4H Logarithmic convexity

Consider the boundary - initial value problem for the diffusion equation
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with boundary conditions

u(0,t) = u(1,t) =0,

and initial conditions
u(z,0) = up(x).

To show uniqueness for a solution to this problem we suppose there are two solutions
u! and u? which each have data ug(z). Then the difference solution u = u! — u? satisfies
the boundary - initial value problem
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with boundary conditions
u(0,t) = u(1,t) =0,

and initial conditions
u(x,0) = ug(x).

To establish uniqueness one may multiply equation (1) by u and integrate over (0, 1) to
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and then integrating by parts
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and then using the boundary conditions
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and so integrating over time
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Whence v = 0 and uniqueness follows.
What happens if we reverse time? Then, (2) does not hold (the right hand side has a
positive sign). If we let

F(t) = /01 u?(z,t) dr

then we may show log F' is a convex function of time to establish uniqueness. Details follow
as in chapter 1 of Straughan (2017).

This project considers applications of logarithmic convexity in situations where tradi-
tional methods fail, to questions of uniqueness and stability.
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