeault 2011])

Denote the total index of $f^n = f \circ f \circ \ldots \circ f$ by T_{int}^n .

n times

Denote the total index of $f^n = f \circ f \circ \ldots \circ f$ by T_{int}^n .

n times

Denote the total index of $f^n = f \circ f \circ \ldots \circ f$ by T_{int}^n .

Denote the total index of $f^n = f \circ f \circ \ldots \circ f$ by T_{int}^n .

Do these additional invariants constrain our predicted relaxed state?

Anthony Yeates (Durham University)

New Topological Constraints on Magnetic Relaxatior

Usually "no" ...

Theorem (Yeates & Hornig, 2011)

Suppose f has a finite number of fixed points at all iterations, and $\operatorname{ind}_{x_0} f^q \in \{-1, 0\}$ for every periodic point x_0 on ∂D_0 . Then $T_{int}^q = T_{int}^1$ for all $q \in \mathbb{N}$ unless $T_{int}^1 = 1$ and $f|_{\partial D_0}$ has a rational rotation number greater than 1.

Usually "no" ...

Theorem (Yeates & Hornig, 2011)

Suppose f has a finite number of fixed points at all iterations, and $\operatorname{ind}_{x_0} f^q \in \{-1, 0\}$ for every periodic point x_0 on ∂D_0 . Then $T_{int}^q = T_{int}^1$ for all $q \in \mathbb{N}$ unless $T_{int}^1 = 1$ and $f|_{\partial D_0}$ has a rational rotation number greater than 1.

Sketch proof:

Usually "no" ...

Theorem (Yeates & Hornig, 2011)

Suppose f has a finite number of fixed points at all iterations, and $\operatorname{ind}_{x_0} f^q \in \{-1, 0\}$ for every periodic point x_0 on ∂D_0 . Then $T_{int}^q = T_{int}^1$ for all $q \in \mathbb{N}$ unless $T_{int}^1 = 1$ and $f|_{\partial D_0}$ has a rational rotation number greater than 1.

Sketch proof:

▶ Possible index sequences $\{ind_{x_0}f^q\}$ for a fixed point satisfy Dold relations

Usually "no" ...

Theorem (Yeates & Hornig, 2011)

Suppose f has a finite number of fixed points at all iterations, and $\operatorname{ind}_{x_0} f^q \in \{-1, 0\}$ for every periodic point x_0 on ∂D_0 . Then $T_{int}^q = T_{int}^1$ for all $q \in \mathbb{N}$ unless $T_{int}^1 = 1$ and $f|_{\partial D_0}$ has a rational rotation number greater than 1.

Sketch proof:

- Possible index sequences {ind_{x0} f^q} for a fixed point satisfy Dold relations
 - \implies boundary fixed points have same index at all iterations.

Usually "no" ...

Theorem (Yeates & Hornig, 2011)

Suppose f has a finite number of fixed points at all iterations, and $\operatorname{ind}_{x_0} f^q \in \{-1, 0\}$ for every periodic point x_0 on ∂D_0 . Then $T_{int}^q = T_{int}^1$ for all $q \in \mathbb{N}$ unless $T_{int}^1 = 1$ and $f|_{\partial D_0}$ has a rational rotation number greater than 1.

Sketch proof:

- ▶ Possible index sequences $\{ind_{x_0}f^q\}$ for a fixed point satisfy Dold relations ⇒ boundary fixed points have same index at all iterations.
- $f|_{\partial D_0}$ can have periodic points of at most one minimal period, because it is a circle homeomorphism.

Usually "no" ...

Theorem (Yeates & Hornig, 2011)

Suppose f has a finite number of fixed points at all iterations, and $\operatorname{ind}_{x_0} f^q \in \{-1, 0\}$ for every periodic point x_0 on ∂D_0 . Then $T_{int}^q = T_{int}^1$ for all $q \in \mathbb{N}$ unless $T_{int}^1 = 1$ and $f|_{\partial D_0}$ has a rational rotation number greater than 1.

Sketch proof:

- ▶ Possible index sequences $\{ind_{x_0}f^q\}$ for a fixed point satisfy Dold relations ⇒ boundary fixed points have same index at all iterations.
- $\blacktriangleright f|_{\partial D_0}$ can have periodic points of at most one minimal period, because it is a circle homeomorphism. So

$$\begin{split} T^1_{int} > 1 \implies T^1_{\partial} \neq 0 \quad (\text{all boundary fixed points already present at } f^1) \\ T^1_{int} = 1 \implies T^1_{\partial} = 0 \implies \text{minimal period could be higher (if rotation number } \in \mathbb{Q}). \end{split}$$

Exceptional Case

Initial field with

Exceptional Case

Initial field with

$$\begin{split} T_{int}^{1,3,5,\ldots} &= 1, \\ T_{int}^{2,4,6,\ldots} &= 3. \end{split}$$

Conclusion

- Topological degree of the field line mapping can constrain the turbulent relaxation of a magnetised plasma.
- Applies to any continuous evolution of B providing that the field remains ideal on the boundary.
- If the degree of the initial state differs from that of the Taylor state, then the Taylor state will not be reached in the dynamical relaxation.
- There can be up to one further constraint from higher iterations of the field line mapping, but only for certain initial states with degree 1.

References

- 1. Yeates, Hornig & Wilmot-Smith, PRL 105, 085002 (2010).
- 2. Yeates & Hornig, J. Phys. A 44, 265501 (2011).
- 3. Yeates & Hornig, Phys. Plasmas 18, 102118 (2011).

Conclusion

- Topological degree of the field line mapping can constrain the turbulent relaxation of a magnetised plasma.
- Applies to any continuous evolution of B providing that the field remains ideal on the boundary.
- If the degree of the initial state differs from that of the Taylor state, then the Taylor state will not be reached in the dynamical relaxation.
- There can be up to one further constraint from higher iterations of the field line mapping, but only for certain initial states with degree 1.

References

- 1. Yeates, Hornig & Wilmot-Smith, PRL 105, 085002 (2010).
- 2. Yeates & Hornig, J. Phys. A 44, 265501 (2011).
- 3. Yeates & Hornig, Phys. Plasmas 18, 102118 (2011).*

*Use periodic field lines to define a global reconnection rate.