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Abstract. For every smooth Jordan curve γ and cyclic quadrilateral Q in the Euclidean plane,
we show that there exists an orientation-preserving similarity taking the vertices of Q to γ. The

proof relies on the theorem of Polterovich and Viterbo that an embedded Lagrangian torus in C2 has

minimum Maslov number 2.

A quadrilateral Q inscribes in a smooth Jordan curve γ in the Euclidean plane if there exists an
orientation-preserving similarity of the plane taking the vertices of Q to γ; it is cyclic if it inscribes in a
circle. The result of this paper is the solution of the cyclic quadrilateral peg problem [3, Conjecture 9]:

Theorem. Every cyclic quadrilateral inscribes in every smooth Jordan curve in the Euclidean plane.

The result is best possible, by considering the case in which the smooth Jordan curve is itself a circle.
Moreover, some regularity hypothesis on the Jordan curve is necessary in order for the Theorem to
hold, as the only cyclic quadrilaterals that inscribe in all triangles are the isosceles trapezoids [6, § 3.6].

Proof. For a fixed cyclic quadrilateral Q and smooth Jordan curve γ, we construct a pair of Lagrangian
tori T1 and T2 in standard symplectic C2. They intersect cleanly along γ ×{0} and in a disjoint set of
points P which parametrize the inscriptions of Q in γ. By smoothing the intersection along γ × {0},
we obtain an immersed Lagrangian torus T whose set of self-intersections is P . As we show, T has
minimum Maslov number 4. On the other hand, a theorem independently due to Polterovich and
Viterbo asserts that an embedded Lagrangian torus in C2 has minimum Maslov number 2 [7, 10].
Therefore P is non-empty, so Q inscribes in γ. �

The strategy of proof of the Theorem resembles that of our earlier result, which treated the case
in which Q is a rectangle [2]. In that case, we additionally arranged that T is invariant under a
symplectic involution τ of C2. Passing to the quotient by τ , we obtained an immersed Lagrangian
Klein bottle K = T/τ in C2 whose self-intersections P/τ parametrize inscriptions of Q in γ up to
rotation by π. A theorem independently due to Shevchishin and Nemirovski asserts that there is no
embedded Lagrangian Klein bottle in C2 [5, 9], thereby ensuring that P is non-empty, so Q inscribes in
γ. In the more general case of a cyclic quadrilateral, T does not admit any apparent symmetry, which
impedes reusing the same approach. Our revised approach produces a stronger result and somewhat
more directly.

Cyclic quadrilaterals. We begin by characterizing the set of cyclic quadrilaterals. Let Q denote
a convex quadrilateral in the plane whose vertices are labeled ABCD in counterclockwise order. Its
diagonals AC and BD intersect in a point X. Euclid’s chord theorem asserts that Q is cyclic if and
only if |AX| · |CX| = |BX| · |DX| [1, Theorem III.35].1
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1Euclid proves the forward direction, which can be used to prove the reverse.
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By a cyclic permutation of the vertex labels, we may assume that |AX| ≤ |CX| and |BX| ≤ |DX|.
We thereby obtain real values s = |AX|/|AC| and t = |BX|/|BD| in (0, 1/2] and an angle φ = ∠AXB
in (0, π). The triple of values (s, t, φ) uniquely determines the oriented similarity class of Q, unless one
of s and t equals 1/2, in which case (s, t, φ) and (t, s, π − φ) determine the same oriented similarity
class.

We reformulate the preceding description for our present purposes. Identify the Euclidean plane
with the complex numbers C. Define C-linear automorphisms of C2 by the matrices

Fr =

(
r 1− r√

r(1− r) −
√
r(1− r)

)
and Rφ =

(
1 0
0 eiφ

)
for values r ∈ (0, 1/2] and φ ∈ (0, π).

Lemma 1. Points A,B,C,D ∈ C correspond as above to vertices of a cyclic quadrilateral with param-
eters (s, t, φ) if and only if

(1) Rφ ◦ Fs(A,C) = Ft(B,D) and A 6= C (equivalently B 6= D).

Proof. Equality in the first coordinate of (1) is equivalent to the assertion that segments AC and BD
intersect at a point X so that |AX| = s · |AC| and |BX| = t · |BD|. Equality in the second coordinate
given the first then ensures that ∠AXB = φ and that |AX| · |CX| = s(1−s) · |AC|2 = t(1− t) · |BD|2 =
|BX| · |DX|. Insisting that A 6= C or B 6= D ensures that Q does not degenerate to a point. �

Two embedded Lagrangian tori. Suppose that Q is a cyclic quadrilateral with parameters (s, t, φ)
as above and that γ is a smooth Jordan curve in C. Note that γ × γ is a smoothly embedded torus in
C2. Define tori

T1 = Rφ ◦ Fs(γ × γ) and T2 = Ft(γ × γ).

Note that both Rφ ◦ Fs and Ft map the point (z, z) to (z, 0) for all z ∈ C. From Lemma 1 we see that
the set of inscriptions of Q in γ is parametrized by the set of points

P = T1 ∩ T2 − γ × {0}.

Let ω = dz ∧ dz + dw ∧ dw denote the standard symplectic form on C2, up to scale.

Lemma 2. The tori T1 and T2 are Lagrangian with respect to ω and intersect cleanly along γ × {0}:

T(p,0)T1 ∩ T(p,0)T2 = T(p,0)(γ × {0}), for all p ∈ γ.

Proof. A direct calculation shows that

ωr := F ∗
r ω = r · dz ∧ dz + (1− r) · dw ∧ dw

for r ∈ (0, 1/2]. Note that γ × γ is Lagrangian with respect to ωr and R∗
φ ω = ω. It follows that T1

and T2 are Lagrangian with respect to ω.

If p ∈ γ is a point on the Jordan curve, then Tpγ ⊂ C is a 1-dimensional real subspace. A direct
calculation shows that

T(p,0)T1 = Tpγ × {0} ⊕ {0} × eiφTpγ and T(p,0)T2 = Tpγ × {0} ⊕ {0} × Tpγ,

so

T(p,0)T1 ∩ T(p,0)T2 = Tpγ × {0} = T(p,0)(γ × {0}),
and the intersection along γ × {0} is clean, as required. �
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Figure 1. Cross-section of smoothing in the x1 = constant, y1 = 0 plane.

A surgered immersed Lagrangian torus. Because T1 and T2 intersect cleanly along γ × {0}, a
version of the Weinstein neighborhood theorem due to Poźniak [8, Proposition 3.4.1] implies that we
can select coordinates (x1, y1, x2, y2) in a neighborhood N ≈ (R/Z)× R3 of γ × {0} such that

• ω = dx1 ∧ dy1 + dx2 ∧ dy2,
• T1 ∩N = {y1 = y2 = 0}, and
• T2 ∩N = {y1 = x2 = 0}.

We smooth the intersection of T1 and T2 in N as suggested by Figure 1 and let T denote the result. The
tangent plane to T at a point in N is spanned by ∂/∂x1 and a vector of the form a · ∂/∂x2 + b · ∂/∂y2,
which are ω-orthogonal. Thus, T is an immersed Lagrangian torus in (C2, ω), and its set of self-
intersections equals P , which parametrizes the set of inscriptions of Q in γ.

The minimum Maslov number. Equip Cn with a product symplectic form ω0 =
∑n
i=1 ci ·dzi∧ dzi.

An immersed Lagrangian submanifold i : L → (Cn, ω0) has a Maslov class µ ∈ H1(L;Z), given as
follows (cf. [4, pp.117-118]). The tangent planes to i(L) along the image of an embedded loop α ⊂ L
determine a loop α] in L(ω0), the Grassmannian of Lagrangian n-planes in (Cn, ω0). The Maslov index
of α is the value µ([α]) := [α]] ∈ H1(L(ω0);Z) ≈ Z, and the minimum Maslov number of L is the
non-negative integer m(L) such that µ(H1(L;Z)) = m(L) · Z.

Proposition. The minimum Maslov number of T is 4.

Proof. Orienting γ ⊂ C counterclockwise, its Maslov index equals 2 with respect to c · dz ∧ dz. Hence
γ ×{pt.} and {pt.}× γ both have Maslov index 2 in γ × γ with respect to the product form ωr. Since
their homology classes generate H1(γ×γ;Z), we obtain m(γ×γ) = 2. The diagonal loop {(z, z) : z ∈ γ}
is homologous to their sum, so it has Maslov index 4 in γ × γ with respect to ωr. Applying Rφ ◦ Fs
and Ft, we deduce that γ × {0} has Maslov index 4 in both T1 and T2 with respect to ω and that
m(T1) = m(T2) = 2. Let δ denote a push-off of γ × {0} in T1 away from the site of surgery. A
neighborhood of δ survives the surgery, so the Maslov index of [δ] in T is 4 with respect to ω.

Next, select oriented loops λ1 ⊂ T1, λ2 ⊂ T2, and λ ⊂ T such that λ1 ∪ λ2 and λ coincide outside
the neighborhood N above and meet it in a single slice x1 = constant, y1 = 0, as displayed in Figure
1. The tangent planes to T ∪ T1 ∪ T2 along the difference 1-cycle λ− λ1 − λ2 describe a nullhomotopic

loop in L(ω). Consequently, [λ]] = [λ]1] + [λ]2] ∈ H1(L(ω);Z) ≈ Z. The class [λj ] completes to a basis
of H1(Tj ;Z) with [γ × {0}] for j = 1, 2. Since m(Tj) = 2 and [γ × {0}] has Maslov index 4 in Tj ,
j = 1, 2, it follows that [λj ] has Maslov index 2 (mod 4), j = 1, 2. Therefore, the Maslov index of [λ]
in T is a multiple of 4.

Since [δ] and [λ] form a basis for H1(T ;Z), it follows that m(T ) = 4. �
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