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REVISITING TAYLOR RELAXATION
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We are using resistive-MHD simulations to probe the 
self-organization of turbulently relaxing magnetic fields. 

CLASSIC TAYLOR HYPOTHESIS [1]

If the only constraints are total magnetic flux and helicity, 
the minimum-energy state is a linear force-free field

Lare3D [2] is used to solve the (unforced) resistive-
MHD equations, starting from an initially braided 
magnetic field [3] that is resistively unstable. 

• Ideal gas with low plasma-beta.

• Line-tied boundary conditions.

• Typical resolution: 640x640x480 grid with Lundquist 
number S=104.

• The qualitative results are the same for S=2x104 or 
103 (resistive “smoothing” dominates for lower S), 
and even for higher plasma-beta.

1. In contrast to the classic Taylor prediction, the relaxed state is nonlinear force-free.

We quantify the departure from linear force-free by the field-line average
Relaxed state has clearly non-uniform 
λ*, even within each flux tube.

2. However, we do observe a local “flattening” of field line helicity within each tube.

In our line-tied system,  field line helicity                            [4] would be invariant for every field line in an ideal evolution.

Taylor [1] conjectured that the individual line helicities are destroyed by the reconnection. Indeed they can change rapidly at a given footpoint position. 
However, the dominant behaviour is not a removal of field line helicity but rather a flattening/uniformization within regions of opposite sign:

Our recent analysis of the evolution equation [5] shows that the 
preservation of line helicity arises from the thinness of current sheets.

But the mechanism underlying the flattening remains to be explained.

NUMERICAL SETUP
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starting at the point x0 2 S0. The field line mapping will
have one or more periodic orbits xp

0 2 S0, where Fðxp
0 Þ ¼

xp
0 [17]. As a fixed point of the mapping F $ I (where I

denotes the identity map), each xp
0 is characterized by a

fixed point index, defined as the local Brouwer degree of
the mapping (see, e.g., [18]). This index takes integer
values, % 1 for generic, structurally stable, isolated periodic
orbits. The case þ 1 corresponds to an elliptic null point of
the local linearization of F $ I, or an elliptic periodic
orbit, while $ 1 indicates a hyperbolic periodic orbit. The
sum

T ¼
X

xp
0

indexðxp
0 Þ (1)

over all isolated periodic orbits is called the Lefschetz
number or topological degree of the mapping F. By the
Lefschetz-Hopf theorem [19] it is a conserved quantity,
providing that no periodic orbits cross the side boundary of
the domain. Periodic orbits can therefore be created or
annihilated only in pairs of opposite index.

The topological degree T may be computed by evaluat-
ing the Kronecker integral around the boundary of S0 [20],
or by other numerical methods [21]. Here, we adopt the
graphical color map technique of [20]. For example, Fig. 2

shows the color maps at various times in the braiding
simulation. Every point x0 ¼ ðx0; y0Þ on the lower bound-
ary of the domain (S0) is assigned one of four colors,
according to its field line mapping Fðx0Þ ¼ ðFx; FyÞ to
the upper boundary S1. We use red if Fx > x0 and Fy >
y0, yellow if Fx < x0 and Fy > y0, green if Fx < x0 and
Fy < y0, and blue if Fx > x0 and Fy < y0. On the resulting
color map, periodic orbits correspond either to red-green or
yellow-blue boundaries; isolated, generic periodic orbits
are points where all four colors meet. The index of an
isolated periodic orbit may be read from the sequence of
colors passed through in an anticlockwise direction around
a small circle around the point. An elliptic orbit (index 1)
has red-yellow-green-blue (r-y-g-b), while a hyperbolic
orbit (index $ 1) has r-b-g-y. To determine T, either sum
the individual indices or simply record the sequence of col-
ors around the boundary of S0. For example, in Fig. 2(a),
the initial state for the braiding experiment, we find 12
periodic orbits with index 1, and 10 with index $ 1, giving
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FIG. 2 (color online). Sequence of color maps for the original
braiding experiment [15], where total degree T ¼ 2. Note that
the colors from left to right along the lower boundary are
y-g-b-r.

FIG. 1 (color online). Magnetic field lines in the original
braiding experiment [15] for (a) the initial state at t ¼ 0 and
(b) the relaxed state at t ¼ 290 (in units of the Alfvén time).
Field lines are traced from the same starting points in each case.
In (b), color contours show ! ¼ j ' B=B2 on the S0 plane.
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RESULTS

Understanding the fundamental relaxation process is 
important for predicting energy release in solar/stellar 
coronal heating and confined solar flares. 
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