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Abstract

These notes concern the magnetic relaxation problem, in which an
electrically-conducting fluid is initialised in some non-trivial state,
and is subsequently allowed to relax to some minimum-energy state,
subject to the magnetohydrodynamic (MHD) equations. No driving
or forcing is applied during this relaxation process, and some form
of dissipation allows energy to decrease until the system reaches a
relaxed state. Our problem is simple: can we understand or predict
this relaxed state?

1 Introduction

We will assume that the dominant form of energy in the system is magnetic,
so that the relaxed state is one of minimal magnetic energy, subject to
some appropriate constraints (much more on these later!). Although we
shall also consider the perfectly conducting limit (Section 2.1), resistivity
plays an important role, as we shall see. In particular, though many fluids
of physical interest have extremely low resistivity, the presence of localised
dissipation is nevertheless essential to the global relaxation process.

Although our aim is to keep these notes as general as possible, it is useful
to bear in mind the types of physical system where this kind of relaxation
process might be relevant. Much of relaxation theory has been developed
in the controlled thermonuclear fusion community, notably following the
pioneering work of Taylor (Section 2.2). But the constrained minimisation
of magnetic energy was already being studied in the astrophysical context
in the 1950s, and, since the work of Taylor, there has been much interest in
applying similar ideas to astrophysical plasmas in the Sun’s atmosphere.
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1.1 MHD equations

In these notes, we will assume a conducting fluid that obeys the following
MHD equations:

∂ρ

∂t
= −∇ · (ρv), (1)

ρ
Dv

Dt
= −∇p+∇ · σ + j ×B, (2)

ρ
Dε

Dt
= −p∇ · v +

(
σ · ∇

)
v + ηj2, (3)

p = ρε(γ − 1), (4)

µ0j = ∇×B, (5)

∂B

∂t
= ∇×

(
v ×B

)
−∇×

(
ηj
)
. (6)

Equations (1)-(4) are the usual equations of fluid mechanics for the density
ρ, velocity field v, pressure p and internal energy ε, where σ is the viscous
stress tensor and we assume an adiabatic equation of state (4). Compared
to a non-conducting fluid, the momentum equation (2) contains an addi-
tional Lorentz force j × B due to the magnetic field B, where j is the
electric current density derived from Ampère’s law (5). In (3), there is an
additional ohmic dissipation term ηj2 that corresponds to heating of the
fluid by electrical resistivity (we shall assume a uniform resistivity η). The
magnetic field B evolves according to the induction equation (6), which is
obtained by substituting the (resistive) Ohm’s law into Faraday’s law to
eliminate the electric field. We assume that the initial magnetic field is
divergence-free (∇·B = 0), so that it remains so throughout the relaxation
thanks to (6).
In principle, we can simply compute the relaxed state by solving these equa-
tions as an initial value problem. However, the goal of relaxation theory is
to understand what is fundamentally going on when we solve the equations
– the “big picture,” if you will. With a deep enough understanding, we may
even be able to predict the relaxed state without having to solve the MHD
equations at all.
In many astrophysical and laboratory plasmas, we have η very small but
non-zero. Accordingly, our aim will be to understand this regime, although
we will see along the way what happens in the extreme cases where resis-
tivity is dominant (large η) or vanishing (ideal MHD, η = 0).

Boundary conditions We shall consider relaxation in a finite domain
V . This means that the boundary conditions will play an important role.
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We will consider two possible sets of boundary conditions, where we use the
notation Bn ≡ B · n̂ (with n̂ the outward unit normal):

(B1) Closed field — Bn|∂V = vn|∂V = 0.

(B2) Line-tied — ∂Bn/∂t |∂V = 0 and v|∂V = 0.

The name “line-tied” comes from the ideal MHD case, where conditions
(B2) would imply that magnetic field line footpoints on ∂V cannot move.
If η 6= 0, these footpoints may still move through resistive diffusion.

Initial conditions Except for the requirement that ∇ ·B = 0, and pos-
sibly boundary condition (B1), we allow for a general initial magnetic field
B. The relaxed state in any particular problem will naturally be dependent
on the choice of initial state, or at least on certain properties of it.

1.2 Energy dissipation

Since we are interested in minimizing magnetic energy, it is logical to con-
sider how this evolves. We define the total magnetic energy to be

W (t) =
1

2µ0

∫

V

B2 d3x. (7)

Differentiating this expression and using (6), we find that

dW

dt
=

1

µ0

∫

V

B · ∂B
∂t

d3x

=
1

µ0

∫

V

B · ∇ ×
(
v ×B − ηj

)
d3x

=
1

µ0

∫

V

[(
v ×B

)
· ∇ ×B − ηj · ∇ ×B

]
d3x

+
1

µ0

∮

∂V

[(
v ×B

)
×B − ηj ×B

]
· n̂d2x

= −
∫

V

[
v ·
(
j ×B

)
+ ηj2

]
d3x

+
1

µ0

∮

∂V

[
Bn(v ·B)− vnB2 + ηB ·

(
j × n̂

)]
d2x. (8)

Within the volume, this shows that W changes due to both work done
against the Lorentz force (which may increase or reduce W ), and due to
ohmic dissipation (which always reduces W ).
The first two boundary terms correspond to bodily transport of magnetic
energy into (or out of) V , and both vanish under either (B1) or (B2). The
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third term is due to ohmic diffusion through the boundary, and is usually
ruled out by additional boundary conditions in practice, in which case

dW

dt
= −

∫

V

[
v ·
(
j ×B

)
+ ηj2

]
d3x. (9)

In the presence of viscosity (the σ tensor), kinetic energy will eventually dis-
sipate leaving a static equilibrium v = 0. In this situation, magnetic energy
will continue to dissipate through ohmic dissipation, toward an asymptotic
state where

j = 0. (10)

In other words ∇×B = 0, which implies that B = ∇ψ. This is a potential
field, so-called because ∇·B = 0 implies that ψ satisfies Laplace’s equation
∆ψ = 0. So unconstrained resistive relaxation leads to a potential field.
What makes relaxation theory interesting is that a potential field is not
usually reached, at least not on a dynamical timescale. Instead, the system
settles rapidly into a relaxed state with v = 0, but with j 6= 0. In highly
conducting fluids, the remaining ohmic dissipation takes far longer and is
often physically irrelevant. The dynamical relaxation phase is what we are
really interested in.

Example 1.1 (One-dimensional model; Moffatt 2015). A simple system
exhibiting this “two-stage” relaxation process is given by assuming an initial
magnetic field B = B0

(
by(x, t)ŷ + bz(x, t)ẑ

)
in a pressureless fluid (p = 0)

with uniform viscosity µ. For such a magnetic field,

j ×B = −∂pm
∂x

x̂, (11)

where pm = B2/2 is the magnetic pressure. Thus if v = 0 initially, there
will only be a fluid velocity in the x direction, v = v(x, t)x̂. By defining

dimensionless variables x̂ = x/d, t̂ = t/(µ/B2
0), ρ̂ = ρ/ρ0 and b̂ = B/B0,

the MHD equations reduce to the dimensionless form (dropping the hats)

∂ρ

∂t
= − ∂

∂x

(
ρv
)
, (12)

∂

∂t

(
ρv
)

= − ∂

∂x

(
ρv2 − 1

ε

∂v

∂x
+ pm

)
, (13)

∂b

∂t
= − ∂

∂x

(
vb− κ∂b

∂x

)
. (14)

The dimensionless parameters ε = ρ0B
2
0d

2/µ2 and κ = ηµ/(B2
0d

2) are both
assumed small, so that the magnetic Prandtl number µ/(ρ0η) = (εκ)−1 is
assumed large.
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We can solve equations (12) to (14) numerically using a simple finite-
difference method, subject to the boundary conditions

∂b

∂x
(±π, t) = 0, v(±π, t) = 0, (15)

although these correspond to neither (B1) nor (B2) above. With ε = κ =
10−3 and initial conditions

b(x, 0) = 2 sin
(

0.1x(3π2 − x2)
)
ŷ + 3 cos

(
0.1x(3π2 − x2)

)
ẑ, (16)

v(x, 0) = 0, ρ(x, 0) = 1, (17)

we obtain the following evolution of the kinetic energy M(t) = 1
2

∫ π
−π ρv

2 dx,

magnetic energy W (t), parallel current J‖(t) =
∫
j‖ dx (with j‖ = |j ·B/B|)

and perpendicular current J⊥(t) =
∫

(j − j‖) dx.
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The key point here is the presence of an initial dynamical relaxation phase
with significant kinetic energy until about t = 0.5, followed by a purely re-
sistive decay thereafter. During the initial phase, the perpendicular current
is mostly dissipated, but the parallel current is not, so a potential field with
j = 0 is not reached until t � 1. We will see in Section 2.1 that such a
force-free state j = α(x)B would be expected in an ideal relaxation. It is
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notable that α depends on x, so that Taylor’s hypothesis (Section 2.2) is
not an appropriate model here.

1.3 Topological invariants

To understand the dynamical phase, we need to understand the physical
constraints on the fluid, additional to the boundary conditions. In a highly-
conducting fluid, these can arise from topological invariants: the magnetic
helicities of fluid subvolumes.
Let Vt ⊂ V be a material volume (moving with the fluid), and let A be a
vector potential for B, meaning that B = ∇×A. The magnetic helicity in
the subvolume Vt, corresponding to this choice of A, is

h(Vt) =

∫

Vt

A ·B d3x. (18)

We can compute the time evolution of this quantity using the transport
theorem:

dh(Vt)

dt
=

∫

Vt

∂

∂t

(
A ·B

)
d3x+

∮

∂Vt

A ·B vn d2x, (19)

=

∫

Vt

(
B · ∂A

∂t
+A · ∂B

∂t

)
d3x+

∮

∂Vt

A ·B vn d2x, (20)

= 2

∫

Vt

B · ∂A
∂t

d3x+

∮

∂Vt

(
A ·B vn −A×

∂A

∂t
· n̂
)

d2x. (21)

Uncurling the induction equation (6) shows that

∂A

∂t
= v ×B − ηj +∇χ, (22)

for some arbitrary scalar potential χ (that depends on the chosen gauge of
A). Substituting this into (21) gives

dh(Vt)

dt
= 2

∫

Vt

(
B · ∇χ− ηj ·B

)
d3x

+

∮

∂Vt

(
(A ·B)v −A× (v ×B) + ηA× j −A×∇χ

)
· n̂ d2x,

= −2

∫

Vt

ηj ·B d3x+

∮

∂Vt

[(
χ+ v ·A

)
Bn − ηj ·

(
A× n̂

)]
d2x.

(23)
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Here we used that ∇ ·B = 0 and also that ∂Vt is a closed surface.
If our fluid were perfectly conducting (η = 0), then (23) would reduce to
the boundary term. Moreover, this boundary term would vanish if Bn =
0. So the helicity h(Vt) is invariant under ideal MHD whenever Vt is a
magnetically-closed subvolume.
When η 6= 0, then the individual helicities h(Vt) are no longer invariant. In
Lecture 3, we will look at what happens to these topological quantities for
small but non-zero η.

1.4 Overview of these lectures

We have already seen that the minimum-energy state for an unconstrained
resistive relaxation is a potential field with j = 0. In the rest of these notes,
we aim to characterise the minimum-energy state reached by the dynamical
phase when this is much shorter than the ohmic dissipation timescale.
In relaxation theory, we aim to compute (or at least to characterise) the
minimum-energy state in the presence of constraints. Different choices of
constraint(s) will lead to different minimum-energy states. The cases that
we will study are summarised below:

In Lecture 2, we will consider two well-established cases: (i) ideal MHD
where all of the h(Vt) are conserved, and (ii) Taylor relaxation where we
impose the much weaker constraint that the total helicity for Vt = V is
the only constraint. In both cases, we will see that the minimum-energy
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states are force-free fields with j = αB. The difference is that α must
be a constant in case (ii) – a linear force-free magnetic field but may be a
function of position in case (i) – a nonlinear force-free magnetic field.
Lecture 3 describes recent work that aims to better characterise the relax-
ation process in “realistic” systems that fall somewhere between ideal MHD
and Taylor relaxation. The essential idea is to study the evolution of the
h(Vt) when the Vt are infinitesimal tubes around each magnetic field line.

2 Traditional Approaches

In this lecture, we discuss two well-studied regimes: ideal MHD and Taylor
relaxation.

2.1 Ideal MHD relaxation

In a perfectly conducting fluid with vanishing resistivity (η = 0), the induc-
tion equation (6) simplifies to

∂B

∂t
= ∇×

(
v ×B

)
, (24)

which implies that the magnetic field is frozen-in to the fluid (Alfvén’s the-
orem). As we have seen, the magnetic helicity h(Vt) is then invariant for
any magnetically-closed material subvolume Vt. Clearly these topological
invariants will inhibit the magnetic relaxation.
In ideal MHD, with boundary conditions (B1) or (B2), the evolution of
magnetic energy – equation (9) – reduces to

dW

dt
= −

∫

V

v ·
(
j ×B

)
d3x. (25)

Unlike in the resistive case, if the fluid stops moving then W stops changing,
because the magnetic field is frozen-in to the fluid. But the energy is also
stationary if j ×B = 0.

Variational argument To characterise the minimum-energy state, we
can use a variational argument where we treat W as a functional W (B)
and differentiate it with respect to the function B(x) using functional dif-
ferentiation. The first variation of W is

δW =
1

2µ0

∫

V

δ
(
B2
)

d3x =
1

µ0

∫

V

B · δB d3x. (26)

If B is a minimiser of W , then we must have δW = 0 for all possible
perturbations δB. The possible perturbations are not arbitrary: the ideal
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induction equation (24) implies that they must take the form δB = ∇ ×
(δξ ×B) for some displacement δξ with δξn|∂V = 0. Then

δW =
1

µ0

∫

V

B · ∇ ×
(
δξ ×B

)
d3x (27)

= −
∫

V

δξ ·
(
j ×B

)
d3x+

1

µ0

∮

∂V

(
δξ ×B

)
×B · n̂d2x. (28)

The boundary term vanishes under either boundary conditions (B1) or (B2).
Then δW = 0 for all perturbations δξ if and only if

j ×B = 0. (29)

So the minimum-energy state is a nonlinear force-free magnetic field of
the form j = αB. The coefficient α depends on x but is constant along
magnetic field lines (this follows from ∇ · j = ∇ ·B = 0).

Computational methods Knowing that the relaxed state satisfies (29),
how can we compute it? The need to constrain every helicity h(Vt) means
that an iterative method is required. Although we must ensure that the
magnetic field is frozen-in to the fluid during this process, we need not
follow the precise evolution given by the full MHD equations. A successful
approach is to embed the magnetic field in a fictitious fluid with simplified
properties, while retaining the induction equation (24). We can choose any
appropriate model in which energy is dissipated and W decreases.
A simple model that achieves the required energy dissipation is to prescribe
the velocity

νv = j ×B, (30)

instead of solving the momentum equation (2). This is called magneto-
friction and is widely used in modelling magnetic equilibria in the Sun’s
corona. Substituting (30) into (25) shows that, in this model,

dW

dt
= −ν

∫

V

v2 d3x, (31)

so that W decreases monotonically provided ν > 0. Since W ≥ 0, it must
tend to a limit with v = 0. By (30), this limit must satisfy j ×B = 0.
Magneto-friction under (30) has the disadvantage that magnetic null-points,
where B = 0, do not move. In addition, the relaxation will be slow at
locations where B is small. To remedy the latter, the coefficient ν is usually
made proportional to B, e.g. ν = ν0B

2 (with some correction at nulls).
Since B is frozen-in to the fluid, a Lagrangian numerical scheme is a natural
choice (e.g. Candelaresi et al., 2015, and references therein).
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Example 2.1 (Modelling the Sun’s corona). Magneto-frictional relaxation
has been used in different ways as a tool for modelling force-free magnetic
equilibria in the Sun’s atmosphere. One approach is to compute a single
static equilibrium by enforcing a fixed vector B on the solar surface (lower
boundary), and evolving an initial potential state toward a force-free equi-
librium through (30). This approach is exemplified by Valori et al. (2010).
It requires vector magnetogram data, i.e. measurements of all three compo-
nents of B on the solar surface, so is presently restricted to active regions.

For modelling wider regions of the solar atmosphere, an alternative approach
is quasi-static: the magnetic field in the coronal volume evolves according
to (30), but the boundary conditions are evolved at the same time to reflect
the evolution on the real Sun. So long as the relaxation is rapid enough
compared to the boundary driving, B evolves quasi-statically through a
continuous sequence of near force-free equilibria. In the absence of new
flux emergence, a dynamical equilibrium is reached. This approach was
introduced by van Ballegooijen et al. (2000), and has the advantage that
free magnetic energy (and helicity) may be injected into the corona by
applying surface footpoint motions, without needing to know the horizontal
components of B on the solar surface.

The figure below shows a dynamical equilibrium in a simple model where
the Sun’s dipolar field is continually driven by rotation of the solar surface
(Yeates and Hornig, 2016), while relaxing through magneto-friction.
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Left: magnetic field lines in the dynamical steady state, coloured by field-
line helicity A (which will be discussed in Lecture 3). Right: the latitudinal
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profile of A for different strengths of the frictional parameter ν0. Larger ν0
means slower relaxation, so the outer ends of the field lines “lag behind”
their surface footpoints more, so that the open field lines support more
magnetic helicity. In other words, the steady-state magnetic field is twisted.
(With these parameters, this twist is too weak to be apparent in the field-
line plot.) The closed field lines across the equator also lag behind, but have
no net helicity by symmetry.

It is possible to enforce ∇ · v = 0 if we include an additional “pressure”
gradient −∇p on the right-hand side of (30) (e.g., Moffatt, 1992). The
scalar function p is chosen at each time by solving the Neumann problem

∇2p = ∇ ·
(
j ×B

)
in V , (32)

n̂ · ∇p = n̂ ·
(
j ×B

)
on ∂V . (33)

Under this additional constraint, the resulting minimum-energy state is a
magnetohydrostatic equilibrium j ×B = ∇p.
Example 2.2 (Energy of a knot; Moffatt 1990). An interesting application
of ideal magnetic relaxation is in knot theory, where one seeks “invariants”
that can discriminate different knots. Moffatt (1990) proposed that the
minimum, relaxed-state, magnetic energy W for a magnetic flux tube of
the given knot topology could serve as such an invariant. Here is a sketch
showing the relaxation of a magnetic trefoil knot to its minimum-energy
configuration (after Moffatt, 1990).

Magnetic tension will tend to tighten the knot, with the flux tube expanding
to conserve volume. The topology ultimately stops the relaxation.
The minimum energy will depend on the initial helicity of the tube (i.e.,
the amount of internal twist), which we may fix to zero. In general, there
may be several different asymptotic states for the ideal relaxation, reached
from different initial geometrical configurations of the knot. Moffatt (1990)
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suggests that the corresponding relaxed-state energies {Wi} define an “en-
ergy spectrum” that characterises the knot. The lowest of these energies is
a measure of the knot’s complexity. For more recent work on these energies,
see Ricca and Maggioni (2014).

Another way to dissipate energy in the fictitious fluid is through viscosity.
For example, we can neglect the inertial and pressure terms in the mo-
mentum equation (3), so that the velocity is determined at each time by
solving

∇ · σ = −j ×B. (34)

Bajer and Moffatt (2013) use an isotropic Newtonian fluid giving the specific
form

µs∇2v +
(
1
3µs + µb

)
∇(∇ · v) = −j ×B. (35)

This is more computationally expensive than magneto-friction, but avoids
some of the drawbacks mentioned above. Substituting this into (25), and
assuming v = 0 on ∂V , shows that

dW

dt
= −µs

∫

V

(
∂vi
∂xj

)2

d3x −
(
1
3µs + µb

) ∫

V

(∇ · v)2 d3x. (36)

In other words, magnetic energy is again monotonically decreasing in this
model. Viscous dissipation is also used in the model of Example 1.1.

2.2 Taylor Relaxation

In a seminal work, Taylor (1974) argued that the total helicity

H := h(V ) =

∫

V

A ·B d3x (37)

will remain almost unchanged even in a resistive evolution, provided that η
is small enough. Assuming that all of the other sub-helicities h(Vt) would
be destroyed by reconnection, he was able to predict the relaxed state under
the single constraint of conserved H. Let us consider this important theory
in more detail.

Approximate invariance of H Taylor’s original argument was that
changes in magnetic topology under reconnection are accompanied only by
very small changes in B itself, so that the integrand A ·B is redistributed
among field lines, but not destroyed. Since H is the integral of this quantity
over the whole of V , it should remain almost invariant.
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This approximate invariance of H is well-supported by numerical simula-
tions, and by a number of other theoretical arguments. To sketch some of
them, we neglect boundary terms and take Vt = V in equation (23) so that

dH

dt
= −2

∫

V

ηj ·B d3x, (38)

and we assume purely ohmic dissipation in (9) so that

dW

dt
= −

∫

V

ηj2 d3x. (39)

Some possible arguments are then:
1. Cauchy-Schwarz inequality (Berger, 1984). Applying the Cauchy-

Schwarz inequality (and assuming constant η) gives
∣∣∣∣
dH

dt

∣∣∣∣
2

≤ 4

(∫

V

η2j2‖ d3x

)(∫

V

B2 d3x

)
≤ 4η

(∫

V

ηj2 d3x

)(
2µ0W

)
,

(40)

=⇒
∣∣∣∣
dH

dt

∣∣∣∣ ≤
√

8µ0ηW

∣∣∣∣
dW

dt

∣∣∣∣. (41)

For η small, this shows that the dissipation rate of H is slower than
that of W .

2. Thinness of current sheets (Browning, 1988). For low η, the elec-
tric current is typically concentrated in very thin current sheets (e.g.,
Pontin and Hornig, 2015), so that j ∼ B/δ for δ � 1. It follows that
|j ·B| � j2, so that ∣∣∣∣

dH

dt

∣∣∣∣�
∣∣∣∣
dW

dt

∣∣∣∣ . (42)

3. Frequency spectrum (Choudhuri, 1998). If V = R3, we could take
Fourier transforms

A(x) =
1

(2π)3/2

∫

R3

Ã(k)eik·x d3k, (43)

B(x) =
1

(2π)3/2

∫

R3

ik × Ã(k)eik·x d3k, (44)

and use
∫
R3 ei(k

′−k)·x d3x = (2π)3δ(k′ − k) to see that

W =
1

2µ0

∫

R3

∣∣∣k × Ã(k)
∣∣∣
2

d3k, (45)

H =

∫

R3

iÃ
∗
(k) ·

(
k × Ã(k)

)
d3k. (46)
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The spectrum of H goes like kÃ2 whereas that of W goes like k2Ã2.
High wavenumbers therefore have a greater weight in the spectrum
of W (equivalently, H has more power at larger scales). Since high-
wavenumber components decay faster under ohmic diffusion, W de-
cays faster than H.

Woltjer’s theorem Having proposed that H is the only surviving con-
straint, Taylor invoked an earlier variational principle of Woltjer (1958) to
characterise the minimum-energy state.

To impose the constraint, we introduce a constant Lagrange multiplier 1
2α0

and look for B such that

δ
(
W − 1

2α0H
)

= 0. (47)

The perturbations must obey ∇· δB = 0, and this means that we can write
δB = ∇ × δA. The choice of δA is not unique, but since Bn|∂V remains
unchanged under either boundary conditions (B1) or (B2), we can choose a
gauge where δA× n̂|∂V = 0. Then

δW =
1

µ0

∫

V

B · ∇ × δAd3x, (48)

=
1

µ0

∫

V

(
δA · ∇ ×B −∇ ·

[
B × δA

])
d3x, (49)

=

∫

V

δA · j d3x− 1

µ0

∮

∂V

B ·
(
δA× n̂

)
d3x, (50)

=

∫

V

δA · j d3x. (51)

We then calculate

δH =

∫

V

δA ·B d3x+

∫

V

A · δB d3x (52)

=

∫

V

δA ·B d3x+

∫

V

A · ∇ × δAd3x (53)

=

∫

V

δA ·B d3x+

∫

V

δA · ∇ ×Ad3x−
∮

∂V

n̂ ·
(
A× δA

)
d2x (54)

= 2

∫

V

δA ·B d3x−
∮

∂V

A ·
(
δA× n̂

)
d2x (55)

= 2

∫

V

δA ·B d3x, (56)
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where we again used the gauge condition in the final step. Combining (51)
and (56), we see that a minimum-energy state must satisfy

∫

V

δA ·
(
j − α0B

)
d3x = 0, (57)

and if this is true for all perturbations then

j = α0B. (58)

This is a linear force-free field, since α0 is constant.
Some remarks:

1. Woltjer’s original paper (Woltjer, 1958) made the more restrictive
assumption that δA|∂V = 0.

2. Since µ0j = ∇×B, equation (58) may be interpreted as an eigenvalue
equation for the curl operator, with eigenvalues µ0α0 and correspond-
ing eigenstates B (e.g. Cantarella et al., 2000).

3. The above variational principle is purely “formal,” but Laurence and
Avellaneda (1991) later put it on a more rigorous footing by proving
that the minimiser is attained and satisfies (58).

In general there may be multiple possible solutions to (58) for a discrete
set of possible “eigenvalues” α0. The minimum-energy state will be the one
with smallest W .

Example 2.3 (Periodic cylinder; Taylor 1974, 1986; Biskamp 1997). Tay-
lor’s original application of his theory was to the minimum-energy state of
a plasma in a periodic cylinder, representing a toroidal fusion device.
Let the cylinder have length 2πd and radius R, and impose periodic bound-
ary conditions B(r, φ, πd) = B(r, φ,−πd). Separation of variables shows
that the general solution to (58) in such a domain has the form B =∑
m,k∈Z cm,kB

m,k, where

Bm,kr = −
[
k

q
J ′m(qr) +

mα0

rq2
Jm(qr)

]
sin(mφ+ kz), (59)

Bm,kφ = −
[
α0

q
J ′m(qr) +

mk

rq2
Jm(qr)

]
cos(mφ+ kz), (60)

Bm,kz = Jm(qr) cos(mφ+ kz), (61)

and q =
√
α2
0 − k2. The functions Jm are Bessel functions of the first

kind. Our task is to find the specific solution with minimum energy for a
given helicity H and a given “toroidal” flux Φ =

∫
z=const.

Bz dS. Since H
is gauge dependent here, it is customary to fix a specific H by choosing
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a vector potential satisfying
∫ πd
−πdAz(R,φ, z)dz = 0 on the side boundary

(topologically, this means that H is not measuring linkage with magnetic
flux outside the cylinder). Thus we take

A =
1

α0

(
B − c0,0J0(α0R)ẑ

)
. (62)

1. Axisymmetric solution (m = k = 0). This exists for any value of α0,

with B = c0,0
[
J1(α0r)φ̂ + J0(α0r)ẑ

]
. The constants c0,0 and α0 must be

fixed by Φ and the initial helicity H. Firstly,

Φ = 2πc0,0

∫ R

0

J0(α0r)r dr =
2πRc0,0
α0

J1(α0R). (63)

After some calculation, we find that the normalised helicity Ĥ = RH/(dΦ2)
satisfies

Ĥ = α̂0

(
1 +

J2
0 (α̂0)

J2
1 (α̂0)

)
− 2

J0(α̂0)

J1(α̂0)
, (64)

where α̂0 = α0R. In fact, there are multiple solutions for different α̂0 having
the same Ĥ. The minimum-energy solution we seek is the one with lowest
energy. The normalised energy Ŵ = 2R2µ0W/(dΦ2) is given by

Ŵ = α̂2
0

(
1 +

J2
0 (α̂0)

J2
1 (α̂0)

)
− α̂0

J0(α̂0)

J1(α̂0)
, (65)

so that equations (64) and (65) generate a parametric plot of Ŵ (Ĥ) as α̂0

varies, shown by the blue solid curves below:
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Each solution branch corresponds to values of α̂0 between two zeros of J1.
The lowest energy branch is that with α̂0 < 3.83 (first non-zero root of J1).

2. Helical solutions. It turns out that the minimum-energy solution is
axisymmetric only if α̂0 < 3.11 (corresponding to Ĥ = 8.21). For larger α̂0,
a superposition of the axisymmetric solution and an m = 1 mode has lower
energy. This is indicated by the red dashed line in the plot above. (This
curve is different to those for the axisymmetric mode in that the whole curve
corresponds to a fixed value α̂0 = 3.11. As Ĥ varies, it is the constant c1,0
that changes.) For more details, see Reiman (1980).

Because the m = k = 0 solution can reproduce sign reversals in Bz, Taylor’s
hypothesis was successful in explaining this feature of the reversed-field
pinch device, and was subsequently applied to model relaxed states in other
systems such as the solar atmosphere. However, it is not clear that H is the
only constraint in many systems.

3 Field-Line Helicity in Relaxation

In this final lecture, we revisit Taylor’s argument (Section 2.2) that the
integrandA·B will be redistributed among magnetic field lines, rather than
destroyed. This implies not only that the total helicity H is conserved, but
that the distribution of values of A ·B is also conserved, albeit exchanged
between field lines. If that distribution does not match that of the Woltjer
minimum-energy state, this suggests that such a state can not be reached.

To address this quantitatively, we will avoid talking about the density A·B,
which is not invariant under an ideal evolution1. Rather, we consider the
individual ideal invariants h(Vt) for magnetically-closed subvolumes Vt.

3.1 Field-line helicity

The finest possible decomposition of V into disjoint magnetically-closed
subvolumes Vt is to consider infinitesimally thin tubes around individual
magnetic field lines. This approach is most useful when there are multiple
different magnetic field lines in V ; if a single ergodic field line fills V , then
there will be only a single subvolume. Since h(Vt) is a volume integral, we

1Whilst you can make A · B into a material scalar by choosing an appropriate gauge

(Webb et al., 2010), this would remove the utility of field-line helicity as a measure of

changes in magnetic topology. Instead, a gauge of A should be chosen that is fixed in

time (at least on the boundaries where it affects the h(Vt)).
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will normalize to get a finite value, and define

A(L) = lim
ε→0

h(Vt,ε)

Φ(Vt,ε)
, (66)

where Vt,ε is a tubular magnetic flux tube traced from some circle of radius ε
in a fixed cross-sectional surface. In the limit ε→ 0, the tube Vt,ε collapses
to the line L, and A(L) tends to a well-defined limit – independent of the
choice of cross section – called the field-line helicity of L (Berger, 1988).
The geometry is sketched below; here L intersects ∂V at both ends:

Equation (66) shows that A has the dimensions of a magnetic flux. From
the definition of h(Vt), it follows that

A(L) =

∫

L

A · dl, (67)

so when L is a closed loop A(L) is simply the magnetic flux linked through
that loop. When L is not a closed loop, the topological interpretation of
A(L) is more nuanced, and – like the value of A(L) – depends on the chosen
gauge of A. However, it still represents, in some general sense, the magnetic
flux linked with L. It is a topological invariant in ideal MHD, just like h(Vt).
We can recover the total helicity H if we integrate A(L) over all field lines,
weighted by infinitesimal magnetic flux.
Visualisation is simplest if B has a global cross-sectional surface, through
which all magnetic field lines pass. If field line L intersects S at (x1, x2),
then we can write

H =

∫

S

A
(
L(x1, x2)

)
Bn(x1, x2) d2x (68)
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and we can plot the distribution of A on the surface S. This will be used
in Example 3.1 later.

Ideal invariance Consider the ideal-MHD evolution of field-line helicity
A(L) for some magnetic field line L. In an ideal evolution with B frozen to
the fluid, L will be a material line, and each Vt,ε will be a material volume
with invariant flux Φ(Vt,ε). The behaviour of A(L) thus depends only on
h(Vt,ε). For η = 0, equation (23) reduces to a boundary integral and

dA(L)

dt
= lim
ε→0

1

Φ(Vt,ε)

∮

∂Vt,ε

(
χ+ v ·A

)
Bn d2x. (69)

This integral will clearly vanish if L is a closed curve (provided χ is single-
valued). This is expected since, in that case, A(L) is gauge invariant and
by (67) is precisely the magnetic flux linked through L.
The integral can also be made to vanish in more general situations by fixing
an appropriate gauge of A, which is equivalent to choosing the potential χ.
For example, suppose the field line L is rooted at both ends on the domain
boundary ∂V where condition (B2) holds. Since ∂Bn/∂t = 0 on ∂V , we
can keep χ = 0 there, which essentially corresponds to keeping the gauge of
A fixed in time on the ∂V boundary. In that case, we again have

dA(L)

dt
= 0, (70)

since v = 0 on the ends of Vt,ε and Bn = 0 on the side boundaries of Vt,ε
(which is a magnetic flux tube).

3.2 Resistive evolution in a non-null magnetic field

To make sense of dA(L)/dt in a non-ideal evolution (η 6= 0), we must first
specify how to identify a field line L from one time to the next, since field
lines are no longer material lines.
We will simplify the problem by assuming that all field lines are rooted in an
ideal boundary where we impose ηj|∂V = 0 in addition to boundary condi-
tions (B2). We identify each field line L at each time by fixing its startpoint
in the Bn < 0 region of ∂V (which we denote ∂V −). The corresponding
endpoints would be stationary in ideal MHD, but can move around on ∂V
in a non-ideal evolution.
Since L is no longer a material line, Vt,ε need no longer be a material volume,
Φ(Vt,ε) need no longer be invariant, and furthermore we can no longer apply
(23). However, if we assume that B 6= 0, so that there are no null points in
our magnetic field, then we can make progress.
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The advantage of having B 6= 0 is that we can globally decompose ηj into
components parallel and perpendicular to B, writing it in the form

ηj = −u×B +∇ψ. (71)

In that case, the induction equation (6) becomes

∂B

∂t
= ∇×

[
(v + u)×B

]
, (72)

showing that the magnetic field is frozen-in to the flow of a field-line velocity
v + u that differs from the fluid velocity v by a slipping velocity u. Since
j = 0, we may choose u|∂V − = 0, so that we are following field lines traced
from a fixed point on ∂V −. But (71) implies that we will generally have
u|∂V + 6= 0 because ∇ψ 6= 0 on ∂V +. The situation is sketched below:

If there were a null point where B = 0, then the decomposition (71) would
break down at the null where the perpendicular and parallel directions are
not defined. Correspondingly, there would be no global field line velocity
v + u, allowing field lines to break discontinuously at the null.
Since B is frozen-in to the effective flow v + u, the flux tube Vt,ε will be
a material volume with respect to this flow. This means that it will have
invariant flux Φ(Vt,ε). Moreover, we may use the transport theorem, as we
did in Lecture 1, to show that

dA(L)

dt
= lim
ε→0

1

Φ(Vt,ε)

∮

∂Vt

[
χ− ψ + (v + u) ·A

]
Bn d2x (73)

for some scalar potential χ. This looks very similar to the ideal case, except
for the additional potential ψ (non-zero only in ∂V +) and the additional
slipping velocity u.
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In principle, we could make A(L) invariant by setting χ = ψ − (v + u) ·A.
However, the gauge of A on ∂V would then be time-dependent, so that we
would be removing any information contained in the evolution of A.

Instead, it is more informative to fix the gauge χ over time, so let us set
χ = 0 (for simplicity). Since ψ , v and u vanish on ∂V−, and we have v = 0
on ∂V , this leaves the evolution equation

dA(L)

dt
= lim
ε→0

1

Φ(Vt,ε)

∮

∂Vt∩∂V +

(
u ·A− ψ

)
Bn d2x

=
(
u ·A− ψ

)∣∣∣
x+(t)

, (74)

where x+(t) is the endpoint of L on ∂V +, u is the slipping velocity, and
ψ =

∫
L
ηj · dl. To recap, this expression holds for a field line L traced from

an ideal boundary in a non-null magnetic field.

Example 3.1 (Reconnection in a twisted magnetic field). During a resistive
relaxation, A will change due to magnetic reconnection. In this example,
we consider the effect of a single local reconnection site in a wider magnetic
field. In cylindrical coordinates (r, φ, z), the initial magnetic field has the

axisymmetric formB = ∇×A whereA = (r/2)φ̂+f(r)ẑ and f(r) = k e−r
2

.

The current density is purely axial, µ0j = 4k(1− r2) e−r
2

ẑ. Since the field
lines lie on cylindrical surfaces, it is straightforward to compute the field-line
helicity in this gauge, giving

A(r) = 2dk(1 + r2) e−r
2

, (75)

where 2d is the length of the domain in z. The figure below shows this
magnetic field for three values of the “twist” parameter k. Colour scales
for jz and A are capped at ± maximum absolute value, and the three-
dimensional plots are compressed in the z direction for clarity.
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Let us now consider how this would evolve under the influence of a single
localised reconnection site. In a real magnetic field, localised reconnection
would arise from localisation of j in a sharp current sheet. However, we can
model the basic effect by instead localising the resistivity with a gaussian
form

η(x, y, z) = exp

(
−x

2 + (y − y0)2 + z2

( 1
5 )2

)
, (76)

describing a spherical “diffusion region” of radius 1
5 and centred at (0, y0, 0)

(displaced from the symmetry axis). Neglecting fluid velocity, we then con-
sider how A changes under pure diffusion,

∂B

∂t
= −∇×

(
ηj
)
. (77)

The figure below shows the terms in equation (74), for our three values of
k. Again, colour scales are capped at ± maximum absolute value.
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Here, we have computed ψ(x+) by integrating ηj along magnetic field lines
traced from a grid of starting points x−. The slipping velocity u at each
end-point x+ ∈ ∂V + has been computed by first estimating ∇ψ at x+

using finite differences (which requires integrating ψ along several field lines
ending near x+), then using

u =
z ×∇ψ
Bz

. (78)

This may be derived from (71) if we choose uz ≡ 0 and use the fact that
ηj vanishes on the boundary ∂V +. Choosing uz ≡ 0 is possible because we
can always add an arbitrary component of u parallel to B without changing
u × B. With uz ≡ 0 we ensure that the computed change in A matches
what would be found by integrating A only between the boundaries z = −d
and z = d.
Several observations are apparent from the figures above:

1. The terms are non-zero only for those field lines that pass through
the diffusion region, reflecting the fact that ideal evolution does not
change A (since the field-line end-points are fixed). The corresponding
footpoint regions become more stretched out as k increases.
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2. The change in A is dominated by the u·A term, with the contribution
from ψ an order of magnitude smaller. The difference between u ·A
and ψ increases for larger k, with ‖u ·A‖∞ ∼ k2 (so that ‖dA/dt‖∞ ∼
k2) but ‖ψ‖∞ ∼ k.

3. The distribution of dA/dt tends to have approximately equal positive
and negative regions, so that the overall net change is much smaller
than the maximum local change. For example, with k = 0.4 we have∫
∂V −

dA/dtd2x ≈ 4× 10−2, but
∫
∂V −

∣∣dA/dt
∣∣d2x ≈ 7× 10−1.

3.3 Consequences for relaxation theory

The observations in Example 3.1 turn out to be rather general properties
that apply to MHD relaxation in any non-null magnetic field with suffi-
ciently complex field-line structure (Russell et al., 2015). Although we have
considered a simple axisymmetric field, it is even easier to obtain the re-
quired complexity in a fully three-dimensional, turbulent system. To finish,
we will explain why this behaviour arises.

Dominance of u · A term A simple scaling analysis shows why the
complexity of the field-line structure matters. Let ∆ be the scale on which
B varies, then A ∼ ∆B. To see how u scales, we use (78) to see that
u ∼ |∇ψ|/B. In ∇ψ we are taking the gradient of a field-line integrated
quantity, which changes on the scale of gradients in the field-line mapping.
Due to the stretching evident in Example 3.1, this is a smaller scale, δ. Thus

|u ·A| ∼ |ψ|
δB

∆B =
∆

δ
|ψ|. (79)

So long as we have a scale separation ∆/δ, this explains why the evolution
of A is dominated by the u ·A term.

Redistribution rather than dissipation The fact that
∣∣∣∣
∫

∂V −

dA
dt

d2x

∣∣∣∣�
∫

∂V −

∣∣∣∣
dA
dt

∣∣∣∣ d2x (80)

arises because of the fact that the slipping motion u is along contours of ψ on
∂V +. Since these contours are stretched into very thin shapes (with width
δ), points with oppositely directed slipping motions are in close proximity
to one another. Since A changes on the larger scale ∆, the product u ·A
changes sign with the direction of u, leading to patches of opposite sign like
those in Example 3.1.
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Inequality (80) is a significant conclusion: it shows that field-line helicity will
preferentially be redistributed during reconnection, rather than destroyed.
If the scale δ is small, this redistribution can be very rapid. Thus we arrive
at a refined version of Taylor’s hypothesis – in addition to conserving total
helicity H, we expect that in sufficiently complex magnetic fields, recon-
nection will tend to redistribute field-line helicity between field lines, rather
than destroying it.

4 Further Reading

Inevitably, a large amount of the existing literature has been omitted. This
final section provides some selected pointers to other work.

Pressure and density A significant omission from the relaxation theories
in Lectures 2 and 3 is the effect of the fluid pressure, p. Unlike a force-free
field with j ×B = 0, a magnetohydrostatic equilibrium,

j ×B = ∇p, (81)

allows for a localised magnetic field by providing a confining force ∇p. This
is illustrated by Smiet et al. (2017), who used ideal magnetic relaxation
(with a Lagrangian code) to produce localised magnetohydrostatic equilibria
having the topology of the so-called Hopf field. Their final states have
significant ∇p, even though p was initially uniform.

Computing equilibria of the form (81) directly is difficult in the three-
dimensional case, owing to the possibility of stochastic/ergodic regions. In
such regions, filled by a single magnetic field line, pressure must be con-
stant since (81) implies that B · ∇p = 0. But toroidal equilibria also have
an infinite number of toroidal flux surfaces, on which ∇p is non-zero. The
pressure p will therefore be a rather complex function of space. The widely-
used numerical code VMEC for solving (81) (Hirshman and Whitson, 1983)
precludes stochastic regions by assuming a nested family of flux surfaces,
but more sophisticated models with “stepped-pressure equilibria” are under
development (Hudson et al., 2012).

Even if the fluid pressure is negligible, Bajer and Moffatt (2013) show that
we expect significant density variations to be generated by the magnetic
relaxation process. These arise because the system naturally pushes fluid in
towards magnetic null points, in order to try and equalise magnetic pressure.
In this way, the dynamical phase of the relaxation is expected to leave a
lasting imprint in the fluid itself.
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Extending Taylor theory The idea of adding additional constraints to
Taylor’s basic hypothesis of conserved H is not new. This has been moti-
vated, for example, by measurements of spatially varying α in fusion devices,
where the toroidal current is often smaller nearer to the vessel wall. Re-
garding additional constraints, Bhattacharjee and Dewar (1982) argue that,
since the individual subvolume helicities h(Vt) are not conserved, one ought
to instead retain additional global ideal constraints. They consider magnetic
fields B =

(
∇ζ − Φ′(Ψ)∇θ

)
×∇Ψ that lie on toroidal flux surfaces, where

Ψ and Φ denote toroidal and poloidal magnetic flux functions, respectively.
Given any chosen set of ideal constraints {K[ωi]} of the form

K[ωi] = 1
2

∫

V

ωi(Ψ,Φ)A ·B d3x, (82)

with each ωi some chosen function, they show that the corresponding minimum-
energy states must be nonlinear force-free fields of the form

j =
∑

i

αi

(
Ψ

2

∂ωi
∂Ψ

+
Φ

2

∂ωi
∂Φ

+ ωi

)
B. (83)

The single constraint ωi = 2 is equivalent to standard Taylor theory. The
case with two constraints ω1(Ψ,Φ) = 2 and ω2(Ψ,Φ) = (qsΨ + Φ)2 was
proposed as a better model for laboratory plasmas whose relaxed states are
dominated by a single helical tearing mode. The constant qs is set to the
pitch of the desired dominant mode, so that the constraint K[ω2] effectively
enforces invariance of the helicity of that particular mode. The theory does
not predict which mode will be dominant, so this needs to be established
some other way (e.g., Paccagnella, 2016).
Recent MHD simulations of braided solar coronal loops have found that
the relaxation process is poorly modelled by Taylor’s theory (Pontin et al.,
2016), and that the final state is a nonlinear rather than linear force-free field
(motivating, indeed, the work in Lecture 3). However, even applying the
original Taylor theory in astrophysical systems like the Sun’s corona has its
own complications. One issue is that the domain V where relaxation occurs
does not have a definite fixed boundary. Rather, it has a free boundary that
may expand during the relaxation process itself (e.g., Bareford et al., 2013),
and which is not predicted by the Taylor theory. Globally, the classic picture
of Heyvaerts and Priest (1984) envisages dividing the corona into individual
magnetic flux tubes (“coronal loops”) in which localised relaxation events
occur independently. However, recent work by Hussain et al. (2017) used
Taylor theory to approximate the energy released in an MHD simulation
of an “avalanche” of relaxation events in neighbouring coronal loops – here
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the instability of one loop triggers that of a neighbour, in a chain reaction.
In this merging application, the radius of each subsequent merged loop was
determined by equating internal and external magnetic pressure. Finally,
we note that free boundaries are not limited to astrophysics: Gimblett et al.
(2006) have developed a model for Taylor relaxation in the outer region of
a tokamak plasma that predicts the energy losses due to an edge-localised
mode.
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