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ABSTRACT. For every smooth Jordan curve v and cyclic quadrilateral @ in the Euclidean plane,
we show that there exists an orientation-preserving similarity taking the vertices of @ to . The
proof relies on the theorem of Polterovich and Viterbo that an embedded Lagrangian torus in C? has
minimum Maslov number 2.

A quadrilateral @ inscribes in a smooth Jordan curve v in the Euclidean plane if there exists an
orientation-preserving similarity of the plane taking the vertices of @ to +; it is cyclic if it inscribes in a
circle. The result of this paper is the solution of the cyclic quadrilateral peg problem [3, Conjecture 9]:

Theorem. FEvery cyclic quadrilateral inscribes in every smooth Jordan curve in the Euclidean plane.

The result is best possible, by considering the case in which the smooth Jordan curve is itself a circle.
Moreover, some regularity hypothesis on the Jordan curve is necessary in order for the Theorem to
hold, as the only cyclic quadrilaterals that inscribe in all triangles are the isosceles trapezoids [6, § 3.6].

Proof. For a fixed cyclic quadrilateral () and smooth Jordan curve -, we construct a pair of Lagrangian
tori T} and Ty in standard symplectic C2. They intersect cleanly along v x {0} and in a disjoint set of
points P which parametrize the inscriptions of ) in . By smoothing the intersection along v x {0},
we obtain an immersed Lagrangian torus 7" whose set of self-intersections is P. As we show, T' has
minimum Maslov number 4. On the other hand, a theorem independently due to Polterovich and
Viterbo asserts that an embedded Lagrangian torus in C? has minimum Maslov number 2 [7, 10].
Therefore P is non-empty, so () inscribes in ~. ]

The strategy of proof of the Theorem resembles that of our earlier result, which treated the case
in which @ is a rectangle [2]. In that case, we additionally arranged that 7 is invariant under a
symplectic involution 7 of C2. Passing to the quotient by 7, we obtained an immersed Lagrangian
Klein bottle K = T/7 in C? whose self-intersections P/7 parametrize inscriptions of @ in ~ up to
rotation by m. A theorem independently due to Shevchishin and Nemirovski asserts that there is no
embedded Lagrangian Klein bottle in C? [5, 9], thereby ensuring that P is non-empty, so @ inscribes in
~. In the more general case of a cyclic quadrilateral, 7' does not admit any apparent symmetry, which
impedes reusing the same approach. Our revised approach produces a stronger result and somewhat
more directly.

Cyclic quadrilaterals. We begin by characterizing the set of cyclic quadrilaterals. Let @ denote
a convex quadrilateral in the plane whose vertices are labeled ABCD in counterclockwise order. Its
diagonals AC and BD intersect in a point X. Euclid’s chord theorem asserts that @ is cyclic if and
only if |[AX|-|CX| = |BX|-|DX]| [1, Theorem III.35].!
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1Euclid proves the forward direction, which can be used to prove the reverse.
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By a cyclic permutation of the vertex labels, we may assume that |AX| < |CX| and |BX| < |DX].
We thereby obtain real values s = |AX|/|AC| and ¢t = |BX|/|BD| in (0,1/2] and an angle ¢ = LZAX B
in (0, 7). The triple of values (s, t, ¢) uniquely determines the oriented similarity class of @, unless one
of s and ¢ equals 1/2, in which case (s,t,¢) and (¢, s, 7 — ¢) determine the same oriented similarity
class.

We reformulate the preceding description for our present purposes. Identify the Euclidean plane
with the complex numbers C. Define C-linear automorphisms of C? by the matrices

[ r 1—r d R, — 1 0
rE\aen ) M T o e
for values r € (0,1/2] and ¢ € (0, 7).
Lemma 1. Points A, B,C, D € C correspond as above to vertices of a cyclic quadrilateral with param-
eters (s,t, @) if and only if
(1) Ryo F(A,C)=F/(B,D) and A #C (equivalently B # D).

Proof. Equality in the first coordinate of (1) is equivalent to the assertion that segments AC and BD
intersect at a point X so that |AX|=s-|AC| and |BX| =t-|BD|. Equality in the second coordinate
given the first then ensures that ZAX B = ¢ and that |AX|-|CX| = s(1—s)-|AC|?> = t(1—t)-|BD|* =
|BX|-|DX|. Insisting that A # C or B # D ensures that @ does not degenerate to a point. O

Two embedded Lagrangian tori. Suppose that @ is a cyclic quadrilateral with parameters (s, t, ¢)
as above and that - is a smooth Jordan curve in C. Note that v X 7 is a smoothly embedded torus in
C2. Define tori

T =RyoFs(yxy) and Ty = Fi(yx~).

Note that both R4 o Fs and F; map the point (z, z) to (z,0) for all z € C. From Lemma 1 we see that
the set of inscriptions of @ in «y is parametrized by the set of points

PZTlﬁTQ—’}/X {O}
Let w = dz A dZ + dw A dw denote the standard symplectic form on C2, up to scale.
Lemma 2. The tori Ty and Ty are Lagrangian with respect to w and intersect cleanly along v x {0}:

Tip.0)T1 N Tp,0)To = Tip0) (v x {0}), for all p € 7.

Proof. A direct calculation shows that

w=Fw=r-dzndz+(1—7r) - dwANdw
for r € (0,1/2]. Note that v x v is Lagrangian with respect to w, and Rjw = w. It follows that T3
and T, are Lagrangian with respect to w.

If p € v is a point on the Jordan curve, then T,y C C is a 1-dimensional real subspace. A direct
calculation shows that

Tip.0)T1 = Tpy x {0} @ {0} x Ty and Ty 0 To = Ty x {0} & {0} x T,
SO
Tip,0)T1 N Tp,0) T2 = Tyy x {0} = T 0) (v x {0}),
and the intersection along v x {0} is clean, as required. O
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FIGURE 1. Cross-section of smoothing in the ;1 = constant, y; = 0 plane.

A surgered immersed Lagrangian torus. Because T and Ty intersect cleanly along v x {0}, a
version of the Weinstein neighborhood theorem due to PozZniak [8, Proposition 3.4.1] implies that we
can select coordinates (z1,y1, 2, ¥2) in a neighborhood N =~ (R/Z) x R3 of v x {0} such that

o w=dx; Ady; + dxy A dys,
e T1 NN = {y; = y2 = 0}, and
e ThoNN = {y; = 2o = 0}.

We smooth the intersection of 77 and T5 in N as suggested by Figure 1 and let T" denote the result. The
tangent plane to T' at a point in N is spanned by 0/0z; and a vector of the form a-9/0x2 +b-9/0ya,
which are w-orthogonal. Thus, T is an immersed Lagrangian torus in (C%,w), and its set of self-
intersections equals P, which parametrizes the set of inscriptions of @) in 7.

The minimum Maslov number. Equip C" with a product symplectic form wy = > i, ¢;-dz; A dz;.
An immersed Lagrangian submanifold i : L — (C",wp) has a Maslov class u € H'(L;Z), given as
follows (cf. [4, pp.117-118]). The tangent planes to i(L) along the image of an embedded loop o C L
determine a loop of in £(wp), the Grassmannian of Lagrangian n-planes in (C”, wp). The Maslov index
of a is the value u([a]) := [@f] € Hi(L(wo);Z) ~ Z, and the minimum Maslov number of L is the
non-negative integer m(L) such that u(H;(L;Z)) = m(L) - Z.

Proposition. The minimum Maslov number of T is 4.

Proof. Orienting v C C counterclockwise, its Maslov index equals 2 with respect to c¢-dz A dzZ. Hence
v x {pt.} and {pt.} x v both have Maslov index 2 in 7 X v with respect to the product form w,.. Since
their homology classes generate Hy(yx7;Z), we obtain m(yx~) = 2. The diagonal loop {(z,2) : z € v}
is homologous to their sum, so it has Maslov index 4 in v x v with respect to w,. Applying R4 o F§
and Fi, we deduce that v x {0} has Maslov index 4 in both 77 and T with respect to w and that
m(T1) = m(Tz) = 2. Let § denote a push-off of v x {0} in T} away from the site of surgery. A
neighborhood of § survives the surgery, so the Maslov index of [d] in T is 4 with respect to w.

Next, select oriented loops A\ C T, Ao C Ty, and A C T such that A\; U Ay and A coincide outside
the neighborhood N above and meet it in a single slice 1 = constant, y; = 0, as displayed in Figure
1. The tangent planes to T'UT; U T, along the difference 1-cycle A — A\; — Ay describe a nullhomotopic
loop in £(w). Consequently, [\] = [\] + [\i] € Hi(L(w); Z) ~ Z. The class [\;] completes to a basis
of Hy(T;;Z) with [y x {0}] for j = 1,2. Since m(T;) = 2 and [y x {0}] has Maslov index 4 in T},
j = 1,2, it follows that [A;] has Maslov index 2 (mod 4), j = 1,2. Therefore, the Maslov index of [A]
in T is a multiple of 4.

Since [¢] and [A] form a basis for Hy(T;Z), it follows that m(T) = 4. O
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