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Abstract. We extend Lipshitz-Sarkar’s definition of a stable homotopy type
associated to a link L whose cohomology recovers the Khovanov cohomology

of L. Given an assignment c (called a coloring) of positive integer to each

component of a link L, we define a stable homotopy type Xcol(Lc) whose
cohomology recovers the c-colored Khovanov cohomology of L. This goes via

Rozansky’s definition of a categorified Jones-Wenzl projector Pn as an infinite

torus braid on n strands.
We then observe that Cooper-Krushkal’s explicit definition of P2 also gives

rise to stable homotopy types of colored links (using the restricted palette
{1, 2}), and we show that these coincide with Xcol. We use this equivalence

to compute the stable homotopy type of the (2, 1)-colored Hopf link and the

2-colored trefoil. Finally, we discuss the Cooper-Krushkal projector P3 and
make a conjecture of Xcol(U3) for U the unknot.

1. Introduction

1.1. Categorification. Given a semisimple Lie algebra g and a link L ⊂ S3 in
which each component of L is decorated by an irreducible representation of g, the
Reshetikhin-Turaev construction returns an invariant of that link that can, in prin-
ciple, be computed combinatorially from any diagram of L. The standard example
is the Jones polynomial, which arises from decorating all components with the
fundamental representation V = V 1 of sl2 (here the superscript 1 on the represen-
tation refers to the highest weight of V being 1). There are then two obvious first
directions in which one can generalize.

On the one hand, one might vary the Lie algebra and consider instead sln, but still
with the fundamental representation of sln. Each invariant obtained this way is a
1-variable specialization of the 2-variable HOMFLYPT polynomial, and satisfies an
oriented skein relation, which yields the benefit of easy computability.

On the other hand, one might stick with sl2, but vary the irreducible representa-
tion. There is one irreducible (n + 1)-dimensional representation V n (of highest
weight n) for each n ≥ 1. Decorating with V n gives rise to the so-called n-colored
Jones polynomial. The colored Jones polynomials no longer satisfy such pleasant
skein relations, but they are powerful - for example giving rise to 3-manifold invari-
ants (also called Reshetikhin-Turaev invariants or, in another form, Turaev-Viro
invariants).

Both the sln polynomials and the colored Jones polynomials admit categorifications
- that is, they can be exhibited as the graded Euler characteristic of bigraded
cohomology theories. In the case of sln, this is Khovanov-Rozansky cohomology
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[6]. In the case of the colored Jones polynomial there are constructions due to many
authors, some inequivalent, although the two we shall be considering in fact give
isomorphic cohomologies. The first is due to Rozansky [10], and the second due
to Cooper and Krushkal [3]. In both cases, the fundamental representation of sl2
gives Khovanov cohomology [5].

1.2. Spacification. Recently it has been shown that Khovanov cohomology admits
a spacification, that is, for any link there is a stable homotopy type X (L) whose
cohomology gives Khovanov cohomology (the bigrading of Khovanov cohomology
is recovered from a splitting of X (L) into wedge of spaces indexed by the integers).
This is work due to Lipshitz and Sarkar [8]. We note that the term ‘spacification’ is
not yet well-defined, since it is unclear exactly what properties one should require
of it (for example: should just taking a wedge of the Moore spaces determined by
the cohomology count as a spacification?) Nevertheless, we find it a convenient
shorthand for now.

It is a natural question if other Reshetikhin-Turaev invariants admitting categori-
fications can further be spacified. In the sln case, work by two of the authors with
Dan Jones [4] has constructed an sln stable homotopy type given the input of a
matched knot diagram. There is good evidence that this stable homotopy type
should be diagram-independent. For n = 2 it agrees with the stable homotopy type
due to Lipshitz-Sarkar.

The case of the colored Jones invariants is, in a sense, a little easier. In particular,
Rozansky’s categorification admits spacification. In the case of the c-colored un-
knot whose categorification is, in Rozansky’s construction, the stable limit of the
Khovanov cohomology of c-stranded torus links as the number of twists goes to
infinity, this has been observed by Willis [11], whose paper appeared on the arXiv
while this one was being written. The case of a c-colored link in general is no
harder, and in fact Rozansky has already taken care of the difficult work.

Since the Cooper-Krushkal and the Rozansky categorifications are equivalent, the
natural expectation is that one can lift the Cooper-Krushkal categorification to a
spacification equivalent to the Rozansky spacification. This turns out to be straight-
forward in the 2-colored case, but at least the more obvious attempt fails in the
3-colored case, as we discuss later.

1.3. Computational results. We shall define a stable homotopy type Xcol(Lc)
where Lc is a framed link with a coloring c of its components by positive inte-
gers. Picking the coloring 1 for each component returns the stable homotopy type
Xcol(L1), a grading-shifted version of Lipshitz-Sarkar’s stable homotopy type X (L).

We make some computations for certain links and colorings in Section 4. Already
in the simplest case these show interesting behaviour: the link with the lowest
positive crossing number is the Hopf link and the first coloring which has not yet
been considered by Lipshitz-Sarkar is where one component is colored with 2 and
the other with 1. The tail of the colored Khovanov cohomology of the (2, 1)-colored
Hopf link agrees with the tail of the colored Khovanov cohomology of the (2, 1)-
colored 2-component unlink. Nevertheless, we observe that even these tails can be
distinguished by the stable homotopy type.

Although we are not yet able to compute fully the stable homotopy type of the
3-colored unknot we make a conjecture based on some partial computations. This
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conjecture is interesting because its truth would imply that the periodicity of the
tail of the stable homotopy type of a colored link (even in the case of the 3-colored
unknot) can be longer than the periodicity of the tail of its cohomology.

1.4. Plan of the paper. In Section 2 we first observe that we can combine Rozan-
sky’s insight with the work of Lipshitz-Sarkar [8]. This combination is straightfor-
ward and yields a stable homotopy type of a framed colored link whose cohomology
recovers colored Khovanov cohomology. Secondly, we give ourselves a framework
in which to make computations. For this it makes more sense to use the Cooper-
Krushkal categorification which, at least in the case of colors 2 and 3, is entirely
explicit. We define what we mean by a lift of the Cooper-Krushkal categorification
to a spacification and show that any such lift gives the same stable homotopy type
as that arising from Rozansky’s construction.

In Section 3, we construct such a lift of the Cooper-Krushkal categorification for
colorings taken from the restricted palette {1, 2}. The case of 3-colored cannot be
made to work in the way that one might expect (there is an explicit obstruction to
this). Finally, in Section 4 we make computations as already discussed in Subsection
1.3. At the end of this section we give a discussion of the Cooper-Krushkal 3-colored
case.

2. Two approaches to a colored stable homotopy type

The colored Jones polynomial is an invariant of framed links L in which each
component of L has been assigned a color, or in other words a positive integer
weight. We write the color of a component k of L as c(k), and often keep track of
the coloring as a subscript Lc.

To compute the polynomial one takes a diagram of Lc in which the self-writhe of
each component is equal to its framing. Then one replaces each component k by
c(k) parallel copies following the blackboard framing. Finally, one places on each
component a Jones-Wenzl projector. This projector is an element of the relevant
Temperley-Lieb algebra, with coefficients in rational functions of q. Finally, one
applies the Kauffman bracket, and obtains an element of Z[[q, q−1] by expanding
in powers of q.

The Jones-Wenzl projector is idempotent and satisfies turnback-triviality. It turns
out that these two universal properties are enough to determine it completely. The
Jones-Wenzl projector should in principle lift, in a categorification of the colored
Jones polynomial, to a complex in Bar-Natan’s tangles-and-cobordisms category
[1], satisfying idempotence and turnback-triviality up to chain homotopy equiva-
lence. Cooper-Krushkal [3] and Rozansky [10] give ways of achieving such a lift.
Cooper-Krushkal proceed explicitly and give a categorified projector that they de-
fine inductively, while Rozansky realizes the categorified projector as a limit of the
complexes associated to torus braids. It is surprising that the latter approach had
apparently not been considered even at the decategorified level until Rozansky’s
insight! As observed by Cooper-Krushkal, categorified universal properties imply
that the two competing categorifications give identical cohomological groups.

2.1. Grading and other conventions. We note that there is a discrepancy in
the grading conventions between the original paper of Khovanov’s [5], Rozansky’s
torus braids paper [10], and Cooper-Krushkal’s paper [3]. We apologize for possibly
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adding to the confusion. We shall essentially work with the bigrading conventions
used by Bar-Natan [1] up to an overall shift. The overall shift makes it easier to
treat the colored Khovanov cohomology as an invariant of a colored framed link,
with no choice of orientation. The convention is depicted in Figure 1.

With these conventions, the Khovanov complex is invariant up to bigraded homo-
topy equivalence under the second and third Reidemeister moves, but it is only
invariant up to an overall shift under the first Reidemeister move. Hence it be-
comes a chain homotopy invariant of framed links (where the framing is given by
the blackboard-framing of a diagram).

2.2. Rozansky spacification. Rozansky [10] has given an approach to colored
Khovanov cohomology that expresses the c-colored cohomology of a link L as the
limit of the Khovanov cohomologies of an c-strand cable of L in which one puts an
increasing number of twists. The stabilization of the cohomology was observed ear-
lier by Stoš́ıc in the case of L being the unknot, which amounts to the stabilization
of the cohomology of the (p, c)-torus link as p→∞.

We now summarize the construction. In Figure 2, we describe what is meant by
twisting r times on an n-stranded braid. We write this braid as Br,n. To each such
braid, Bar-Natan’s construction [1] associates a complex which we shall denote
〈Br,n〉. In this complex, each ‘cochain group’ is a vector of tangle smoothings, each

−1
2

q
1
2

1
2

〉〈 = q−
1
2

Figure 1. We follow the grading conventions as depicted in the
complex that we associate to a single crossing. The complex is
supported in cohomological degrees ±1/2, and a quantum grading
shift is applied. The differential increases the cohomological degree
by 1 and preserves the quantum grading.

1=

1 r + 1r =

...

...
...

...

...
...

...
...

...

Figure 2. This shows inductively what is meant by twisting r
times positively on an n-stranded braid.



A KHOVANOV STABLE HOMOTOPY TYPE FOR COLORED LINKS 5

such smoothing coming with a quantum degree. We shall apply a bigrading shift
to this complex so that the resolution which is the identity braid group element
is in cohomological degree 0 and comes with quantum degree shift 0. We write
the shifted complex as hr(n−1)/2qr(n−1)/2〈Br,n〉 where the the exponents of h and q
denote cohomological and quantum degree shifts respectively. Note that all other
resolutions lie in positive cohomological degrees.

For each r ≥ 1 there is a map of complexes

Fr : (hq)rn(n−1)/2〈Brn,n〉 −→ (hq)(r−1)n(n−1)/2〈B(r−1)n,n〉,
given by taking F1 to be the identity in cohomological degree 0, and then defining
Fr to be the tensor product of F1 with the identity on (hq)(r−1)n(n−1)/2〈B(r−1)n,n〉.
Rozansky shows that for large r the cone complex Cone(Fr) is homotopy equivalent
to a complex in which each smoothing that appears has high cohomological and
quantum degrees. For our purposes, we are mainly interested in the quantum
degree; we have

Proposition 2.1 (Theorem 4.4 [10]). The cone Cone(Fr) is homotopy equivalent
to a complex made up of circleless smoothings, where each such smoothing is shifted
in quantum degree by at least 2n(r − 1) + 1.

The precise form of the quantum degree shift is unimportant for us, rather we note
that it increases at least linearly with r.

Definition 2.2. Let Dc be an unoriented link diagram in which each component is
colored by a positive integer weight (we write the coloring by weights as c), and each
component k carries a basepoint. Let the diagram Dr

c be given by the blackboard-
framed c-stranded cable of Dc in which each component k receives c(k)r positive
twists at the basepoint.

Definition 2.3. Let

Gr : (hq)
∑

k rc(k)(c(k)−1)/2〈Dr
c〉 → (hq)

∑
k(r−1)c(k)(c(k)−1)/2〈Dr−1

c 〉
be induced by the tensor product of the maps Fr at each basepoint.

Lemma 2.4. It follows from Proposition 2.1 that, for fixed j and for all large
enough r, the map of cohomologies

Hi,j((hq)
∑

k rc(k)(c(k)−1)/2〈Dr
c〉)→ Hi,j((hq)

∑
k(r−1)c(k)(c(k)−1)/2〈Dr−1

c 〉)
induced by Gr is an isomorphism.

Proof. There is more than one way to see this. For example, label the components
k1, . . . , ks and write

ei =

j=i−1∑
j=1

(r − 1)c(kj)(c(kj)− 1)/2 +

j=s∑
j=i

rc(kj)(c(kj)− 1)/2,

and denote by Dki
c the result of taking the c-cable of D and adding rc twists at the

basepoints of ki, . . . , ks and (r − 1)c twists at the basepoints of k1, . . . , ki−1. Then
we can write

Gr = F ks
r ◦ · · · ◦ F k1

r

where

F ki
r : (hq)ei〈Dki

c 〉 → (hq)ei+1〈Dki+1
c 〉
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is induced by Fr at a chosen basepoint. The cone Cone(F ki
r ) is homotopy equivalent

to a complex made up of the tensor product of three Bar-Natan complexes of
tangles. Namely

• A complex of circleless smoothings at the chosen basepoint whose quantum
degree increases linearly with r.
• At the other basepoints, the complexes (hq)rn(n−1)/2〈Brn,n〉. After circle

removal, these consist of circleless smoothings each in a non-negative quan-
tum degree. This can be seen by observing that the identity braid is in
cohomological and quantum degree 0. Smoothings in cohomological degree
d differ from the identity braid by exactly d surgeries and so contain at
most d− 1 circles.
• A complex independent of r arising from the Bar-Natan complex of the

diagram away from the basepoints.

Finally we recall the homological algebra fact that

Cone(k ◦ l) = Cone(Σ−1 Cone(k)→ Cone(l))

for maps of complexes k : C → C ′, l : C ′′ → C. This implies that Cone(Gr) can be
represented by circleless smoothings such that the minimal quantum degree among
them increases at least linearly with r. �

Hence we can make the following definition.

Definition 2.5. For fixed j, the c-colored Khovanov cohomology of the diagram
D framed by the component-wise writhe is defined to be the group

Khi,j
col(Dc) = Hi,j((hq)

∑
k rc(k)(c(k)−1)/2〈Dr

c〉)
for sufficiently large r.

Independence of the cohomology under Reidemeister moves II and III and under
choice of basepoints follows immediately from the independence under Reidemeister
moves II and III of standard Khovanov cohomology. The fact that a suitable Euler
characteristic of the cohomology agrees with the c-colored Jones polynomial of D
is due to Rozansky.

Since Hi,j((hq)
∑

k rc(k)(c(k)−1)/2〈Dr
c〉) is simply a grading-shifted version of the

usual Khovanov cohomology of Dr
c , the construction of Lipshitz-Sarkar gives rise

to a stable homotopy type X j
(Dr

c) realizing it by the (suitably shifted) singular
cohomology groups.

Furthermore, observe that the map Gr is induced by quotienting out a subcomplex
generated by standard generators of the Khovanov complex. This subcomplex
corresponds to an upward-closed subcategory of the framed flow category associated
by Lipshitz-Sarkar to Dr

c . It follows that Gr is induced by a map

gr : X j
(Dr−1

c ) −→ X j
(Dr

c).

Since for all sufficiently large r, gr gives an isomorphism on cohomology, White-
head’s theorem implies that for sufficiently large r, gr is a homotopy equivalence.

Definition 2.6. We can now define the colored stable homotopy type for fixed j
to be

X j
col(Dc) = X j

(Dr
c)
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for sufficiently large r. In other words, this is the homotopy colimit of the directed
system of maps gr.

The invariance of this stable homotopy type under choice of basepoints and under
Reidemeister moves II and III follows from the invariance of the Lipshitz-Sarkar
homotopy type under Reidemeister moves II and III.

Remark 2.7. Willis [11] gave Definition 2.6 in the case that D is the unknot
and gave an independent argument that the limit of the system gr exists. Using his
own estimates of quantum degree rather than Rozansky’s, Willis has independently
defined the Rozansky spacification, in a paper appearing on the arXiv shortly after
ours [12]. He further showed a stabilization of the spacification of the c-colored
unknot as c→∞.

Remark 2.8. We note that Definition 2.6 implies that the framing of the link
components only affects the colored stable homotopy type up to an overall shift
in bigrading, as is the case for the colored Khovanov cohomology. This is because
the blackboard-framed c-cable of a 1-crossing Reidemeister 1-tangle is equivalent
to a full twist in a c-stranded braid by a sequence of Reidemeister moves involving
c Reidemeister I moves. Reidemeister moves preserve the stable homotopy type
according to Lipshitz-Sarkar, but Reidemeister I moves introduce a shift (with our
grading conventions).

2.3. Cooper-Krushkal spacification. In this subsection we give the properties
that one might expect of a spacification based on the Cooper-Krushkal categorifi-
cation. These properties are enough to imply that any such spacification is stably
homotopy equivalent to the Rozansky spacification, as is verified in Subsection 2.4.
The construction of such spacifications is, however, not straightforward, and we
leave discussion of these to Section 3.

Suppose that for each n ≥ 1, Pn is a complex of (n, n)-tangle smoothings in the
sense of Bar-Natan [1], such that each Pn is a universal projector by Definition 3.1
of [3]. Cooper-Krushkal have given a way of constructing such universal projectors.
We note that a part of their definition of Pn is that the identity n-braid smoothing
appears only once and in degree (0, 0), and that the quantum and cohomological
degrees of every smoothing in the complex are non-negative.

Suppose that T is a tangle diagram in the plane punctured by k discs with 2ni
ordered boundary points on the ith disc. Then we may define the Khovanov cochain
complex (of free abelian groups) 〈TP 〉 by taking the tensor product of the Bar-Natan
complex 〈T 〉 and Pni

for i = 1, . . . , k in the obvious way.

Definition 2.9. A Cooper-Krushkal framed flow category (C-Kffc) is a choice of
finite-object framed flow category (see [8] for definition and references) C(TP ) re-
fining the Khovanov cochain complex 〈TP 〉 for each such T . Choosing a particular
crossing of the tangle T we write T 0 and T 1 for the 0- and 1-resolutions of that
crossing. We require that the standard generators corresponding to the subcom-
plex 〈T 1

P 〉 (resp. the quotient complex 〈T 0
P 〉) correspond to upwards closed (resp.

downwards closed) framed flow subcategories of C(TP ) such that the associated
CW-complex is stably homotopy equivalent to |C(T 1

P )| (resp. |C(T 0
P )|).

Furthermore, if we denote by T id the tangle diagram produced by filling the kth
boundary disc of T with the identity nk-braid, then 〈T id

P 〉 is naturally a quotient
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complex of 〈TP 〉 generated by standard generators of 〈TP 〉. We require this quotient
complex to correspond to a downward closed subcategory of C(TP ) with associated
CW-complex stably homotopy equivalent to |C(T id

P )|.

Remark 2.10. We can restrict this definition if we like to certain values of n. In
particular in this paper we give a genuine C-Kffc only for the color n = 2. For the
color n = 3 we may slightly alter the definition of a C-Kffc, to arrive at a framed flow
category spacifying a cohomology theory that has its graded Euler characteristic a
non-standard normalization of the 3-colored Jones polynomial. If we insist on the
standard normalization we run into difficulties. We discuss this in Section 3.

Remark 2.11. We note that the condition that a C-Kffc assigns a finite-object
framed flow category is equivalent to the condition that the minimal quantum
degree of the circleless smoothings in the ith cochain group of Pn tends to infinity
as i → ∞. Although this is true for the explicit examples of universal projectors
constructed by Cooper-Krushkal, it is not required by them axiomatically.

2.4. The equivalence. We shall next see that C-Kffc’s give rise to the same stable
homotopy types as does X j

col. More precisely, let D be a link diagram framed by the
component-wise writhe with each component k having a basepoint, and each being
colored by a positive integer weight c(k). We write Dcab for the tangle formed
by cutting D open at each basepoint and then taking the blackboard-framed c-
cable. Then we can consider the Bar-Natan cochain complex of free abelian groups
formed by tensoring in Pc(k) in the obvious way. This cochain complex is the
Cooper-Krushkal complex that categorifies the colored Jones polynomial of D, and
it is refined by the framed flow category C(Dcab

P ). Writing Cj(Dcab
P ) for the part of

this framed flow category in quantum degree j, we have the following result.

Proposition 2.12. With the diagram D as above we have

X j
col(Dc) ' |Cj(Dcab

P )|.

Proof. We fix j. We write Ci,j
P,r(D) to be the cochain complex of free abelian groups

formed by following the procedure as outlined in Figure 3. By the definition of a
C-Kffc, there is a framed flow category Aj

P,r(D) that refines Ci,j
P,r(D).

c(k)rPc(k)
...

...

Figure 3. We describe how to form the complex Ci,j
P,r(D) from

a based c-colored diagram D. We take the blackboard-framed c-
cable of D and at the basepoint of a component k of D we tensor
in Pk(c) and add c(k)r twists as shown in the diagram. We then
take the corresponding cochain complex and shift by
hq

∑
k rc(k)(c(k)−1)/2.
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Consider the quotient complex C1 of Ci,j
P,r(D) consisting all generators correspond-

ing to taking the 0-resolution at each of the crossings of the twist regions at the
basepoints. This corresponds to a downward-closed subcategory A1 of Aj

P,r(D).

We observe firstly that |A1| is stably homotopy equivalent to |Aj
P,0(D)| which is

exactly |Cj(Dcab
P )|, and secondly that the corresponding upward-closed subcategory

has trivial cohomology by the turnback-triviality condition on the projectors Pc(k).
Hence we have that

|Aj
P,r(D)| ' |A1| ' |Cj(Dcab

P )|.

On the other hand, for any value of r, the complex Ci,j
P,r(D) can be written as the

total complex

(hq)
∑

k rc(k)(c(k)−1)/2〈Dr
c〉 → Γr

1 → · · · → Γr
s → · · · ,

where each Γr
s carries an internal differential arising from all crossings of the twisted

c-cable of D, while the part of the differential from Γr
s to Γr

s+1 is induced by the
differentials of the Pc(k). This is because the identity braid smoothing is the only
smoothing appearing in cohomological degree zero of each complex Pc(k).

Now the minimal quantum degree of a generator in
⊕

r Γr
s tends to +∞ as s tends to

+∞ (see Remark 2.11). On the other hand, each Γr
s is chain-homotopy equivalent

by Gauss-elimination to a complex in which the minimal quantum degree is bounded
below by b(r), a function independent of s and tending to +∞ as r tends to +∞.
This follows from formula (4.9) of [10] and the observation that the cohomological
Reidemeister I and II relations can be proved by Gauss-elimination.

Hence the lowest quantum degree of the support of the cohomology of the subcom-
plex

Γr
1 → · · · → Γr

s → · · ·
tends to +∞ as r tends to +∞. The quotient complex (hq)

∑
k rc(k)(c(k)−1)/2〈Dr

c〉
corresponds to a downward-closed subcategory of Aj

P,r(D) with associated stable

homotopy type X j
(Dr

c). So for large enough r we have

X j
col(Dc) ' X

j
(Dr

c) ' |Aj
P,r(D)| ' |A1| ' |Cj(Dcab

P )|.
�

Remark 2.13. We have worked here with colored links, but all of what we have
done applies, mutatis mutandis, to more general (in other words, not just diagrams
obtained by cabling) closed diagrams containing Jones-Wenzl projectors.

3. Lifting the Cooper-Krushkal projectors

In this section we give a C-Kffc associated to link diagrams colored with colors
drawn from the palette {1, 2}. It would seem a priori very likely that the methods
used in this construction should extend to the color 3, since for this color we have
(due to Cooper-Krushkal [3]) an explicit and fairly simple cohomological projector.
However, it turns out that there is an unexpected non-trivial obstruction to this
extension. The obstruction can be obviated by renormalizing the 3-colored Jones
invariant of the 0-framed unknot to be

(q−2 + 1 + q2)(1− q2 + q4 − q6 + · · · ) rather than q−2 + 1 + q2.
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We briefly discuss the obstruction and renormalization at the end of Section 4, but
we do not give in this paper the full construction of the renormalized spacification.

3.1. A 2-colored Cooper-Krushkal projector. In [4], two of the authors to-
gether with Dan Jones considered the 2-stranded braid of k crossings, each of the
same sign. The Bar-Natan complex of this tangle has a particularly simple form:
it is homotopy equivalent to a complex which has one circleless smoothing in each
cohomological degree from −k/2 to k/2 (with the grading conventions used in this
paper). Indeed, in Figure 4, we give the Cooper-Krushkal projector for the color
2; the Bar-Natan complex for the positively twisted k-crossing 2-braid is, up to
an overall shift, the quotient complex of this projector consisting all tangles of
cohomological degree less than k + 1.

Decomposing a closed link diagram D into a tensor product of such tangles one can
consider the tensor product of their simplified chain homotopy class representives.
This gives a cochain complex 〈D〉simp (depending on the decomposition of D) of
free abelian groups, and 〈D〉simp is refined by a framed flow category given in [4].
The associated stable homotopy type was shown to be independent of the choice
of decomposition, and it was observed that the decomposition in which each tangle
has a single crossing returns the Lipshitz-Sarkar framed flow category.

Taking a suitably normalized version of this construction for k = ∞ gives a con-
struction of a C-Kffc. In particular, this construction enables us to make non-trivial
calculations of the colored stable homotopy types of the (2, 1)-colored Hopf link as
well as of the 2-colored trefoil.

Suppose that T is a tangle diagram in the plane punctured by k discs each with
4 ordered boundary points. Let the closed diagram T r be given by filling in each
disc with 2r positive twists.

We consider a particular decomposition of T r into a tensor product of tangles -
specifically, we take one tangle (of 2r crossings) at each filled disc, one tangle for
every other crossing of T r, and finally the rest of the diagram which is crossingless.

Such a decomposition into tangles is exactly the input into the construction of the
paper [4]. So, incorporating now an overall shift and fixing a quantum degree j,
there is a framed flow category Aj(T r) refining the quantum degree j part of the
simplified cochain complex (hq)kr〈T r〉simp.

Finally we note that for fixed j and large enough r, the quantum degree j part
of (hq)kr〈T r〉simp agrees with the quantum degree j part of the Cooper-Krushkal
complex 〈TP 〉. So, taking r to be large, the framed flow category Aj(T r) provides

+
. . .

±
. . .

−

Figure 4. We show here the Cooper-Krushkal projector. We sup-
press the degree-shifts for ease of visualization. The degree shifts
can be determined by noting that the identity-braid or horizontal
smoothing on the far left is in cohomological degree 0 and quantum
degree 0, and all differentials raise the cohomological degree by 1
and preserve the quantum degree.
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our candidate for a C-Kffc. The remaining properties required of a C-Kffc are now
straightforward to verify.

4. Examples

4.1. The 2-colored unknot. Consider a diagram of the blackboard framed 2-
cable of the 0-crossing unknot containing a Cooper-Krushkal projector P2. The
generators in the resulting cochain complex come from smoothings with two circles
in homological degree 0, and one circle in homological degree bigger than 0, compare
Figure 4. The minimal quantum degree in which we get a generator is therefore
q = −2 with one generator in homological degree 0. For q = 0 we get two generators
in homological degree 0 and one in homological degree 1. For q = 2 there is one
generator in homological degrees 0, 1 and 2 each.

For q = 2j with j ≥ 2 we get two generators, one in homological degree j − 1 and
one in degree j. The coboundary map alternates between multiplication by 0 and 2.
The cohomology is therefore easily calculated, and determines the stable homotopy
types because of thinness. We thus get

X−2col (U2) = S0 X 0
col(U2) = S0 X 2

col(U2) = S2

X 4j
col(U2) = M(Z/2, 2j) for j ≥ 1

X 4j+2
col (U2) = S2j+1 ∨ S2j+2 for j ≥ 1.

Note that the notation M(G,n) stands for a Moore space, a space whose only
non-trivial integral homology group is G in degree n.

4.2. The 2-colored trefoil. In Figure 5 we give a diagram of a 2-cable of the right-
handed trefoil T containing a Cooper-Krushkal projector P2. The extra loops ensure
that we get the 0-framed 2-cable, and we denote it by T 0

2 . For each quantum degree
j this diagram gives rise to a framed flow category A as described in Subsection
3.1.

For calculational purposes, we want to remove the three double loops. Performing
two Reidemeister I moves and one Reidemeister III move turns each double loop
into a (−2)-tangle, which can be absorbed by the projector P2. However, because

P2

Figure 5. We show the 0-framed 2-cable of the right-handed tre-
foil with a Cooper-Krushkal projector placed on it.
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of the Reidemeister I moves, we get a shift in homological and quantum degrees.
More precisely, we get 〈Dr

2〉 = h3q9〈D′2r−3〉, where D′ is the standard 3-crossing
diagram of the right-handed trefoil. Denoting the 2-colored right-hand trefoil with
framing 3 by T 3

2 , we get Khi,j
col(T

0
2 ) = Khi+6,j+12

col (T 3
2 ).

Taking these shifts into account and working with the diagram for T 3
2 , we see that

the least quantum degree in A = A0 which admits an object is given by q = 2 with
homological degree h = 0, coming from a smoothened diagram with 4 circles. This
is indeed the only object in this quantum degree.

The projector P2 gives rise to upward closed subcategories Ak for k ≥ 0 generated
by objects that arise from a tangle in P2 of cohomological degree at least k. The
highest quantum degree of an object in A0 −A1 is q = 24 coming from 6 circles in
the smoothened diagram. It follows that for quantum degree q ≥ 26 the relevant
flow category Aq is a full subcategory of A1.

The quotient category Aj/Aj+1 for j ≥ 1 is, up to degree shifts, the Lipshitz-
Sarkar flow category of a diagram of the unknot with 12 crossings. Furthermore,
this diagram can be transformed into the standard unknot diagram by performing
six Reidemeister II moves. The category Aj/Aj+1 for j ≥ 1 is therefore stably
equivalent to a flow category containing two objects of homological degree j + 6,
one of quantum degree 2j + 12, the other of quantum degree 2j + 10.

Also notice that the associated cochain complexes to the flow categories Aq and
Aq+4 for q ≥ 26 only differ in a cohomological shift by 2. If the tail turns out to be
cohomologically thin (as it does), it follows that the stable homotopy types for q up
to 28 determine all the stable homotopy types. The stable homotopy types for q up
to 28 may be determined using the diagram D′2

r for large r. It turns out that r = 8
is sufficient, and the following calculations have been done using the programme
KnotJob available at http://www.maths.dur.ac.uk/∼dma0ds/knotjob.html.

We can identify all stable homotopy types from cohomology and Steenrod square
calculations using the classification result of Baues-Hennes [2] with the exception of
q = 10, where X 10

col(2)(T ) is either S3 ∨ S4 ∨ S6 or X(ε, 3)∨ S4. Recall that X(ε, n)

is the space obtained by attaching an (n+3)-cell to Sn using the nontrivial element
of πst

2
∼= Z/2. Excluding this, we get

X 2
col(T

0
2 ) = S0 X 4

col(T
0
2 ) = S0

X 6
col(T

0
2 ) = S2 X 8

col(T
0
2 ) = X(2η, 2)

X 12
col(T

0
2 ) = X(η2, 5) ∨ S6 X 14

col(T
0
2 ) = X(η2, 5) ∨ S7 ∨ S8 ∨ S8

X 16
col(T

0
2 ) = S7 ∨M(Z/4, 8) ∨M(Z/2, 8) X 18

col(T
0
2 ) = S9∨S9∨M(Z/2, 9)∨S10

X 20
col(T

0
2 ) = M(Z/2, 9) ∨M(Z/2, 10) ∨ S11 X 22

col(T
0
2 ) = S11 ∨M(Z/2, 11) ∨ S12

X 24
col(T

0
2 ) = S12 ∨M(Z/2, 12)

The tail is given by

X 4j+2
col (T 0

2 ) = S2j+1 ∨ S2j+2 for j ≥ 6

X 4j
col(T

0
2 ) = M(Z/2, 2j) for j ≥ 7.

Notice that for j ≥ 26 we have X j
col(T

0
2 ) = X j

col(U2).

The notation X(η2, n) is taken from [2], and stands for an elementary Chang com-
plex. It is an appropriate suspension of RP4/RP1 such that the first non-trivial
homology group is in degree n. Similarly, X(2η,m) is a suspension of RP5/RP2

http://www.maths.dur.ac.uk/~dma0ds/knotjob.html
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such that the first non-trivial homology group is in degree m. Both spaces have
non-trivial Sq2 and are therefore not wedges of Moore spaces.

4.3. The (2, 1)-colored Hopf link. We denote the (2, 1)-colored 0-framed Hopf
link by H2,1. In Figure 6 we give a diagram of the Hopf link in which one of the
components has been replaced by a 0-framed 2-cable containing a Cooper-Krushkal
projector P2. For each quantum degree j this diagram gives rise to a framed flow
category as described in Subsection 3.1. The associated stable homotopy type is
Xcol(H2,1).

Note that the diagram consists of the tensor product of three parts: the projector
P2, and then two tangles each of which is a 2-crossing 2-braid. As before, we can
filter the flow category via the projector, leading to categories Aj for j ≥ 0.

For actual calculations, we replace the projector with a (2r)-tangle, so the resulting
diagram is that of the P (−2, 2, 2r) pretzel link. For a given quantum degree we
can then use the method of [4] to get a flow category built from three tangles. The
lowest quantum degree for which we can get an object is q = −5, for which there
is exactly one object of homological degree −2.

For q ≥ 7, all objects are contained in A1, and the categories A2j−1 and A2j+3

for j ≥ 4 have the following similarity. If α is an object of A2j−1 which also sits
in Ak for k ≥ 1, there is a corresponding object α in A2j+3 also in Ak+2 with
|α| = |α|+ 2. It is clear from the framing formulas in [4] that for the moduli spaces
M(α, β) ∼=M(α, β) as framed manifolds, provided these are at most 1-dimensional.

Therefore the colored Khovanov cohomology of the tail is periodic, and since we
only get non-trivial cohomology groups in three adjacent degrees, we also get pe-
riodicity of the stable homotopy type in the tail. This uses that the 1-dimensional
moduli spaces agree with framing for A2j−1 and A2j+3. Calculation of Khovanov
cohomology and the second Steenrod Square shows that

X−5col (H2,1) = S−2 X−3col (H2,1) = S−2

X−1col (H2,1) = S0 X 1
col(H2,1) = X(2η, 0)

X 3
col(H2,1) = S1 ∨ S2 ∨ S2 X 5

col(H2,1) = X(2η, 2)

P2

Figure 6. This is the 0-framed (2, 1)-cable of the Hopf link in
which the 2-cabled component receives a Cooper-Krushkal projec-
tor.
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The tail is given by

X 4j−1
col (H2,1) = X(η2, 2j − 1) ∨ S2j for j ≥ 2

X 4j+1
col (H2,1) = X(2η, 2j) ∨ S2j+1 for j ≥ 2.

The (2, 1)-colored unlink U2,1 is the disjoint union of the 1-colored 0-framed unknot
U1 and the 2-colored 0-framed unknot U2. The stable homotopy type can therefore
be derived using [7, Thm.1]. More precisely, we get

X j
col(U2,1) = (X 1(U) ∧ X j−1

col (U2)) ∨ (X−1(U) ∧ X j+1
col (U2)).

Since both X 1(U) = S0 = X−1(U), we have that X j
col(U2,1) is a wedge of Moore

spaces for all j. In the tail we have

X 4j−1
col (U2,1) = S2j−1 ∨ S2j ∨M(Z/2, 2j) for j ≥ 2,

X 4j+1
col (U2,1) = M(Z/2, 2j) ∨ S2j+1 ∨ S2j+2 for j ≥ 2.

In particular, we have

Khi,j
col(U2,1) = Khi,j

col(H2,1)

for all j ≥ 7 (a result that for high enough j is not unexpected, and that can be
derived in ways other than brute calculation), but

X j
col(U2,1) 6' X j

col(H2,1).

4.4. A conjecture on the 3-colored unknot. The stable homotopy type of the
0-framed 3-colored unknot X j

col(U3) was partially computed by Willis [11], who
showed that it was not a wedge of Moore spaces and so, in some sense, more
interesting than just the colored Khovanov cohomology.

The 3-colored Khovanov cohomology can easily be calculated from [3, §4.4]. We
summarize this in Table 1.

We observe that the tail is 3-periodic in quantum degrees q = 2j + 1 starting from
j ≥ 2 with a homological shift by 4. Also, by simply looking at these groups we
see that except for quantum degrees q = 6j + 3 with j ≥ 0 the stable homotopy
types are wedges of spheres. In quantum degree q = 3 we have the non-trivial
Steenrod Square coming from the torus knot T4,3 first observed in [9], and which
stably survives by [11].

i = 1 i = 2 i = 3 i = 4

Khi−4,−3
col (U3) Z

Khi−4,−1
col (U3) Z

Khi,1
col(U3) Z

Khi,3
col(U3) Z/2 Z

Khi+4j,6j+5
col (U3), j ≥ 0 Z Z

Khi+4j,6j+1
col (U3), j ≥ 1 Z Z

Khi+4j,6j+3
col (U3), j ≥ 1 Z Z/2 Z

Table 1. The 3-colored Khovanov cohomology of the unknot.
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The quantum degree q = 9 can be realized by the torus knot T7,3, and computer

calculations show a non-trivial Sq2 in degree 5, with Sq2 trivial in degree 6. The
triviality in degree 6 indicates that the tail of the stable homotopy types is not
3-periodic, as the difference in 3-colored Khovanov cohomology in quantum degrees
q = 3 and q = 9 comes from an extra generator in homological degree 0 killing the
cocycle in degree 1, which survives in degree 5 for q = 9.

Computer calculations on T8,3 show a trivial Sq2 in degree 9, although this is not
yet in the stable range for q = 15. Using a suitable diagram with a low number of
tangles we have made computer calculations for T13,3 which give evidence for the
conjecture below.

Conjecture 4.1. For j ≥ 1 we have

X 12j−3
col (U3) = X(η2, 8j − 3) ∨ S8j ,

X 12j+3
col (U3) = S8j+1 ∨X(2η, 8j + 2).

Note that these two spaces are not stably homotopy equivalent, although they are
Spanier-Whitehead dual when appropriately shifted. Following consideration of the
Cooper-Krushkal projector P3 explicitly described in [3] this conjecture is somewhat
surprising. From P3 the 3-periodicity follows immediately, so one may expect the
same periodicity in the tail of the stable homotopy type.

Indeed, if one attempts a spacification based on lifting the Cooper-Krushkal pro-
jector P3 to a framed flow category, one finds that the natural first attempt gives
rise to 1-dimensional moduli spaces the framings of which also follow 3-periodicity.
However, if one then pushes a little further to determine if one can genuinely lift
P3 to a C-Kffc, one runs into ‘ladybug matching’ type problems which cannot all
be solved simultaneously in a natural way, at least to the authors’ eyes.

On the other hand, suppose that D is a tangle diagram in a disc with 6 ordered
boundary points. This gives a cochain complex of free abelian groups 〈DP 〉. Now
consider the ‘reduced’ subcomplex 〈DP 〉red of 〈DP 〉 obtained by restricting to half
the generators of 〈DP 〉. Specifically, restrict to only those generators arising from
a decoration by v− of a chosen boundary point of D. In such a situation one can
lift the cochain complex 〈DP 〉red to a framed flow category refining it. The ladybug
matching problems no longer occur since we have thrown out enough objects of the
flow category to kill them.

Unfortunately, this subcomplex is not really a very natural object to consider. The
graded Euler characteristic is a renormalized version of the 3-colored Reshetikhin-
Turaev invariant as discussed at the start of Section 3, but it is hard to motivate
why one should consider this renormalization. Therefore we do not pursue this
further here.
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