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~ We are using resistive-MHD simulations to probethe ' NUMERICAL SETUP (a
- self-organization of turbulently relaxing magnetic fields. 20—
f' . Lare3D [2] is used to solve the (unforced) resistive-
- Understanding the fundamental relaxation processis = MHD equations, starting from an initially braided 15
* important for predicting energy release in solar/stellar ~ magnetic field [3] that is resistively unstable. 10—
- coronal heating and confined solar flares. ‘ .
N - T |deal gas with low plasma-beta. 5
* Line-tied boundary conditions. N0
CLASSIC TAYLOR HYPOTHESIS [1] * Typical resolution: 640x640x480 grid with Lundquist s
If the only constraints are total magnetic flux and helicity, number 5=10%. 10
the minimum-energy state is a linear force-free field + The qualitative results are the same for $=2x10*or
V x B = \gB where \g = constant. |03 (resistive “smoothing” dominates for lower $),
and even for higher plasma-beta. 20—
RESULTS

1. In contrast to the classic Taylor prediction, the relaxed state is nonlinear force-free.

1 VxB-B - Relaxed state has clearly non-uniform
We quantify the departure from linear force-free by the field-line average \*(L) = 7 / =3 di. _ N even within each flux tube.
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2. However, we do observe a local “flattening” of field line helicity within each tube.
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In our line-tied system, field line helicity A(L) = / A - dl [4] would be invariant for every field line in an ideal evolution.
L

Taylor [ 1] conjectured that the individual line helicities are destroyed by the reconnection. Indeed they can change rapidly at a given footpoint position.
However, the dominant behaviour is not a removal of field line helicity but rather a flattening/uniformization within regions of opposite sign:
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Histogram of |A"| =0 o Histogram of |A] Our recef\t analx5|s of t.h.e evqlutlon equation .[5] shows that the
. at different times ~ —— !-200002 2t different times preservation of line helicity arises from the thinness of current sheets.
: T 10° 5 : : : : :
_ — :=;gggg§ ' But the mechanism underlying the flattening remains to be explained.
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