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Motivation

Ï Dundee simulation: relaxation of a braided

magnetic field.

[Pontin et al. 2011; Wilmot-Smith et al. 2011]

Ï Net effect of many “extreme” reconnection

events.

Ï Taylor [1974]:

Turbulent reconnection destroys all ideal

invariants except for total magnetic helicity

=⇒ predict final state by minimising energy

subject to constrained helicity.

Why is the Taylor state not reached?

Previous ideas:

Ï Constrain multiple partial helicities over sub-volumes [Bhattacharjee & Dewar 1982;

Dixon et al. 1989; Turnbull 2012]

Ï High-order linking of field lines [Ruzmaikin & Akhmetiev 1994; Hornig & Mayer 2002]
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Magnetic Braids

Ï Magnetic field B(r,φ,z, t) on a

cylinder, satisfying

B 6= 0, (1)

Br |r=R = 0, (2)

Bz|D0 =Bz|D1 > 0. (3)

Ï Field line mapping

f : D0 →D1.
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Fixed Points

Ï Visualise with a “vector field” v= f − id.

Ï Colour map [Polymilis et al. 2003].

Ï Each fixed point x0 has a Poincaré index:

indx0 f =+1 indx0 f =−1

elliptic hyperbolic

Example: uniform twist field
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Boundary Fixed Points

Ï To define index of fixed points on f |∂D0
,

extend f outside D0.

[Brown & Greene 1994; Ma & Wang 2001]

Ï Two types of boundary fixed point:

Example:
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Global Constraint

Define

Ï Total (net) interior index Tint (topological degree/Lefschetz number).

Ï Total (net) boundary index T∂.

Theorem [Hopf, 1929]

For the disc, Tint = 1−T∂.

Heinz Hopf

=⇒ If f remains fixed on the boundary,

then Tint must be conserved.
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Dundee Simulation

t = 0

Ï Boundary shows that

Tint = 2.

Ï Tint = 2 is conserved,

explaining failure to reach

Taylor state.
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Dundee Simulation

t = 35

Ï Boundary shows that

Tint = 2.

Ï Tint = 2 is conserved,

explaining failure to reach

Taylor state.
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Dundee Simulation

t = 50

Ï Boundary shows that

Tint = 2.

Ï Tint = 2 is conserved,

explaining failure to reach

Taylor state.
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Dundee Simulation

t = 80

Ï Boundary shows that

Tint = 2.

Ï Tint = 2 is conserved,

explaining failure to reach

Taylor state.
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Dundee Simulation

t = 110

Ï Boundary shows that

Tint = 2.

Ï Tint = 2 is conserved,

explaining failure to reach

Taylor state.
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Dundee Simulation

t = 290

Ï Boundary shows that

Tint = 2.

Ï Tint = 2 is conserved,

explaining failure to reach

Taylor state.
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The Silver Braid

Ï New initial state with Tint = 3 (inspired by “silver mixer” [Finn & Thiffeault 2011])

Initial Final
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Family of Invariants from Periodic Points
Denote the total index of f n = f ◦ f ◦ . . .◦ f︸ ︷︷ ︸

n times

by Tn
int

.

Do these additional invariants constrain our predicted relaxed state?
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Non-independence of Constraints

Usually “no”...

Theorem (Yeates & Hornig, 2011)

Suppose f has a finite number of fixed points at all iterations, and indx0 f q ∈ {−1,0}

for every periodic point x0 on ∂D0. Then T
q

int
= T1

int
for all q ∈N unless T1

int
= 1 and

f |∂D0
has a rational rotation number greater than 1.

Sketch proof:

Ï Possible index sequences {indx0 f q} for a fixed point satisfy Dold relations

=⇒ boundary fixed points have same index at all iterations.

Ï f |∂D0
can have periodic points of at most one minimal period, because it is a

circle homeomorphism. So

T1
int > 1 =⇒ T1

∂ 6= 0 (all boundary fixed points already present at f 1)

T1
int = 1 =⇒ T1

∂ = 0 =⇒ minimal period could be higher (if rotation number ∈Q).
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Exceptional Case

Ï Initial field with

T1,3,5,...
int

= 1,

T2,4,6,...
int

= 3.
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Conclusion

Ï Topological degree of the field line mapping can constrain the turbulent

relaxation of a magnetised plasma.

Ï Applies to any continuous evolution of B providing that the field remains ideal

on the boundary.

Ï If the degree of the initial state differs from that of the Taylor state, then the

Taylor state will not be reached in the dynamical relaxation.

Ï There can be up to one further constraint from higher iterations of the field

line mapping, but only for certain initial states with degree 1.

References
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*

*Use periodic field lines to define a global reconnection rate.
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