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Abstract. There are a number of homological knot invariants, each satis-
fying an unoriented skein exact sequence, which can be realized as the limit
page of a spectral sequence starting at a version of the Khovanov chain com-

plex. Compositions of elementary 1-handle movie moves induce a morphism
of spectral sequences. These morphisms remain unexploited in the literature,
perhaps because there is still an open question concerning the naturality of
maps induced by general movies.

In this paper we focus on the spectral sequences due to Kronheimer-Mrowka
from Khovanov homology to instanton knot Floer homology, and on that due
to Ozsváth-Szabó to the Heegaard-Floer homology of the branched double
cover. For example, we use the 1-handle morphisms to give new information

about the filtrations on the instanton knot Floer homology of the (4, 5)-torus
knot, determining these up to an ambiguity in a pair of degrees; to deter-
mine the Ozsváth-Szabó spectral sequence for an infinite class of prime knots;

and to show that higher differentials of both the Kronheimer-Mrowka and the
Ozsváth-Szabó spectral sequences necessarily lower the delta grading for all
pretzel knots.

1. Introduction

Recent work in the area of the 3-manifold invariants called knot homologies has il-
luminated the relationship between Floer-theoretic knot homologies and ‘quantum’
knot homologies. The relationships observed take the form of spectral sequences
starting with a quantum invariant and abutting to a Floer invariant. A primary ex-
ample is due to Ozsváth and Szabó [15] in which a spectral sequence is constructed
from Khovanov homology of a knot (with Z/2 coefficients) to the Heegaard-Floer
homology of the 3-manifold obtained as double branched cover over the knot. A
later example is due to Kronheimer and Mrowka which gives a spectral sequence
[9, 10] from Khovanov homology to an instanton knot Floer homology.

There are automatically naturality questions about such spectral sequences.
Both the quantum homology and the Floer homology involved exhibit some func-
toriality with respect to link cobordism, and one can ask if the spectral sequences
behave well with respect to this functoriality. The project of demonstrating such
naturality is important, but in this paper we are able to use the limited naturality
already available (essentially naturality for cobordisms presented as a movie of el-
ementary 1-handle additions) to make some computations. The basic idea is that
if we are interested in the Floer homology of a knot K, we find a cobordism to a
knot K ′ with a simple spectral sequence and then use the quantum homology of
K ′ to draw conclusions on the Floer homology of K.

We are restricting ourselves to the spectral sequences of Ozsváth-Szabó and
Kronheimer-Mrowka, but the technique should have wider applicability. In the next
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section we review these Floer homologies, Section 3 then deals with the spectral
sequences, and Section 4 contains the computations.

A word of warning: As a matter of notational convenience, our Floer theoretic
invariant of a knot or link or 3-manifold is really what in the literature would be
the Floer invariant of the mirror image of a knot or link or 3-manifold. This avoids
permanent use of the word ‘mirror’ in the spectral sequences that we study.

1.1. Summary of results. We give three of the results that we deduce in the
final section of this paper. We start with a result in instanton knot floer homol-
ogy, specifically concerning the spectral sequences due to Kronheimer-Mrowka from
reduced Khovanov homology to a flavor of instanton homology. There is no such
non-trivial spectral sequence whose structure is entirely known: the filtration on
the instanton knot floer homology is only known for those knots whose spectral
sequence collapses at the Khovanov page. The most understood case is that of the
torus knot T (4, 5), for which the number of possible spectral sequences is known
to be at most eight. We manage to restrict this from eight to two. Specifically we
have the following proposition.

Proposition 1.1. The differential in the Kronheimer-Mrowka spectral sequence for
T (4, 5) either goes from the generator at bigrading (2, 13) to the generator at (9, 16)
or goes from (4, 13) to (9, 16).

(Our bigrading conventions are given in a later section). This means, for example,
that the spectral sequence of T (4, 5) corresponding to the quantum filtration has a
non-trivial differential either on page 8 or page 10.

Next we turn to a general result that holds for all the spectral sequences under our
consideration. It has long been conjectured that the spectral sequence of Ozsváth-
Szabó should have differentials strictly lowering the delta grading (this is defined
precisely later on). We give a universal proof that this holds for pretzel knots -
the proof works for any of the spectral sequences under our consideration. We
state it here for the Kronheimer-Mrowka spectral sequences (again, our filtration
conventions are given later) and indicate the extension to Ozsváth-Szabó in the
proof of Theorem 4.5.

Theorem 1.2. Let 2 ≤ p < min{q, r}. Then for any filtration determined by
numbers a, b, the Kronheimer-Mrowka spectral sequence, starting from the reduced
Khovanov homology Khr(P (−p, q, r)) and abutting to the instanton knot Floer ho-
mology I♮(P (−p, q, r)), can only have non-trivial differentials that strictly lower the
δ-grading.

To be slightly more precise, let EK be the Khovanov page of the spectral sequence.
Then for any page Es with s ≥ K of this spectral sequence we have a decomposition
Es = Eus ⊕ Els, where at EK this is the decomposition into the subspace with the
upper and the lower δ-grading, and the differential decomposes as

ds =

(
0 0
duls 0

)
(1)

according to this decomposition, and hence induces a δ grading at any page induc-
tively.

To state the theorem in other language, at each page Es for s ≥ K we have that
the s-boundaries are contained in Els, and the s-cycles contain Els
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Finally, we mention here a constructive application to the Ozsváth-Szabó spec-
tral sequence. We show that for an infinite class of knots we can determine the
(non-trivial) spectral explicitly.

Proposition 1.3. The Ozsváth-Szabó spectral sequence for the knot P (−2, 3, 2n+1)
is obtained by shifting the spectral sequence for P (−2, 3, 5) by q2n−4 and taking the
direct sum with a trivial spectral sequence given by Tn = E2 = E∞.

Acknowledgements. We thank Peter Kronheimer for helpful email correspon-
dence. We also thank CIRM where we started this project in a research in pairs
program in March this year. The first author thanks Liam Watson. The first author
was partially supported by EPSRC grant EP/K00591X/1.

2. Review of Heegaard-Floer and instanton Floer homology

While Khovanov homology is very simply defined and Heegaard-Floer homology
for many is a relatively comfortable object, instanton Floer homology is far less
known. Therefore we are going to assume familiarity with Khovanov homology and
devote the first subsection merely to quoting a result from Heegaard-Floer, while
the remaining subsections give a review of the relevant instanton Floer homology.
We will work with the reduced homology theories.

2.1. Heegaard-Floer homology. In this paper we are concerned with ĤF, the
‘hat’ version of Heegaard-Floer homology [14]. This is an invariant of a closed 3-
manifold equipped with a Spinc-structure and takes the form of a finitely-generated
vector space over Z/2. We are interested in 3-manifolds Σ(L) that are obtained
as branched double-covers over the mirror images of links L ⊂ S3, and, taking the

sum over all Spinc-structures, we regard ĤF simply as a vector space.

Theorem 2.1 (Ozsváth-Szabó [15]). Given a link L ⊂ S3, there is a spectral

sequence (which a priori depends on a choice of link diagram) abutting to ĤF(Σ(L))
with E1-page equal to the reduced Khovanov chain complex and E2-page equal to
the reduced Khovanov homology Khr(L) (where everything has been taken with Z/2
coefficients).

In general this theorem implies that the rank of ĤF(Σ(K)) is bounded above by
the rank of Khr(K).

For a knot K the number of Spinc structures on Σ(K) is equal to |det(K)|, from
which by an Euler characteristic argument it follows that the rank of ĤF(Σ(K))
is bounded below by |det(K)|, and when this bound is tight Σ(K) is called an L-
space. It is a quick check that if K is a knot with thin Khovanov homology then
the rank of Khr(K) is exactly |det(K)| and hence the spectral sequence collapses
at the E2-page.

Computations of non-trivial spectral sequences for specific prime knots were
given by Baldwin [1], and he observed that the spectral sequences he found had
differentials that strictly decreased the δ-grading on Khovanov homology. Later in
this paper we extend Baldwin’s examples to an infinite class of prime knots and
furthermore show that the Ozsváth-Szabó spectral sequence has differentials which
strictly decrease the δ-grading for all pretzel knots.
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2.2. Instanton knot Floer homology. Instanton knot Floer homology as con-
structed by Kronheimer and Mrowka [7, 9, 10] is an invariant of pairs consisting of
links in 3-manifolds. In the manifestation that interests us, we shall be restricting
our attention to the case of knots and links inside the 3-sphere K ⊂ S3.

Reduced instanton knot Floer homology I♮(K) of a link K with a marked com-
ponent in the 3-sphere S3 is, roughly speaking, defined via the Morse homology of
a Chern-Simons functional on a space of connections that have a prescribed asymp-
totic holonomy around the link K [10]. It is an abelian group with an absolute Z/4
grading [9] (usually instanton Floer homology comes with relative Z/4 gradings,
but in [9, Section 4.5 and Section 7.4] absolute gradings are given). We denote
by (C(K)♮, d♮) the Z/4 graded complex whose homology is I♮(K). The differential
d♮ lowers the Z/4 grading by 1. Involved in the construction of this complex are
various choices of perturbations one has made, but we have suppressed these in the
notation as our computations will not use the definition.

Remark. For a matter of notation we denote by I♮(K) what Kronheimer-Mrowka
denote as I♮(K), the reduced instanton Floer homology of the mirror image of K.

Kronheimer and Mrowka have shown in [9, 10] that this can also be computed
from the Khovanov cube as we shall now recall.

We are assuming familiarity with reduced Khovanov homology. Given a marked
link K with a diagram D we shall denote the reduced Khovanov chain complex by
(C(D), dKhr(D)) whose homology is the reduced Khovanov homology Khr(K) of
K. The vector space C(D) is a bigraded complex (C(D)i,j), where i denotes the
homological and j denotes the quantum grading. The differential dKhr is bigraded
of degree (1, 0). The two gradings also define a descending filtration F i,jC(D)
indexed by Z ⊕ Z. With respect to this filtration a morphism φ is said to be of
order ≥ (s, t) if φ(F i,jC(D)) ⊆ F i+s,j+tC(D).

We follow the standard convention that gives the reduced Khovanov chain com-
plex as a subcomplex of the Khovanov chain complex. This has the unfortunate
effect that the reduced Khovanov homology of the unknot is one copy of the ground
ring (for us either Q or Z/2) supported in gradings i = 0 and j = −1 (where one
might think j = 0 more natural). Nevertheless this brings us in line with most
current usage.

The first statement of the following Theorem appears as [9, Theorem 6.8], the
second appears as [10, Theorem 1.1] for the unreduced versions. A corresponding
statement is true for the reduced homologies.

Theorem 2.2. (Kronheimer-Mrowka) Let D be a diagram of a knot or link K.

(i) There is a differential d♮(D) on the vector space C(D) whose homology is
isomorphic to the reduced instanton knot Floer homology I♮(K). More pre-
cisely, the bigrading (i, j) gives a Z/4 grading on C(D) by j− i−1 mod 4.
The differential d♮(D) lowers this Z/4 grading by 1. Then there is a quasi-
isomorphism of Z/4 graded chain complexes (C(K)♮, d♮) → (C(D), d♮(D)).

(ii) The difference d♮(D)− dKhr(D) is filtered of degree (1, 2).

As a consequence of the second point, both the homological and the quantum
filtrations on the Khovanov complex induce a filtration on the instanton knot Floer
homology. This is a novum of [10] compared to [9]. A priori these filtrations might
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depend on the chosen diagram, but it is not the case. In fact, Kronheimer and
Mrowka have shown that the induced filtrations are invariants of the link K [10,
Theorem 1.2 and Corollary 1.3], therefore yielding the following result:

Theorem 2.3. [10, Theorem 1.2 and Corollary 1.3] Let K be a link and let D be a
diagram of K. Let a, b ≥ 1. The descending filtrations induced by ai+ bj on C(D)
is preserved by d♮(D), and the induced filtration on I♮(K) depends on the link K
only. The pages of the associated Leray spectral sequence (Er, dr), converging to
I♮(K), are invariants of K for r ≥ a+ 1. There are no differentials before the Ea
page, and the page Ea+1 is the reduced Khovanov homology of K.

For instance, the homological filtration induces a spectral sequence abutting to
I♮(K) whose E2 page is Khovanov homology, and the quantum filtration induces a
spectral sequence whose E1 page is Khovanov homology.

The statement in the last sentence is not explicit in [10] but is easily checked
from Kronheimer and Mrowka’s Theorem 2.2.

2.3. The Alexander polynomial. In [7] Kronheimer and Mrowka developed an
instanton Floer homology of sutured manifolds, yielding a Z/4 graded link homol-
ogy group KHI(K) of a link K. In [8, 11] it is shown by Kronheimer and Mrowka,
and independently by Lim, that this is related to the Alexander polynomial. In
fact, KHI(K) carries two commuting operators whose common eigenspace decom-
positions give KHI(K) a Z⊕Z/2 grading. For a knot, the “graded Euler character-
istic” of KHI(K) is equal to minus the Conway-normalised Alexander polynomial
∆K :

−∆K(t) =
∑

h∈Z,i∈Z/2

(−1)ith rk(KHIi,h(K)) (2)

Proposition 2.4. [9] For knots K Floer’s excision theorem yields a natural iso-
morphism I♮(K) ∼= KHI(K). As a consequence, I♮(K) is in rank bounded below by
the sum of the absolute values of the coefficients of the Alexander polynomial ∆K .

2.4. Thin Khovanov homology. The reduced Khovanov homology of an oriented
link L is a bigraded vector space over the rational numbersKhr(L) which categorifies
the Jones polynomial VL(q), normalised such that for the unknot U one has VU (q) =
q−1. More precisely, one has the formula

∑

i,j∈Z

(−1)iqj rk(Khri,j(L)) = VL(q), (3)

see for instance [6].
A link L is said to have thin Khovanov homology if all non-trivial vector spaces

Khri,j(L) occur on one line where j−2i is constant. Kronheimer and Mrowka have
shown that their spectral sequence from reduced Khovanov homology Khr(K) to
reduced instanton knot Floer homology I♮(K) has no non-trivial differential after
the Khovanov page if K is a quasi-alternating knot, see [9, Corollary 1.6]. Their
result can easily be strengthened a little bit.

Proposition 2.5. Suppose that K is a knot that has thin reduced Khovanov ho-
mology. Then the Kronheimer-Mrowka spectral sequence Khr(K) ⇒ I♮(K) has no
non-zero differential (over Q). The total rank of Khr(K) and I♮(K) then agree with
the determinant of K given by |∆K(−1)| = |VK(−1)|.
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K0 K1

K2

Figure 1. The links K0, K1, K2 comprise an unoriented skein triple.

Proof. Suppose the reduced Khovanov homology Khri,j(K) of K is supported on
the line j = 2i+ s for some even integer s. Then from formula (3) above it follows
that

VK(−1) = VK(
√
−1

2
) =

∑

i∈Z

(−1)i(−1)i+s/2 rk(Khri,2i+s(K))

= (−1)s/2 rk(Khr(K)) .

Therefore, the determinant is equal to the total rank of the reduced Khovanov
homology of K. On the other hand, Proposition 2.4 above gives the same lower
bound. As therefore the rank of reduced Khovanov homology Khr(K) and I♮(K)
have to coincide, there is no non-zero differential in the spectral sequence. �

An analoguous result holds in Heegaard-Floer homology: knots with thin Kho-
vanov homology have branched double covers which are Heegaard-Floer L-spaces.

As a consequence of the spectral sequence, the total rank of Khovanov homology
provides an upper bound for the rank of instanton homology. In the case where
these ranks agree, all the information about the filtration on instanton homology
is contained in Khovanov homology.

2.5. Unoriented skein exact triangles. Both Khovanov homology and instan-
ton knot Floer homology have unoriented skein exact triangles of which we shall
make extensive use in our computational section.

Proposition 2.6. Suppose K0, K1, and K2 are three links with diagrams D0,
D1, and D2 respectively that look the same except near a crossing of D2 where
they differ as in Figure 1. Then there is a long exact triangle relating the groups
I♮(K0), I

♮(K1), and I
♮(K2), and likewise for the reduced Khovanov homology groups

Khr(K0), Khr(K1), and Khr(K2):

I♮(K0) I♮(K1) Khr(K0) Khr(K1)

I♮(K2), Khr(K2).
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All maps are induced by standard cobordisms corresponding to 1-handle attachment
in both theories.

2.6. Knot cobordisms and functoriality. The instanton knot Floer homology
I♮(K) groups are functorial for knot and link cobordisms [9]: Given two oriented
links K0 and K1, and a cobordism (not necessarily orientable) S ⊆ [0, 1] × S3

from K0 ⊆ {0} × S3 to K1 ⊆ {1} × S3, there is an induced morphism I♮(S) :
I♮(K0) → I♮(K1) which is well defined up to an overall sign. Furthermore, the
morphism induced by a composite cobordism is the composite of the morphisms of
the cobordisms.

Proposition 2.7. [10, Proposition 1.5] Let S be a cobordism from a link K0 to
a link K1. Let D0 and D1 be diagrams for K0 and K1. Then the map I♮(S) :
I♮(K0) → I♮(K1) is induced by a chain map c : C(D0) → C(D1) which has order

≥
(
1

2
(S · S), χ(S) + 3

2
(S · S)

)
,

where χ(S) denotes the Euler characterstic of S, and S·S denotes the self-intersection
number of S with the boundary condition that a push-off at the ends is required to
have linking number 0 with K0 respectively K1.

In general, a movie M between diagrams D0 and D1 consisting of 0-, 1- and
2-handle attachments, and of Reidemeister moves, induces a cobordism SM be-
tween the corresponding knots K0 and K1. Such a movie induces a morphism
c(M) : C(D0) → C(D1) between the corresponding Khovanov complexes by com-
posing the Khovanov morphisms from handle attachments and the chain homotopy
equivalences coming from the Reidemeister moves in the respective order. In par-
ticular, there is a resulting map Khr(M) from the Khovanov homology of K0 to K1.

3. Constraints on Floer homology

In this section we show how conclusions on the Kronheimer-Mrowka or Ozsváth-
Szabó spectral sequences for a specific knot or link might be made from link cobor-
disms.

3.1. Morphisms of spectral sequences. Given two spectral sequences (Er, dr)
and (E′

r, d
′

r), a collection of morphisms (fr : Er → E′

r) is said to be a morphism of
spectral sequences if

• for any r the morphism fr is a morphism of chain complexes from the
complex (Er, dr) to (E′

r, d
′

r), i.e. fr intertwines the differentials dr and d′r,
and

• the morphism fr+1 is the morphism induced by fr on homology under the
isomorphisms H(Er, dr) ∼= Er+1 and H(E′

r, d
′

r)
∼= E′

r+1, for any r ∈ N.

For instance, having filtered complexes (C, d) and (C ′, d′), filtered by families
(FnC)n and (G nC ′)n, and a morphism of chain complexes f : C → C ′ that re-
spects the filtrations – meaning that f(FnC) ⊆ G nC ′ for all n – the map f induces
a morphism between the two spectral sequences coming from the filtrations.

Definition 3.1. We say that an element x ∈ Es is an s-boundary if x is in the
image of ds, and we say that x is an s-cycle if ds(x) = 0. We say that an element
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x ∈ Es is an ∞-cycle if x lies in the kernel of ds, and its homology class [x]t is a
(t+ 1)− cycle for all t ≥ s.

Lemma 3.2. Let (fr) : (Er, dr) → (E′

r, d
′

r) be a morphism of spectral sequences.

(i) If x ∈ Es is an s-cycle then fs(x) ∈ E′

s is an s-cycle.
(ii) If x ∈ Es is an s-boundary then fs(x) ∈ E′

s is an s-boundary.
(iii) If x ∈ Es is an ∞-cycle then fs(x) ∈ E′

s is an ∞-cycle.

Proof. The result follows from the fact that morphisms of chain complexes preserve
cycles and boundaries. �

A chain map c : C(D0) → C(D1) as in Proposition 2.7 respects the filtrations by
Z⊕Z on the two complexes C(D0) and C(D1) up to a global shift. Therefore, such
a chain map induces a graded morphism of spectral sequences (cr) : (Er(D0)) →
(Er(D1)), where (Er(Di)) is the spectral sequence converging to the Floer homology
group I♮(Ki). Each page after the Khovanov pages is a topological invariant, i.e.
depends on the links Ki only. In the proof of Proposition 2.7 above in [10] the chain
map c is in fact obtained by representing the cobordism S by a movie M between
diagrams D0 and D1 for K0 respectively K1, and by then checking the claim for the
map induced on reduced instanton knot Floer homology by the particular handle
and Reidemeister moves.

One is tempted to believe that at the Khovanov page, the corresponding mor-
phism c(M) between the instanton Floer chain complexes as in the last Proposition
is just equal to the map Khr(M) : Khr(K0) → Khr(K1) in Khovanov homology. In
fact, such a functoriality property remains open in [10]. What we can say, however,
is that there is such a result in a particular situation.

Proposition 3.3. Let D0 and D1 be diagrams of knots K0 and K1. Let S be a
cobordism from K0 to K1 that is represented by a movie M between the diagrams
D0 and D1. Let us assume this movie consists only of isotopies of the diagrams
(outside of balls containing the crossings) and handle attachment of index 1 (ex-
cluding Reidemeister moves). Then the map I♮(S) : I♮(K0) → I♮(K1) is induced
by a morphism of chain complexes

c(M) : (C(D0), d♮(D0)) → (C(D1), d♮(D1))

respecting the bifiltration by Z ⊕ Z, and this morphism induces the map Khr(M) :
Khr(K0) → Khr(K1) at the Khovanov page of the Kronheimer-Mrowka spectral
sequence.

Sketch of proof. This follows by inspecting the Proof of Proposition 2.7 and of
Theorem 2.3 and 2.2 in the original source [10]. As mentioned before, a general
surface can be represented by a movie consisting of isotopies of the diagram, Reide-
meister moves, and the addition of handles of index 0, 1 or 2. In our situation, we
are just left with the morphism in instanton knot Floer homology induced by the
1-handle attachment. That this does the desired thing is just the consequence of
Section 8 in [9], where it is shown that the Kronheimer-Mrowka spectral sequence
starts at the Khovanov chain complex. �

The corresponding result for the Ozsváth-Szabó spectral sequence seems to be
known and follows the same line of argument.
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Proposition 3.4. Let D0, D1, K0, K1, S, and M be as above. Working now of

course with Z/2 coefficients, the map ĤF(Σ(S)) : ĤF(K0) → ĤF(K1) is induced
by a morphism of filtered chain complexes inducing the map Khr(M) : Khr(K0) →
Khr(K1) at the E2-page of the Ozsváth-Szabó spectral sequence.

�

Suppose now that S is a link cobordism between K0 and K1 with only index 1
critical points. In fact, it is not too hard to see that there exist diagrams D0 and
D1 and a movie M (presenting K0, K1, and S) which satisfy the requirements of
the propositions above. For those wanting details of how to construct such a movie
M we refer them to the proof of Theorem 1.6 of [12].

Khr(K0) Khr(K1)

Khr(K2)

For knots K0, K1, K2 related by the unoriented skein moves, the maps in the
long exact sequence on Khovanov homology are each induced by some 1-handle
attachment up to Reidemeister-isomorphism. Applying Proposition 3.3 in this case
gives us the following:

Proposition 3.5. Suppose we are given knots or links K0,K1 and K2 that only
differ inside a ball by the unoriented skein moves, then there are obvious cobordisms
S01 from K0 to K1, S12 from K1 to K2, and S20 from K2 to K0 such that each
Sij has a single critical point of index 1. Then, fixing i ∈ {0, 1, 2}, we can arrange
that the map I♮(Si,i+1) : I

♮(Ki) → I♮(Ki+1) is induced by a filtered map on chain
complexes

c : (C(Di), d♮(Di)) → (C(Di+1), d♮(Di+1)),

with Di, Di+1 being diagrams for Ki, Ki+1, and such that the induced morphism
between the resulting Kronheimer-Mrowka spectral sequences fits into an exact tri-
angle at the Khovanov page relating Khr(K0), Khr(K1), and Khr(K2).

Proposition 3.6. The analogue of the previous Proposition holds for the Ozsváth-
Szabó spectral sequence as well.

�

4. Computations

Essentially most of the arguments in this section progress by finding cobordisms
between knots whose spectral sequences we wish to know and knots whose spectral
sequences are necessarily trivial after the Khovanov page.

4.1. The (4, 5) torus knot and instanton homology. In [10] the example of the
(4, 5) torus knot T (4, 5) is analysed and it is determined that there is exactly one
non-trival differential in the spectral sequence after the Khovanov page. Further-
more, it was shown that this differential would cancel exactly one of eight explicit
pairs of generators in the Khovanov homology.
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The technique in this paper almost determines the spectral sequence completely:
we are able reduce the number of possible pairs to two, enabling us to give the
filtration on I♮(K) in almost all degrees. More precisely, after proving Proposition
1.1 we can write I♮(K) = V 6 ⊕W 1 where V and W are filtered vector spaces of
dimensions 6 and 1 respectively and we know the filtration on V completely and
there are two possibilities for the filtration on W .

We note that none of the techniques currently available to constrain the filtered
instanton homology (our technique included) discriminates between the various
filtrations corresponding to choices (a, b) ∈ Z ⊕ Z, a, b ≥ 1. A priori it is possible
that different choices of (a, b) give different spectral sequences, and so it may be the
case that, of the two possible canceling pairs in the spectral sequence for T (4, 5),
each pair does in fact occur for different choices of filtration.

In the plot below we show the reduced Khovanov homology over Q of T (4, 5)
as the solid discs. The horizontal axis is the homological grading i, and we follow
Kronheimer and Mrowka in making the vertical coordinate j − i where j is the
quantum grading. In [10] it is shown that there is exactly one non-trivial differential
in their spectral sequence.

Using the Z/4-grading on I♮(K), Kronheimer-Mrowka showed that this differen-
tial will go from one of the three generators on line j − i = 13 to one of the three
generators on the line j − i = 16. The exception is that a differential from (6, 13)
to (5, 16) is impossible. In fact, as quoted in Theorem 2.2, the differential d♮ that
computes the instanton Floer homology I♮ from a resolution cube in the spectral
sequence preserves the descending quantum filtrations. Hence there are a priori
eight possible differentials.

We now turn to the proof of Proposition 1.1, which we break into two lemmata.

Lemma 4.1. The generators at bigradings (5, 16) and (7, 16) are never boundaries
after the Khovanov page in the spectral sequence. Hence, since we know there is
exactly one non-trivial differential, the generator at (9, 16) must be the boundary.

Proof. We consider the genus 1 knot cobordism Σ obtained as follows. First express
T (4, 5) as a braid closure. Changing the sign of a crossing between the first two
strands of the braid gives a knot that we shall call K. Using time as the second
coordinate, we have a cylinder embedded in S3 × [0, 1] with a single point of self-
intersection which has boundary T (4, 5) ⊂ S3 × {0} and K ⊂ S3 × {1}. Replacing
the point of self-intersection with a piece of genus gives a knot cobordism Σ between
T (4, 5) and K.

We observe that the rank of reduced Khovanov homology of K is 9 and the
sum of the absolute values of the Alexander polynomial of K is also 9. Hence the
Kronheimer-Mrowka spectral sequence associated to K collapses at the Khovanov
page by Proposition 2.4.
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In this plot we show the reduced Khovanov homology over Q of T (4, 5) and of
K. The discs correspond to generators of the homology of T (4, 5), the circles to
generators of the homology of K.

The cobordism Σ being oriented, it induces a map on the Khovanov homology
which preserves the homological grading and lowers the quantum grading by 2.
Hence the rank of this map is at most 6, and we have drawn the 6 possibly non-
zero components of this map.

We split the cobordism Σ into the composition of two cobordisms Σ1 and Σ2

where Σ1 is a cobordism obtained by adding a 1-handle to T (4, 5) to obtain a 2-
component link L, and where Σ2 is obtained by adding a 1-handle to L to obtain the
knot K. We can think of L as being obtained by taking the vertical smoothing of a
crossing between the first two strands of a standard braid presentation of T (4, 5).
When we replace the crossing in question by the horizontal smoothing we obtain
the trefoil knot.

So we can use Proposition 3.5 to see that there exists a movie presentation
of Σ inducing a morphism of Kronheimer-Mrowka spectral sequences that at the
Khovanov page is the composition of two maps

Khr(T (4, 5))
Khr(Σ1)→ Khr(L)

Khr(Σ2)→ Khr(K)

each of which has cone equal to the reduced Khovanov homology of the trefoil. The
rank of the reduced Khovanov homology of the trefoil knot is 3, hence if the rank
of Kh(L) is 6+2b then the ranks of the maps Khr(Σ1) and Khr(Σ2) are both 6+ b
since

3 = rank(Cone(Khr(Σi))) = 9 + 6 + 2b− 2rank(Khr(Σi)).

Hence the rank of Khr(Σ) is at least (6 + b) + (6 + b)− (6 + 2b) = 6, but we have
already seen that the rank is at most 6.

So we see by Lemma 3.2 that, since the generators at (5, 16) and (7, 16) are
mapped non-trivially under Khr(Σ), they are never boundaries after the Khovanov
page, and hence they survive the spectral sequence. Thus the generator at (9, 16)
is the target of some non-zero differential. �

Next we try to narrow down the possible generators from which the differential
of the spectral sequence emerges.
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Figure 2. The dotted line represents a blackboard-framed 1-
handle attachment which gives a knot cobordism from the knot
52 to T (4, 5).

Lemma 4.2. The generator at bigrading (6, 13) on the Khovanov page is an ∞-
cycle.

Proof. There is a cobordism topologically equivalent to a punctured Moebius band
from the knot 52 in Rolfsen’s knot table to T (4, 5). This is presented as a single
1-handle attachment in Figure 2.

This 1-handle attachment induces a morphism of Kronheimer-Mrowka spectral
sequences, which we are again able to compute explicitly on the Khovanov page.

On the Khovanov page the map raises the homological grading by 11 and raises
the quantum grading by 32. The possible non-zero components of this map are
shown below. In fact each component is non-zero, since the Khovanov homology
of the cone (again, computed from the unoriented skein exact sequence) has homo-
logical width 2.
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Since 52 is alternating the spectral sequence has only trivial differentials past
the Khovanov page. This implies, again by Lemma 3.2, that the generator of the
Khovanov homology of T (4, 5) that occurs at grading (i, j − i) = (6, 13) has to
survive the spectral sequence (since it must be an ∞-cycle). �

Thus we have shown that there are only two remaining possibilities for the non-
trivial differential in the spectral sequence, hence verifying Proposition 1.1.

4.2. Three-stranded pretzel knots. We will now apply our method to draw
conclusions about the Floer homology of 3-stranded pretzel knots P (p, q, r). To
avoid confusion we shall state this first about instanton homology and indicate at
the end how the proof for the Heegaard-Floer homology of the branched double
cover differs.

To avoid trivialities, we assume all of p, q and r are non-zero. Notice also that
P (p, q, r) is invariant under permutation of the numbers p, q and r, and that reflec-
tion of P (p, q, r) yields P (−p,−q,−r). We will restrict ourselves to the cases where
P (p, q, r) is a knot, and this is so if and only if at most one of the numbers p, q and
r is even.

If the absolute value of one of the numbers p, q and r is 1 then P (p, q, r) is easily
seen to be a 2-bridge link, hence alternating. If all of p, q, r are positive (or have
the same sign), which we shall assume from now on, then the standard diagram of
P (p, q, r) is alternating.
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By results of Greene [4] and Champanerkar-Kofman [2] the 3-stranded pretzel
links P (−p, q, r) for p, q, r ≥ 2 are non quasi-alternating if and only if p ≤ min{q, r}.

Starkston has conjectured [18] and Qazaqzeh [17] has shown that the Khovanov
homology of P (−p, q, r) is thin if p = min{q, r}, and Manion [13] has proved that
it is not thin if 2 ≤ p < min{q, r}.

As a consequence of these results, the only 3-stranded pretzel knots which do not
have their reduced instanton knot Floer homology determined by the collapsing of
the Kronheimer-Mrowka spectral sequence are the knots P (−p, q, r) with 2 ≤ p <
min{q, r}.

The following is a consequence of Manion’s result [13].

Proposition 4.3. Let 2 ≤ p < min{q, r}. The reduced Khovanov homology of the
pretzel knot P (−p, q, r) is supported in two neighbouring δ-gradings and is given by

Khr(P (−p, q, r)) ∼= Qp
2
−1 ⊕Q(q−p)(r−p)−1

if all of p, q, r are odd or only q or r is even, and is given by

Khr(P (−p, q, r)) ∼= Qp
2 ⊕Q(q−p)(r−p)

if p is even. In both cases, the first summand denotes the reduced Khovanov ho-
mology of the upper δ-grading and the second summand the one with the δ-grading
which is one lower.

Manion also makes precise the respective δ-gradings, requiring further distinc-
tion of cases, but we do not need this here. In fact, all we need to prove our result
is that any pretzel knot has reduced Khovanov homology supported in at most two
adjacent δ-gradings, which is easily deduced by an induction.

Before stating our theorem we prove a simple lemma. For any n ≥ 1 the T (2, 2n)
torus link is an alternating non-split two component link. Proposition 2.5 does
not immediately apply to conclude that the spectral sequence to I♮(T (2, 2n)) is
trivial even though it has thin homology because the excision isomorphism I♮(K) ∼=
KHI(K) is just stated for knots in [9].

Lemma 4.4. The T (2, 2n) torus link has trivial Kronheimer-Mrowka spectral se-
quence from Khr(T (2, 2n)) to I♮(T (2, 2n)). Both groups have total rank 2n.

Proof. We use the exact triangle from Proposition 2.6 twice. The torus knot K =
T (2, 2n+ 1) in its standard diagram has a crossing such that the link K0 resulting
from the 0-resolution of that crossing is the torus link T (2, 2n), and the knot K1

resulting from 1-resolution is the unknot U . For the ranks we have rk(Khr(T (2, 2n+
1))) = 2n + 1 and rk(Khr(U)) = 1. Therefore, by the exact triangle the rank of
Khr(T (2, 2n)) is either 2n+ 2 or 2n.

The torus link L = T (2, 2n) has a crossing in its standard diagram such that
the two resolutions are the torus knot T (2, 2n− 1) and the unknot U , respectively.
The exact triangle implies this time that the rank of Khr(T (2, 2n)) is either 2n or
2n− 2. Thus the rank of Khr(T (2, 2n)) is 2n.

The torus knots T (2, 2n + 1) are alternating, so have trivial spectral sequence.
The exact triangle argument just above, but this time applied to reduced instanton
homology, implies the claim. �
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We are now able to prove Theorem 1.2.

Proof of Theorem 1.2. For the time being, we assume q, r are odd numbers, and
without loss of generality we can assume q ≤ r. For any p ≥ 2, the pretzel knots
P (−p, q, r), P (−(p − 1), q, r) and the torus link T (2, q + r) are related by a skein
triangle. By Proposition 3.5 there is a morphism of spectral sequences Ψ from the
Kronheimer-Mrowka spectral sequence for P (−(p − 1), q, r) to that of P (−p, q, r)
such that at the Khovanov page the morphism ψ fits into an exact triangle:

Khr(P (−(p− 1), q, r)) Khr(P (−p, q, r))

Khr(T (2, q + r)).

ψ

(4)

Consider the exact triangle (4), and let the inductive hypothesis H(p, s) for
1 ≤ p ≤ q and s ≥ K consist of the following statements

(i) At page Es = Eus ⊕ Els we have that Els contains the s-boundaries.
(ii) At page Es we have that the s-cycles contain Els.
(iii) If p ≥ 2, then at page Es the map Ψs splits as the direct sum of maps

Ψls : E
l
s(P (−(p− 1), q, r)) → Els(P (−p, q, r))

and

Ψus : Eus (P (−(p− 1), q, r)) → Eus (P (−p, q, r))
(iv) If p ≥ 2, Ψls is surjective.
(v) If p ≥ 2, Ψus is injective.

We start the induction at the Khovanov page.
First observe that at the Khovanov page EK the long exact sequence (4) im-

plies that ψ always satisfies (iii), (iv), and (v) of H(p,K) since Khr(T (2, q + r)) is
supported in a single delta grading.

Now observe that P (−1, q, r) is 2-bridge and P (−q, q, r) has thin Khovanov ho-
mology by Qazaqzeh’s result [17] and hence both have trivial Kronheimer-Mrowka
spectral sequence by Proposition 2.5. Hence we have that H(1,K) and H(q,K)
are trivially satisfied.

Next see that if (i) of H(p,K) is satisfied then (i) of H(p − 1,K) is implied by
(v) of H(p,K) and Lemma 3.2. Hence by induction on p decreasing with p = q as
the root case we have established (i) for all H(p,K).

Finally see that if (ii) of H(p,K) is satisfied then (ii) of H(p+ 1,K) is implied
by (iv) of H(p + 1,K) and Lemma 3.2. Hence by induction on p increasing with
p = 1 as the root case we have established (ii) for all H(p,K).

Hence we have H(p,K) for all p.
Next we notice that the shape of the differential (1) at the Khovanov page EK

implies that there is a well-defined δ-grading on the homology of the Khovanov
page, which is page EK+1 of the spectral sequence. We also realise that in the
upper diagonal of this next page we obtain a subspace of the upper diagonal of
Khovanov homology – the kernel of the differential – whereas the lower diagonal
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is a quotient of the lower diagonal of Khovanov homology – the cokernel of the
differential. As a consequence the morphism ΨK , induced by the map Ψ above,
maps the upper diagonal of this page for P (−(p−1), q, r) injectively into the upper
diagonal of this page for P (−p, q, r), and maps the lower diagonal surjectively onto
the respective lower diagonal.

In other words, we see that (iii), (iv), and (v) hold for each H(p,K + 1), and
again we have that H(1,K + 1) and H(q,K + 1) are trivially satisfied. Then the
induction can precede exactly as before, so that we see that H(p,K + 1) holds for
all p. Then we take homology to move to the next page of the spectral sequence
and so on. Hence we have H(p, s) for all p and s.

So far we have proved the theorem for all cases where both q and r are odd
numbers. Assume now without loss of generality that q is even and p and r are
both odd.

The pretzel knots P (−p, q, r), P (−p, q + 1, r) and the torus link T (2, r − p) also
form an exact triangle to which we apply Proposition 3.5 and Lemma 3.2 another
time. There is a morphism of spectral sequences Ψ from the Kronheimer-Mrowka
spectral sequence of P (−p, q + 1, r) to that of P (−p, q, r) such that the morphism
ψ at the Khovanov page fits into the exact triangle

Khr(P (−p, q + 1, r)) Khr(P (−p, q, r))

Khr(T (2, r − p)).

ψ

Again, this morphism has to map the diagonal with the lower δ-grading of the group
Khr(−p, q + 1, r) onto the lower diagonal of Khr(P (−p, q, r)), and we can use the
theorem for the pretzel knot P (−p, q+1, r) to draw the conclusion that there is no
non-trivial differential when restricted to the diagonal with the lower δ-grading, at
any page of the Kronheimer-Mrowka spectral sequence for P (−p, q, r).

Similarly, the pretzel knots P (−p, q, r), P (−p, q−1, r) and the torus link T (2, r−
p) also form an exact triangle to which we apply Proposition 3.5. There is a
morphism of spectral sequences Ψ from the Kronheimer-Mrowka spectral sequence
of P (−p, q, r) to that of P (−p, q− 1, r) such that the morphism ψ at the Khovanov
page fits into the exact triangle

Khr(P (−p, q, r)) Khr(P (−p, q − 1, r))

Khr(T (2, r − p)).

ψ

Again, this morphism has to map the diagonal with the upper δ-grading of the group
Khr(−p, q, r) injectively into the upper one of Khr(P (−p, q−1, r)). Using the same
method as before, we can use the theorem for the pretzel knot P (−p, q − 1, r) to
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draw the conclusion that the differentials for P (−p, q, r) will have no non-trivial pro-
jection onto the diagonal with the upper δ-grading, at any page of the Kronheimer-
Mrowka spectral sequence for P (−p, q, r). �

Theorem 4.5. Let 2 ≤ p < min{q, r}. Then the Ozsváth-Szabó spectral sequence,
starting from the reduced Khovanov homology Khr(P (−p, q, r)) and abutting to the

Heegaard-Floer homology of the branched double cover of the mirror ĤF(Σ(K)), can
only have non-trivial differentials that strictly lower the δ-grading.

Proof. The only substantial difference is that we are now working over the 2-element
field Z/2. With these coefficients one may be worried that the reduced Khovanov
homology of a pretzel link may not be supported in two adjacent δ-gradings, but
this turns out not to be the case, for example by appealing to Manion’s result [13]
in which he proved that the reduced Khovanov homology of a pretzel knot over Z
is torsion-free. �

Remark. We have observed above that for the torus knot T (4, 5) the same con-
clusion holds: all possible non-zero differentials in the Kronheimer-Mrowka spectral
sequence strictly lower the δ-grading.

Based on these results we state the following conjecture.

Conjecture 4.6. For any knot, all non-trivial differentials in the Kronheimer-
Mrowka spectral sequence strictly lower the δ-grading.

In another direction, we make the following observation:

Proposition 4.7. The suite of pretzel knots P (−2, 3, 2n+1) all have trivial Kron-
heimer-Mrowka spectral sequence.

Proof. The sum of the absolute values of the coefficients of the Alexander poly-
nomial of P (−2, 3, 2n + 1) is equal to 2n + 3. Therefore, I♮(P (−2, 3, 2n + 1)) has
rank bounded below by 2n + 3 by Proposition 2.4. On the other hand, Manion’s
result says that the rank of Khr(P (−2, 3, 2n + 1)) is also equal to 2n + 3. Hence,
the Kronheimer-Mrowka spectral sequence is trivial. �

It is not the case that these knots P (−2, 3, 2n + 1) have trivial Ozsváth-Szabó
spectral sequence. In fact, in Proposition 1.3 we determine explicitly the Ozsváth-
Szabó spectral sequences for these knots.

4.3. The (−2, 3, 2n + 1) pretzel knots and the Ozsváth-Szabó spectral se-

quence. We have seen earlier that the Kronheimer-Mrowka spectral sequence col-
lapses at the Khovanov page for all pretzel knots P (−2, 3, 2n+1). This however is
not the case for the Ozsváth-Szabó spectral sequence.

In this subsection we work over Z/2. In [1], Baldwin considered the pretzel knot
P (−2, 3, 5) and determined the pages of the Ozsváth-Szabó spectral sequence from
the reduced Khovanov homology of P (−2, 3, 5) to the Heegaard-Floer homology of
the branched double cover (which in this case is the Poincaré homology 3-sphere).

The reduced Khovanov homology of P (−2, 3, 5) is given by
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Khr(P (−2, 3, 5)) = t0q8 + t2q12 + t3q14 + t4q14 + t5q18 + t6q18 + t7q20,

where we have been cavalier about the distinction between the homology groups
and the Poincare polynomial (we shall continue to be cavalier). Baldwin showed
that h0q8 survives the spectral sequence and the remaining six elements cancel in
pairs:

(t2q12, t4q14), (t5q18, t7q20), (t3q14, t6q18),

where the first two pairs cancel from the E2 page to the E3 page, and the third
pair cancel from the E3 to the E4 page.

Manion’s result [13] implies that the reduced Khovanov homology of P (−2, 3, 2n+
1) is supported in two adjacent delta gradings (where δ is defined as half the quan-
tum grading minus the homological grading). It has rank 2n − 1 in delta grading
δ = n+ 1 and rank 4 in delta grading δ = n+ 2. In fact, we can write

Khr(P (−2, 3, 2n+ 1)) =q2n−4Khr(P (−2, 3, 5))

+ t8q2n+18(1 + tq2 + (tq2)2 + · · ·+ (tq2)2n−5),

where n ≥ 3. We write this as

Khr(P (−2, 3, 2n+ 1)) = q2n−4Khr(P (−2, 3, 5))⊕ Tn,

where Tn stands for Tail. We note that for degree reasons each bihomogenous
element of Khr(P (−2, 3, 2n+ 1)) lies either in q2n−4Khr(P (−2, 3, 5)) or in Tn.

Now we are ready to give the proof of Proposition 1.3.

Proof of Proposition 1.3. Firstly we want to see that the element t0q2n+4 in the
homology Khr(P (−2, 3, 2n + 1)) has to survive the spectral sequence. To see this
we just observe that Baldwin’s argument for the case n = 2 actually works for
n ≥ 2. Essentially since P (−2, 3, 2n + 1) is a positive knot and the Khovanov
homology is of rank 1 in homological degree 0, it follows that Plamenevskaya’s
element [16] is exactly the element t0q2n+4. Baldwin shows that Plamenevskaya’s
element represents a cycle in every page of the spectral sequence and, since the
Ozsváth-Szabó differentials always increase the homological grading, this implies
that t0q2n+4 survives to the E∞ page.

Next we note that there is a orientable knot cobordism induced by the addition
of 2n − 4 1-handles from P (−2, 3, 2n + 1) to P (−2, 3, 5). Now this induces a map
on Khovanov homologies

φ : Khr(P (−2, 3, 2n+ 1)) → Khr(P (−2, 3, 5)),

such that

• φ is of bidegree (0, 4− 2n),
• φ is the map on the E2-pages of a morphism between the Ozsváth-Szabó
spectral sequences of the two knots,

• φ is onto.

The last bullet point follows from the unoriented skein exact sequence in Khovanov
homology and a comparison of ranks.
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As an example, below we have drawn the Khovanov homology of P (−2, 3, 11).
The discs correspond to generators whose image under φ is non-zero, the circles are
generators in the kernel of φ. The arrows are the higher differentials of the spectral
sequence which we are trying to prove exist.
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Now each differential on the nth page En in the Ozsváth-Szabó spectral sequence
raises the homological grading by n. We know from the previous section that each
differential in the spectral sequence for a pretzel knot has to lower the delta grading
by 1. Hence each differential on the nth page is of bidegree (n, 2(n− 1)).

Let us now look at the map between the E2 pages, we have the following com-
mutative diagram:

t2q2n+8 d2−−−−→ t4q2n+10

yφ
yφ

t2q12
D2−−−−→ t4q14

where the bottom row is part of the E2 page for P (−2, 3, 5) and the top row is part
of the E2 page for P (−2, 3, 2n+1). The differential d2 is forced to be non-zero since
all other arrows are non-zero. Hence (t2q2n+8, t4q2n+10) is a canceling pair on the
E2 page for P (−2, 3, 2n+ 1). A similar argument tells us that (t5q2n+14, t7q2n+16)
is another canceling pair on the E2 page.

Now we look at the E3 page. Again the bottom row is P (−2, 3, 5), the top row
is P (−2, 3, 2n+ 1).

[t3q2n+10]3
d3−−−−→ [t6q2n+14]3y[φ]3

y[φ]3

t3q14
D3−−−−→ t6q18
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The bottom row is just the differential that we know exists on the E3 page for
P (−2, 3, 5). The arrows labelled [φ]3 are components of the map induced by the
map φ between the two E2 pages. The terms labelled [t3q2n+10]3 and [t6q2n+14]3 are
the images in the E3 page of two generators of the E2 page and d3 is a potentially
non-zero differential between them. In fact it is clear from the commutativity of the
diagram that d3 6= 0 so long as both [t3q2n+10]3 6= 0 and [t6q2n+14]3 6= 0. And this is
certainly true since there are no generators of the E2 page of the spectral sequence
for P (−2, 3, 2n + 1) with the correct bidigrees to cancel with these generators at
that page. Hence d3 6= 0 and (t3q2n+10, t6q2n+14) is a canceling pair at the E3 page.

We note that there is no homogenous generator in the tail Tn with the correct
bidegree to cancel before the E4 page.

It remains to see that this is where the spectral sequence for P (−2, 3, 2n + 1)
ends: E4 = E∞. We are left at the E4 page with

E4 = t0q2n+4 ⊕ Tn.

There can be no canceling pair entirely within Tn since Tn is supported in a single
delta grading. Furthermore we already know that t0q2n+4 survives the spectral
sequence. �

4.4. The (−3, 5, 7) pretzel knot. The pretzel knot P (−3, 5, 7) has trivial Alexan-
der polynomial ∆(P (−3, 5, 7)) = 1. The rank of the reduced Khovanov homology
Khr(P (−3, 5, 7)) is 15, hence a priori the rank of I♮(P (−3, 5, 7)) is some odd inte-
ger between 1 and 15. Since I♮ detects the unknot we can immediately do a little
better and exclude the possibility that I♮(P (−3, 5, 7)) has rank 1!

It is not too hard in fact to see that the rank of I♮(P (−3, 5, 7)) is at least 11,
simply by using the long exact sequence

I♮(P (−3, 6, 7)) I♮(P (−3, 5, 7))

I♮(T (2, 4)).

(where we write T (2, 4) for the (2, 4) torus link), and computing that the the rank
of I♮(P (−3, 6, 7)) has to be at least 15 since that is the sum of the absolute values
of the coefficients of its Alexander polynomial.

In this subsection we consider the problem of attempting to restrict the possible
differentials of the Kronheimer-Mrowka spectral sequence of P (−3, 5, 7) in order
to deduce more about the filtrations on I♮(P (−3, 5, 7)). This is to illustrate that
the techniques of this paper can give more information on the Kronheimer-Mrowka
spectral sequence of a pretzel knot than just that they decrease the δ-grading.

First we consider the unoriented skein long exact triangle in Khovanov homology
induced by taking resolutions of a crossing in the second of the three twisted regions.

This induces a long exact triangle of the following form:



ON SPECTRAL SEQUENCES FROM KHOVANOV HOMOLOGY 21

Khr(P (−3, 5, 7)) Khr(P (−3, 4, 7))

Khr(T (2, 4))

We compute the ranks |Khr(P (−3, 4, 7))| = 11 and |Khr(T (2, 4))| = 4 and the sums
of absolute values of coefficients of the Alexander polynomial |∆(P (−3, 4, 7))| = 11.
Hence we conclude that the spectral sequence for P (−3, 4, 7) is trivial and moreover
that the map Khr(P (−3, 5, 7)) → Khr(P (−3, 4, 7)) is of rank 11. By considering the
bidegree of this map we can write down the bigradings of 11 linearly independent
bigraded generators of Khr(P (−3, 5, 7)) which are mapped to non-zero elements of
Khr(P (−3, 4, 7)).

Below we have drawn the bigrading of Khr(P (−3, 5, 7)) (i along the horizon-
tal axis and j − i in the vertical direction) and indicated by solid discs these 11
generators. Since we know by Proposition 3.5 that this map Khr(P (−3, 5, 7)) →
Khr(P (−3, 4, 7)) can be realized as the induced map at the Khovanov page of a
morphism between the two Kronheimer-Mrowka spectral sequences, we can apply
Lemma 3.2. Since the spectral sequence for P (−3, 4, 7) is trivial, none of these
elements represented by solid discs can be the target of differentials in the spec-
tral sequence for P (−3, 5, 7). We have drawn circles to indicate the 4 remaining
bigraded generators of Khr(P (−3, 5, 7)) which may be targets of differentials in the
spectral sequence.

−3 −1 1 3 5 7 9
5

7

9

11

13

15

Next we consider the long exact sequence in Khovanov homology obtained by
resolving a crossing in the first of the three twisted regions of P (−3, 5, 7). This
gives a long exact sequence of the form:

Khr(P (−3, 5, 7)) Khr(T (2, 12))

Khr(P (−2, 5, 7))
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We compute ranks |Khr(P (−2, 5, 7))| = 19 and |Khr(T (2, 12))| = 12 and the sum
of absolute values of the coefficients |∆(P (−2, 5, 7))| = 19. Hence we can conclude
that the spectral sequence for P (−2, 5, 7) is trivial and that the rank of the map
Khr(P (−2, 5, 7)) → Khr(P (−3, 5, 7)) is 11.

By considering the bigraded degree of this map we can give the bigradings of a
bigraded basis for its image, none of whose elements can be sources of non-trivial
differentials in the Kronheimer-Mrowka spectral sequence for P (−3, 5, 7) (again
by Proposition 3.5 and Lemma 3.2). In the diagram below we have indicated by
circles the bigradings of the remaining 4 bigraded generators of Khr(P (−3, 5, 7))
which may be the source of non-trivial differentials in the spectral sequence.

−3 −1 1 3 5 7 9
5

7

9

11

13

15

We now consider the Z/4-grading which is just the reduction modulo 4 of the
grading j − i. Any non-trivial differential in the spectral sequence changes this
grading by 3 modulo 4. We can conclude that there are at most 4 possibilities for
differentials in the spectral sequence, at most two of which can actually occur. We
have drawn these four possibilities in the diagram below.

−3 −1 1 3 5 7 9
5

7

9

11

13

15

We observe that there are 8 generators which certainly survive the spectral se-
quence and whose bigradings we know explicitly.

4.5. Relation to representation spaces. Given a knot K and a meridian m of
K, one may define the space of representations

R(K; i) = {ρ ∈ Hom(π1(S
3 \K), SU(2)) | tr(ρ(m)) = 0} .
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Here we also denote by m the class of a meridian in π1(S
3 \K), well defined up to

conjugacy, and a representation is required to send this element to the conjugacy
class of traceless matrices in SU(2).

Reduced instanton knot Floer homology I♮(K) of a knot K is by definition the
homology of a complex (C(K)♮, d♮). This is, in some sense, the Morse homology of
a Chern-Simons functional, suitably perturbed so as to obtain transversality of the
involved instanton moduli spaces. The critical space of the unperturbed functional
is related to the space R(K; i) as follows (see [9, 7, 5]): Each conjugacy class of an
irreducible representation in R(K; i) accounts for a circle, and the conjugacy class
of the reducible representation accounts for a point.

In the most generic situation, R(K; i) consists of only finitely many conjugacy
classes. In this situation, after perturbation of the Chern-Simons functional, each
critical circle is expected to yield two critical points. This has been described explic-
itly by Hedden, Herald, and Kirk in [5] in a quite general setting. In this situation,
the complex C(K)♮ is a free Q-vector space of dimension 1 + 2n, where n is the
number of conjugacy classes of irreducible representations in R(K; i). The reduced
instanton homology I♮(K) is then bounded above by 1 + 2n as well.

It is an interesting fact that the upper bound from Khovanov homology seems
to be better than the upper bound from the representation space for pretzel knots,
whereas for torus knots the converse seems to be the case in general (except for the
torus knots T (3, n)). We list a few cases explicitly. The claims on the representa-
tion spaces of pretzel knots can be found in [3] and [19].

• For the pretzel knot P (−3, 5, 7) we have rk(Khr(P (−3, 5, 7))) = 15, whereas
R(P (−3, 5, 7); i) contains the conjugacy class of the reducible and 16 con-
jugacy classes of irreducible non binary dihedral representations (see the
table of the example in [19] where 3 errors occur that yield a total error of
1 which multiplied by two gave the wrong claim of 18 conjugacy classes).

• For the pretzel knots P (−2, 3, 2n+1) we have rk(Khr(P (−2, 3, 2n+1))) =
2n+3. The representation space R(P (−2, 3, 2n+1); i) contains the conju-
gacy class of the reducible representation, 2n−6 irreducible binary dihedral
representations, and ⌊ 8

3n⌋ conjugacy classes of irreducible non binary dihe-

dral representations, therefore yielding an upper bound to I♮(P (−2, 3, 2n+
1)) by ⌊(4 + 2

3 )n− 5⌋.

• Torus knots T (p, q) with p, q ≥ 4 seem to have a faster growth in reduced
Khovanov homology than in the bound coming from representation spaces,
see [5, Section 12.5].
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