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1. Introduction and main results

The double zeta values, which are defined for integers r > 2, s > 1, by

ζ(r, s) =
∑

m>n>0

1
mrns

, (1)

are subject to numerous relations. Already Euler found that when the weight
k = r + s is odd the double zeta values can be reduced to products of usual zeta
values. Furthermore, he gave the sum formula

k−1∑
r=2

ζ(r, k − r) = ζ(k) (k > 2). (2)

The aims of the present paper are:
• to give other interesting relations among double zeta values,
• to show that the structure of the Q-vector space of all relations among

double zeta values of weight k is connected in many different ways with the
structure of the space of modular forms Mk of weight k on the full modular
group Γ1 = PSL(2,Z), and

• to introduce and study both transcendental and combinatorial “double
Eisenstein series” which explain the relation between double zeta values
and modular forms and provide new realizations of the space of double
zeta relations.

Double zeta values are a special case of multiple zeta values, defined by sums like
(1) but with longer decreasing sequences of integers, which are known to satisfy a
collection of relations called the double shuffle relations (cf., e.g., [3], [5], [12]). The
specialization of these relations to the double zeta case is given by the following
two sets of easily proved relations (see Section 2):

ζ(r, s) + ζ(s, r) = ζ(r) ζ(s)− ζ(k) (r + s = k; r, s> 2) ,

k−1∑
r=2

[(
r − 1
j − 1

)
+

(
r − 1

k − j − 1

)]
ζ(r, k − r) = ζ(j) ζ(k − j) (2 6 j 6 k

2
) .

(3)

We wish to study the relations which can be deduced from (3). Since we want to do
this algebraically, it is useful to work, not with the double zeta values themselves,
which for all we know may satisfy other relations than (3) (it is not even known that
any ζ(r, s)/πr+s is irrational), but with the formal double zeta space Dk, generated
by formal symbols Zr,s, Pr,s and Zk subject to the relations (3), with Zr,s, Pr,s and
Zk taking the role of ζ(r, s), ζ(r)ζ(s) and ζ(k), respectively, and where r and s are
allowed to assume the value 1.

In Dk we can prove a number of explicit relations. In particular, Euler’s result
that all Zr,s are rational linear combinations of the Pr,s when the weight k is odd
holds in the formal double zeta space Dk, so that we can (and usually will) assume
that k is even. Similarly, the formal analogue of Euler’s sum formula (2) holds in
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Dk, and in fact (for k even) has a refinement giving the sums of the even- and odd-
argument double zeta values of weight k separately. Surprisingly, they are always
in the ratio 3:1, independently of k :

Theorem 1. For even k > 2, one has
k−1∑
r=2

r even

Zr,k−r =
3
4

Zk ,

k−1∑
r=2

r odd

Zr,k−r =
1
4

Zk . (4)

As an example of a more complicated identity, we show that, for m,n > 1 odd,
m + n = k > 2,

2
n−1∑
ν=0

(−m

ν

)
Bν Zn−ν,m+ν =

∑

r+s=k

(−1)s−1λm,n(r, s)Pr,s , (5)

where Bν is the νth Bernoulli number and

λm,n(r, s) =
n−1∑
ν=0

(
m + ν − 1

ν

)(
r − 1

n− ν − 1

)
Bν (6)

(which despite appearances is symmetric in r and s). Since Bν = 0 for all odd ν
except ν = 1, this implies that any Zev,ev can be written in terms of Zod,od’s and
Pr,s’s. But in fact only Zod,od’s are required:

Theorem 2. Let k > 2 be even. Then the Zr,k−r with 0 < r < k odd are a basis
of Dk. There are explicit representations of the elements of various bases of Dk as
linear combinations of the Zod,od’s.

Theorem 2 will be proved in Section 4 by rewriting the defining relations (3)
of Dk algebraically in terms of the action of the group ring Z[Γ1] on a space of
polynomials. This leads to both a simple proof of the first statement and to several
concrete versions of the second. One of these, a variant of (5), is

Zm+1,k−m−1 +
1
2
Zk = − 2

m

∑

r+s=k
r, s > 1 odd

λ0
m,k−m(r, s)

(
Zr,s +

1
2
Zk

)
(7)

for m = 1, 3, . . . , k − 3, where

λ0
m,n(r, s) = λm,n(r, s)−

(
s− 1
m− 1

)
Bs−m =

r−2∑

`=0

(
k − 2− `

m− 1

)(
r − 1

`

)
Bn−`−1

(with Bν = 0 for ν < 0). Since Zk equals 4
∑

r>1 odd Zr,k−r by Theorem 1, this
expresses all even-argument double zeta values in terms of odd-argument ones.

Theorem 2 is false for double zeta values. Instead we have the following result,
which gives the first connection with modular forms:

Theorem 3. (Rough statement.) The values ζ(od, od) of weight k satisfy at least
dim Sk linearly independent relations, where Sk denotes the space of cusp forms of
weight k on Γ1.

Example. For k = 12 and k = 16, the first weights for which there are non-zero
cusp forms on Γ1, we have the identities

28 ζ(9, 3) + 150 ζ(7, 5) + 168 ζ(5, 7) =
5197
691

ζ(12) (8)

66 ζ(13, 3) + 375 ζ(11, 5) + 686 ζ(9, 7) + 675 ζ(7, 9) + 396 ζ(5, 11) =
78967
3617

ζ(16) ,
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which can be written in terms only of ζ(od, od)’s using Theorem 1. Conjecturally
(and numerically), these are the only relations over Q among odd-argument double
zeta values up to weight 6 16, and more generally we expect that there are no
further relations among the ζ(od, od) except the ones predicted by Theorem 3.

Although Theorem 3 holds for the “true” double zeta world and is false in the
formal one, it is in fact a consequence of a result in the formal space. In fact, it
follows from two different—though complementary—results. Both of them involve
period polynomials. We recall the definition of these polynomials. (A more detailed
review will be given in Section 5.) For each even k we consider the space Vk of
homogeneous polynomials of degree k−2 in two variables and the subspace Wk ⊂ Vk

of polynomials satisfying the relations P (X, Y )+P (−Y,X) = 0, P (X, Y )+P (X−
Y,X) + P (Y, Y − X) = 0. It splits as the direct sum of subspaces W+

k and W−
k

of polynomials which are symmetric and antisymmetric with respect to X ↔ Y ,
with the former being odd and the latter even with respect to X 7→ −X. The
Eichler-Shimura-Manin theory tells us that there are canonical isomorphisms over
C between Sk and W+

k and between Mk and W−
k . The full statement of Theorem 3,

given in Section 5, associates to any polynomial in W−
k , in an injective way, an

explicit relation among the numbers Zod,od and Pev,ev (and Zk). For the above
example (8), for instance, the polynomial X2Y 2(X2 − Y 2)3 in W−

12 leads to the
relation

28 Z9,3 + 150 Z7,5 + 168 Z5,7 = 28P4,8 +
95
3

P6,6 − 167
3

Z12 , (9)

which by Euler’s theorem agrees with (8) modulo Qπ12, and similarly the complete
version of the relation given above between odd double zeta values in weight 16 is

66 Z13,3 +375 Z11,5 + 686 Z9,7 + 675 Z7,9 + 396 Z5,11

= 66P4,12 + 185P6,10 +
364
3

P8,8 − 1081
3

Z16 .

The other result about formal double zeta values which implies Theorem 3 in-
volves the space W+

k rather than W−
k . More precisely, it involves a certain 1-

dimensional extension Ŵ+
k ⊂ Vk + C · (Xk−1Y −1 + X−1Y k−1

)
(see Section 6 for

details) which is isomorphic to Mk rather than Sk :

Theorem 4. If {Zr,s, Pr,s, Zk} is a collection of numbers satisfying the double
shuffle relations in weight k, then the polynomial

∑

r+s=k
r, s even

Pr,s Xr−1Y s−1 − Zk

2
(
Xk−1Y −1 + X−1Y k−1

)

belongs to Ŵ+
k (and to W+

k if Zk = 0). Every element of Ŵ+
k arises in this way.

From one point of view, this says that the subspace Pev
k of Dk spanned by the

Pr,s with r and s even is canonically dual to Ŵ+
k . From another, it says that there

are k/6 + O(1) relations among the Pev,ev, these relations being the same as the
relations satisfied by the coefficients of period polynomials in W+

k . In fact, we will
prove Theorem 4 in this form. It is this point of view which leads to the most
direct connection with modular forms, because it is known (as a consequence of the
so-called Rankin-Selberg or unfolding method) that the coefficients of (extended)
symmetric period polynomials satisfy the same linear relations as the products
GrGs ∈ Mk (r + s = k), where Gr denotes the Eisenstein series of weight r on
PSL2(Z). (When r or s is equal to 2, the product G2Gk−2 must be modified
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slightly by adding an appropriate multiple of G′k−2 to compensate for the non-
modularity of G2.) Thus the proof of Theorem 4, combined with the known facts
that the products GrGs span Mk and, after dividing by πk, have rational Fourier
coefficients, also leads to the following, more intuitive, statement:

Theorem 5. The space Pev
k is canonically isomorphic to MQ

k , by a map which
sends Pr,s to (2πi)−kGrGs (plus a multiple of G′k−2 if r or s = 2) and Zk to
(2πi)−kGk.

Theorem 5 tells us that there is a realization of the symmetric (P-) part of the
double shuffle relations given by products of Eisenstein series. This implies by linear
algebra that there must be a realization (and in fact, infinitely many realizations)
of the full space Dk having these products as its symmetric part. It is then natural
to ask whether there is a natural choice of such a realization. In the last part of
the paper we show, following an idea already adumbrated in [15], that there are
in fact two such choices. More precisely, we show that one can extend the map
Pev

k → Mk in two different ways to a map from Dk to a larger space of functions,
by finding “double Eisenstein series” which are related to products of Eisenstein
series in exactly the same way as double zeta values are related to products of
Riemann zeta values. One of these ways is transcendental, in terms of holomorphic
functions in the upper half plane, and the other combinatorial, in terms of formal
power series in q with rational coefficients. Both ways are interesting, and they
also turn out to be related: the Fourier expansion of the transcendental double
Eisenstein series splits up into three terms, the most complicated of which is (a
multiple of) the combinatorial double Eisenstein series. We now explain this in
more detail.

The transcendental version of the double Eisenstein series Gr,s(τ) is defined, in
complete analogy with (1), as

Gr,s(τ) =
∑

m, n∈Zτ+Z
mÂnÂ 0

1
mrns

(τ ∈ H = upper half-plane),

where n Â 0 means n = nτ + b with n > 0 or n = 0, b > 0 and m Â n means
m−n Â 0. The series converges absolutely for r > 3, s > 2, and also makes sense for
s = 1 if the sum over n (for m fixed) is interpreted as a Cauchy principal value. The
same combinatorial proof that establishes (3) shows that, at least in the convergent
cases, the corresponding equations still hold with ζ(r, s) replaced by Gr,s(τ) and
with (each) ζ(k) replaced by the function

Gk(τ) =
∑

m∈Zτ+Z
mÂ 0

1
mk

(k > 2)

(again to be interpreted as a Cauchy principal value if k = 2), which equals the
previously mentioned Eisenstein series if k is even. In other words, at least for the
cases of absolute convergence, we have a realization of the double shuffle relations
on the space of holomorphic functions in H given by

Zr,s 7→ Gr,s(τ), Pr,s 7→ Gr(τ)Gs(τ), Zk 7→ Gk(τ) .

The combinatorial/arithmetic aspect emerges when we study the Fourier ex-
pansions of the single and double Eisenstein series. The former are given by the
well-known formula

(2πi)−kGk(τ) = ζ̃(k) + gk(q) , (10)
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where q = e2πiτ , ζ̃(k) = (2πi)−kζ(k), and

gk(q) =
(−1)k

(k − 1)!

∑
u,n>0

uk−1 qun (k > 2) . (11)

The corresponding result for Gr,s(τ) is given by

Theorem 6. The Fourier expansion of Gr,s(τ) for r > 3, s > 2 is given by

(2πi)−r−s Gr,s(τ) = ζ̃(r, s) +
∑

h+p=r+s
h, p>1

Cp
r,s gh(q) ζ̃(p) + gr,s(q) (12)

with q = e2πiτ , ζ̃(r, s) = (2πi)−r−sζ(r, s),

Cp
r,s = δs,p + (−1)s

(
p− 1
s− 1

)
+ (−1)p−r

(
p− 1
r − 1

)
∈ Z (13)

and

gr,s(q) =
(−1)r+s

(r − 1)!(s− 1)!

∑
m>n>0
u, v>0

ur−1vs−1qum+vn ∈ Q[[q]] . (14)

We can reinterpret this theorem in the light of the following considerations. If
k is even, the case when Gk(τ) is modular (or quasi-modular if k = 2), then by
Euler’s theorem the number ζ̃(k) occurring on the right-hand side of (10) is the
rational number −Bk/2k! , which we denote by βk. Hence this right-hand side can
be replaced by the expression

Zk(q) = gk(q) + βk (k > 2) , (15)

which we call the combinatorial Eisenstein series because it is purely combinato-
rially defined as an element of Q[[q]] and is proportional to the usual Eisenstein
series (and hence modular) when k is even and > 4. In the same way, we define

βr,s(q) =
∑

h+p=r+s

Cp
r,s βp gh(q) (r, s > 2) (16)

and set
Zr,s(q) = gr,s(q) + βr,s(q) (r > 3, s> 2) , (17)

the combinatorial double Eisenstein series. Then the right-hand side of (12) can
be rewritten as

ζ̃(r, s) +
∑

h+p=r+s
h, p>1, p odd

Cp
r,s ζ̃(p) gh(q) + Zr,s(q) . (18)

The three pieces in (18) lie in three non-intersecting Q-subspaces of C[[q]] : the first
term is in C (more precisely, in R or iR depending on the parity of r + s), the
second term in iR[[q]]0, and the third in Q[[q]]0, where A[[q]]0 = qA[[q]] denotes
the space of power series without constant term with coefficients in a vector space
A. The first term is our familiar double zeta value realization of the double shuffle
relations. The second also fulfils the double shuffle relations, independently of the
arithmetic natures of ζ̃(p) and gh(q), because by a simple result which will be
proved in Section 2 (Corollary 2) the numbers Cp

r,s for any odd value of p less than
r + s already satisfy these relations. The following theorem, which we will prove in
Section 7, says that the combinatorial double Eisenstein series, suitably extended
to the missing cases r = 1, 2 and s = 1, also satisfies the double shuffle relations.

Theorem 7. (Rough statement.) There is a realization of the double shuffle re-
lations in Q[[q]]0 which in the region corresponding to absolute convergence agrees
with (17) and (15) and sends Pr,s to Zr(q)Zs(q)− βrβs for r, s > 2.
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If we now use (18) with the extended definition of Zr,s(q) to define the double
Eisenstein series Gr,s(τ) in the previously undefined cases r = 1, r = 2, and s = 1,
then we find that there is also a realization {Zr,s, Pr,s, Zk} of the double shuffle
relations in the space of holomorphic functions in the upper half-plane which maps
Zr,s to Gr,s(τ) for r > 3, s> 2, Pr,s to Gr(τ)Gs(τ) for r, s > 2 and maps Zk to
Gk(τ) for all k > 2.

Remark. Some of the ideas developed in this paper were already mentioned, in a
very preliminary form, in [15] and [16]. The discovery that there are unexpected
relations among ζ(od, od)’s starting in weight 12 originated with a question posed
by T. Terasoma about the linear independence, modulo π12, of ζ(r, s) with r, s > 1
odd, r + s = 12. We also mention that there is a related phenomenon for the
“stable derivation algebra” of Y. Ihara [4] inside the Lie algebra of derivations
of the free Lie algebra on two generators. The recent paper of L. Schneps [14]
should have a close connection to our present work. Also related are several results
of A.B. Goncharov, who defined a coproduct structure on (formal) multiple zeta
values in [6] and described relations between double zeta values and the cohomology
of PSL2(Z) in [5].

Acknowledgements. H. G. and M. K. gratefully acknowledge financial support
by the Collège de France (Paris) and the Max-Planck-Institut (Bonn). M. K. was
partially supported by the Ministry of Education, Science, Sports and Culture,
Grant-in-Aid for Scientific Research (B), 15340014, 2003–2005.

2. The formal double zeta space

We begin by discussing the double shuffle relations (3). The first follows from
the obvious decomposition of lattice points in N×N into the three disjoint subsets
{(m,n) | m > n}, {(m,n) | m < n} and {(m,n) | m = n}, giving the identity

( ∑
m>n

+
∑
m<n

+
∑
m=n

) 1
mrns

=
∑

m > 1

1
mr

∑

n > 1

1
ns

,

which is precisely the first equation in (3). For the second, we can use the partial
fraction expansion

1
minj

=
∑

r+s=k

[ (
r−1
i−1

)

(m + n)rns
+

(
r−1
j−1

)

(m + n)rms

]
(i + j = k) . (19)

(Proof: Compute the poles of both sides as rational functions of n, with m fixed.)

In the formal setting, it is convenient to extend the set of generators and relations
in (3) slightly by including the case r = 1 (in the case of double zeta values, this
would give a non-convergent series): we introduce formal variables Zr,s, Pr,s and
Zk and impose the relations

Zr,s + Zs,r = Pr,s − Zk (r + s = k) ,

∑

r+s=k

[(
r − 1
i− 1

)
+

(
r − 1
j − 1

)]
Zr,s = Pi,j (i + j = k) .

(20)

(From now on, whenever we write r + s = k or i + j = k without comment, it is
assumed that the variables are integers > 1.)

The formal double zeta space is now defined as the Q-vector space

Dk =
{Q-linear combinations of formal symbols Zr,s, Pr,s, Zk}〈

relations (20)
〉 .
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Alternatively, since Eqs. (20) express the Pi,j in terms of the Zr,s, we can define
Dk as

Dk =
{Q-linear combinations of formal symbols Zr,s, Zk}〈

relation (22)
〉 , (21)

where relation (22) is given by taking the difference of Eqs. (20):
∑

r+s=k

[(
r − 1
i− 1

)
+

(
r − 1
j − 1

)]
Zr,s = Zi,j + Zj,i + Zk (i + j = k) . (22)

Of course, since both sides of (22) are symmetric in i and j, it is enough to take
(22) for i 6 j. We thus have (for k even) k generators and k/2 relations, so

dimDk > k

2
(k even) . (23)

(We will see below that in fact equality holds.) Finally, we define the A-valued
points Dk(A) of Dk for any Q-vector space A by

Dk(A) = HomQ(Dk, A) = {(Zr,s, Zk)r+s=k ∈ Ak , satisfying (22)} ;

this can also be represented as the set of (2k − 1)-tuples (Zr,s, Pr,s, Zk) satisfying
(20), and we will use both forms. An element of Dk(A) will be called a realization
of the double zeta space in A. For example, with A = R and any κ ∈ R we have
an R-realization of Dk (for k > 2) given by

Zr,s 7→
{

ζ(r, s), if r > 1,
κ, if r = 1,

Pr,s 7→
{

ζ(r)ζ(s), if r, s > 1,

κ + ζ(k − 1, 1) + ζ(k), if r = 1 or s = 1,

Zk 7→ ζ(k) .

(24)

Here we could also treat κ as a variable and consider this as a realization in R+Q ·κ
or R[κ].

We now introduce two convenient ways to work with Dk. The first is by gen-
erating functions. Let (Zr,s, Pr,s, Zk)r+s=k ∈ Dk(A) be a realization of Dk in A.
Then we can see easily that the identities (20) are equivalent to the relations

Zk(X, Y ) + Zk(Y,X) = Pk(X,Y )− Zk · Xk−1 − Y k−1

X − Y
,

Zk(X + Y, Y ) + Zk(X + Y,X) = Pk(X,Y )
(25)

for the generating functions

Zk(X,Y ) =
∑

r+s=k

Zr,sX
r−1Y s−1 , Pk(X,Y ) =

∑

r+s=k

Pr,sX
r−1Y s−1

of the Zr,s and Pr,s, respectively, in A[X, Y ]. (Equations (20) just express the
equality of the coefficient of Xr−1Y s−1 in (25).) Similarly, (22) is equivalent to the
single relation

Zk(X + Y, Y ) + Zk(X + Y, X)− Zk(X,Y )− Zk(Y, X)

= Zk · Xk−1 − Y k−1

X − Y

(26)

for the polynomial Zk.
As an example of the use of these equations, we will prove the first two identities

mentioned in the Introduction, namely the fact that all Zr,s’s are combinations
of Pr,s’s and of Zk if k is odd, and the separate even and odd sum formulas as
given in Theorem 1 if k is even. For the first, we can work with (20) with the
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right-hand sides both replaced by 0 (because we want to work modulo all Pr,s’s
and Zk). Then (25) become simply Zk(X, Y ) + Zk(Y, X) = 0 and Zk(X + Y, Y ) +
Zk(X + Y,X) = 0. Rewriting the latter equation as Zk(X, Y ) + Zk(X,X − Y ) = 0,
we see that Zk is anti-invariant under the two involutions ε : (X,Y ) 7→ (Y,X)
and τ : (X,Y ) 7→ (X, X − Y ). Since (ετ)3 maps (X,Y ) to (−X,−Y ) and Zk is
homogeneous of degree k−2, these two relations imply Zk(X,Y ) = (−1)kZk(X,Y ),
so Zk = 0 if k is odd, proving the first identity. (One can refine this proof to give
an explicit formula for Zk(X, Y ) as A(X,Y )−A(X,X − Y ) + A(Y, Y −X), where
A(X, Y ) =

∑
2|r Pr,sX

r−1Y s−1 − Zk

2
Xk−1−Y k−1

X−Y .) For Theorem 1, it suffices to
apply (26) with (X,Y ) = (1, 0) and (1,−1). This gives (for even k)

Zk(1, 1)− Zk(0, 1) = Zk , Zk(1,−1)− Zk(0, 1) = −1
2
Zk ,

and Theorem 1 follows by adding and subtracting the equations.
We remark that it is occasionally convenient to work with the infinite product

D =
∏

k Dk consisting of collections of numbers
{{Zr,s}r,s > 1, {Pr,s}r,s > 1, {Zk}k > 1

}
satisfying (20) for all k. Then the corresponding generating functions Z(X,Y ),
P(X,Y ) and z(T ) =

∑
k > 1 ZkT k−1 satisfy

Z(X,Y ) + Z(Y, X) = P(X, Y ) − z(X)− z(Y )
X − Y

,

Z(X + Y, Y ) + Z(X + Y, Y ) = P(X, Y ) ,
(27)

and similarly for (26). For example, the reader may want to verify that the function
Z(X, Y )−Z(0, Y ) is equal to

∑
m>n>0 X/m(m−X)(n−Y ) for the realization (24)

and to use this to verify the k-less version of (26) directly for this generating
function. (The calculation—which requires some work—gives the result only up to
an additive constant, corresponding to the fact that (24) holds only for k > 2.)

The following proposition, which will be used in Section 7, gives some easy
solutions of relations (26) (with Zk = 0).

Proposition 1. Let A(X, Y ) ∈ Vk be a polynomial which is even with respect to Y .
Then the function

Zk(X, Y ) = A(X, Y )−A(X, X − Y ) + A(Y, Y −X) (28)

gives a realization of Equation (26) with Zk = 0.

Proof. One checks by direct calculation that if Zk(X, Y ) is defined by (28) then
both Zk(X, Y )+Zk(Y, X) and Zk(X+Y, Y )+Zk(X+Y, X) equal A(X, Y )+A(Y, X).
Note that the assertion of the proposition also holds if A(X,Y ) = A(Y,−X) or if
A is anti-symmetric (with Pk ≡ 0 in the latter case). ¤
Corollary. Let 0 < p < k be two integers with p odd. Then the numbers Zr,s = Cp

r,s

(r + s = k) with Cp
r,s defined by Equation (13) satisfy (22) with Zk = 0.

Proof. This is simply Proposition 2 applied to A(X, Y ) = Xk−p−1Y p−1 . The
corresponding numbers Pr,s in (20) are equal to δr,p + δs,p . ¤

The second way of working with Dk is by studying the relations among the Zr,s

(or Zr,s, Pr,s and Zk). The following result gives a useful description of them. We
introduce the notation

Vk =
〈
Xr−1Y s−1

∣∣ r + s = k
〉
, V ∗

k =
〈 1
mrns

∣∣ r + s = k
〉
.

We define an isomorphism Vk → V ∗
k by

F (X,Y ) =
∑

r+s=k

(
k − 2
r − 1

)
fr,sX

r−1Y s−1 7→ F ∗(m,n) =
∑

r+s=k

fr,s

mrns
.
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Then we have the following

Lemma. Let F, G, H ∈ Vk and F ∗, G∗, H∗ the corresponding elements of V ∗
k .

Then the following two statements are equivalent:
(i) H∗(m,n) = F ∗(m + n, n) + G∗(m,m + n),
(ii) F (X, Y ) = H(X,X + Y ) , G(X, Y ) = H(X + Y, Y ).

Proof. Equation (19) implies that any element h ∈ V ∗
k can be decomposed as

f(m + n, n) + g(m,m + n) for some f and g in V ∗
k , and this decomposition is

obviously unique since f(1, x) has poles only at x = 0 and g(1−x, 1) only at x = 1.
If f = F ∗ etc., then an inspection of (19) shows that the coefficients fr,s and gr,s

of F and G are related to the coefficients hr,s of H by

fr,s =
∑

i+j=k

(
r − 1
i− 1

)
hi,j , gr,s =

∑

i+j=k

(
s− 1
j − 1

)
hi,j .

Using the binomial coefficient identity
(
k−2
r−1

)(
r−1
i−1

)
=

(
k−2
j−1

)(
j−1
s−1

)
(r + s = i+ j = k),

we find that these formulas are equivalent to (ii). ¤

Proposition 2. Let ar,s and λ be rational numbers. Then the following three
statements are equivalent:

(i) The relation ∑

r+s=k

ar,sZr,s = λZk (29)

holds in Dk.
(ii) The generating function

A(X, Y ) =
∑

r+s=k

(
k − 2
r − 1

)
ar,s Xr−1Y s−1 ∈ Vk (30)

can be written as H(X,X+Y )−H(X, Y ) for some symmetric homogeneous
polynomial H ∈ Q[X,Y ] of degree k − 2, and

λ =
k − 1

2

∫ 1

0

H(t, 1− t)dt . (31)

(iii) The generating function

A∗(m, n) =
∑

r+s=k

ar,s

mrns
∈ V ∗

k (32)

can be written as f(m, n) − f(m + n,m) − f(m + n, n) for some f ∈ V ∗
k ,

and

λ =
f(1, 1)−A∗(1, 1)

2
= f(2, 1) . (33)

Proof. If we choose the symmetric polynomial H(X, Y ) = Xm−1Y n−1+Xn−1Y m−1

and use the binomial theorem to compute the ar,s in (30) and the beta integral to
compute λ = (m− 1)!(n− 1)!/(k − 2)!, then we find that (29) reduces to (22).
Since these H’s span the space of symmetric polynomials in Vk, this proves the
equivalence of the first two statements.

The equivalence of (ii) and (iii) follows by applying the lemma with F = A+H,
G(X,Y ) = F (Y,X) and f = F ∗, g(m,n) = f(n,m). To check that the values of λ

in (ii) and (iii) agree, we again use the beta integral
∫ 1

0
tr−1(1−t)s−1dt = (r−1)!(s−1)!

(k−1)!

to get (k − 1)
∫ 1

0
H(t, 1− t)dt =

∑
hr,s = H∗(1, 1). ¤

Remark. We can also write (31) as λ = 1
2

∑
hr,s, where H =

∑(
k−2
r−1

)
hr,sX

r−1Y s−1.
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The two approaches outlined above are equivalent by a duality which we will
discuss below, but it is very convenient to have both. As an example of the use of
the proposition, we give a second quick proof of Theorem 1 from the Introduction.
Taking H = Xk−2 + Y k−2 in the proposition gives ar,s = 1 (r 6= 1), a1,k−1 = 0,
λ = 1, while taking H = (X −Y )k−2 gives ar,s = (−1)r (r 6= 1), a1,k−1 = 0, λ = 1

2 .
Again adding and subtracting the two relations thus obtained gives (4).

As a second example, we observe that Eq. (22) contains no Z1,k−1, so that Z1,k−1

is a free variable (as we already saw in the realization (24)). Thus a1,k−1 must
vanish in any relation of the form (29), and we can also see this in the proposition
by setting X = 0.

3. Using the action of PGL2(Z)

We have already repeatedly used the space Vk of homogeneous polynomials of
degree k−2 in X and Y . We now make this approach more systematic by exploiting
two further structures on Vk: the action of the group Γ = PGL2(Z) and the Γ-
invariant scalar product. The former is defined in the obvious way by (F |γ)(X, Y ) =

F (aX + bY, cX + dY ) for γ =
(

a b
c d

)
(we suppose throughout that k is even) and

the latter by
〈
Xr−1Y s−1, Xm−1Y n−1

〉
=

(−1)r

(
k−2
m−1

)δ(r,s),(n,m) (34)

for r, s,m, n > 1, r + s = m + n = k. The invariance property 〈F |γ, G|γ〉 = 〈F, G〉
is easily checked. We extend the action of Γ on Vk to an action of the group
ring R = Z[Γ] by linearity. Then 〈F |ξ,G〉 = 〈F,G|ξ∗〉, where ξ 7→ ξ∗ is the anti-
automorphism of R induced by γ 7→ γ−1. We occasionally work with the model of
Vk consisting of polynomials f(x) of one variable of degree 6 k−2, corresponding to
the homogeneous model via f(x) = F (x, 1), F (X, Y ) = Y k−2f(X/Y ). The group
operation in this version takes the form (f |γ)(x) = (cx+d)k−2f((ax+ b)/(cx+d)).

The group Γ contains distinguished elements. First there are the commuting
involutions

ε =
(

0 1
1 0

)
, δ =

(−1 0
0 1

)
,

sending F (X, Y ) to F (Y, X) and F (−X, Y ), respectively. The (±1)-eigenspaces
of ε will be denoted by V ±

k and the (±1)-eigenspaces of δ by V ev
k and V od

k ; we
also write V +,ev

k for the space of even symmetric polynomials and similarly for the
other three double eigenspaces of dimension k/4 + O(1). In PSL2(Z), we have the
elements

S =
(

0 −1
1 0

)
, U =

(
1 −1
1 0

)
, T = US =

(
1 1
0 1

)
, T ′ = U2S =

(
1 0
1 1

)
,

with the relations S2 = U3 = 1, S = εδ and

εUε = U2, εTε = T ′ , δT δ = T−1 , STS = T ′−1
.

We will also consider various special elements of the group ring Z[Γ]. First, we
have the projections

π+ =
1
2
(ε + 1), πod =

1
2
(1− δ), π+,od = π+πod = πodπ+ , etc.

onto V +, V od, V +,od etc. Next, we have the element

∆ = (T − 1)(ε + 1)

which by (26) essentially characterizes Dk(Q): the codimension 1 subspace D0
k(Q)

of realizations with Zk = 0 is identified precisely with Ker(∆), and the full space
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Dk(Q) corresponds to the space of Z ∈ Vk such that Z|∆ ∈ Q · Xk−1−Y k−1

X−Y . We can
now interpret part of Proposition 2

(
the equivalence of (i) and (ii) when Zk = 0

)
as the dual statement of this with respect to the non-degenerate scalar product
(34): a relation (29) with Zk = 0 is reformulated equivalently as 〈A|S,Z〉 = 0
(compare equations (29) and (30); the extra “S” comes from the interchange of r
and s and the sign (−1)r in (34)). So this holds for all Z ∈ Ker(∆) if and only if
A|S ∈ Im(∆∗) = V +

k |(T−1−1), i.e., if and only if A ∈ V +
k |(T−1−1)S = V +

k |(T ′−1)
(for the last step, use V +

k = V +
k |S and ST−1S = T ′), and this is just (ii) of

Proposition 2. Finally, we have the element

Λ = 1− εU + U2 ∈ Z[Γ] . (35)

It is related to the above elements by

Λ∆ = −4 πod π+ ∈ Z[Γ] , (36)

as we see by the calculation

Λ (T − 1) = (1− εU + U2)(US − 1)

=
[
1− U(ε− 1)

]
S + U2(ε− 1) − 1

= δ − 1 + (δ − US + U2)(ε− 1) ,

followed by multiplying both sides on the right by ε + 1. It follows from (36) that
for any polynomial A ∈ Vk which is even or antisymmetric or S-invariant, the
coefficients of A|Λ give a realization of Dk with Zk = 0 by taking Zk = A|Λ and
Pk = 2π+(A). This is equivalent to Proposition 2 and the remark in its proof.

As an example for how to work with the structures just introduced, we prove
Eq. (5) from the Introduction. To do this, we define

Bm,n(X, Y ) =
(

k − 2
m− 1

)
Y k−2Bn−1(X/Y ) (m + n = k), (37)

where Bν(x) =
∑ν

µ=0

(
ν
µ

)
Bµ xν−µ denotes the νth Bernoulli polynomial. The num-

bers λm,n(r, s) defined in (6) are the coefficients of the generating series

∑

r+s=k

(
k − 2
r − 1

)
λm,n(r, s)Xr−1Y s−1 = Bm,n(X,X + Y ) . (38)

The symmetry λm,n(r, s) = (−1)m−1λm,n(s, r) mentioned for m odd in the Intro-
duction follows from this formula together with the standard property Bν(1−x) =
(−1)νBν(x) of Bernoulli polynomials (cf., e.g., [2]). Set ar,s = (−1)s−1

[(
s−1
m−1

)
Bs−m−

λm,n(r, s)
]
. Then we see that the polynomial (30) has the form H(X, X + Y ) −

H(X, Y ) with H(X,Y ) = Bm,n(X, X−Y ). The symmetry property just mentioned
implies that H(X,Y ) = H(Y, X), so we can apply Proposition 2 to get (29) with
λ = 1

2

∑
(−1)s−1λm,n(r, s). This is (5).

4. Representing even double zeta values in terms of odd ones

In this section, we prove Theorem 2. Since we already know that dimDk > k/2
(cf. (23)), we have only to show that any Zev,ev is a linear combination of Zod,od’s.
This means that any collection of numbers {ar,s | r + s = k; r, s even} can be com-
pleted to a collection {ar,s (r + s = k), λ} satisfying (29) in Dk. By Proposition 2,
this is equivalent to showing that any polynomial F ∈ V od

k is the odd part of a
polynomial of the form H|(T − 1) with H ∈ V +

k (since then F |ε is the odd part of
H|(T ′ − 1)). Thus the result to be proved is:



12 HERBERT GANGL, MASANOBU KANEKO, AND DON ZAGIER

Proposition 3. The space Vk (k > 2 even) has the decomposition

V ev
k + V +

k |(T − 1) = Vk .

Proof. Here it is more convenient to use the 1-variable model. Let V Tδ
k ⊂ Vk be

the fixed point set of the involution g(x) 7→ g(1 − x). Then we have the following
commutative diagram with the top row exact:

0 −→ Q · 1 −→ V Tδ
k

T−1−−−−→ V od
k −→ 0

y1+ε−εU

xπod

V +
k

T−1−−−−→ V +
k |(T − 1)

To see the exactness, we first observe that if g ∈ V Tδ
k then the polynomial f =

g|(T − 1) is odd because, from TδT = δ and g|Tδ = g, we deduce g|T = g|δ.
Conversely, an odd polynomial f(x) ∈ Vk has degree 6 k − 3 (since k is even) and
hence can be written as g(x+1)−g(x) for some g ∈ Vk. But then g|(Tδ−1)(1−T ) =
g|(T − 1)(1 + δ) = f |(1 + δ) = 0 , so g|(Tδ− 1) is a constant and hence zero since it
vanishes at x = 1/2. (One can also argue that the map V Tδ

k /Q · 1 T−1−→ V od
k which

is obviously injective, must be an isomorphism because both sides have dimension
k/2−1.) It is clear that the kernel of V Tδ

k
T−1−→V od

k isQ·1. Next, we have to show that
h = g|(1 + ε− εU) is symmetric for g ∈ V Tδ

k . This follows from εUε = U2 = TSU
and thus g|εUε = g|TSU = g|δSU = g|εU . The commutativity of the square now
follows from the calculation

(ε− εU)(T − 1) = (εT − 1)ε(1 + δ) + (1− Tδ)ε(1− U)T ,

which implies that (h− g)|(T − 1) = g|(ε− εU)(T − 1) = g|(εT − 1)ε(1 + δ) which
vanishes under |(1− δ).

It follows from the diagram that the map πod : V +
k |(T − 1) → V od

k is surjective
which is equivalent to the statement of the theorem. ¤

The proposition and its proof give us an explicit way to realize the asserted
decomposition by starting with any basis of V Tδ

k . To obtain a relation (29) with
prescribed values ar,s = fr,s for r and s even, we write the generating function f |ε ∈
V od

k as g|(T−1) with g ∈ V Tδ
k , then A = g|(1+ε−εU)(T−1)ε = g|(1+ε−εU)(T ′−1)

has odd part f and belongs to V +
k |(T ′ − 1), so that Proposition 2 applies. To

obtain explicit relations of this decomposition, we can choose any basis of the
space of functions symmetric about x = 1/2. In particular, from the three bases
g(x) = (2x− 1)k−2−2ν , (x2−x)ν and B2ν(x), where 0 6 ν 6 (k− 2)/2, we get three
explicit collections of relations. For the first one, suitably normalized, we find that
the coefficients of the associated relation (29) are

ar,s =





2s−1

(
r − 1
2ν

)
(r, s even)

−2r−1

(
s− 1
2ν

)
+

∑

α+β=2ν

(−1)α

(
r − 1

α

)(
s− 1

β

)
(r, s odd),

λ =
k − 1

2

(
k − 2
2ν

)[ ∫ 1

0

(2− 3t)k−2ν−2t2νdt− 1
2(2ν + 1)

]
,
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Table 1: Relations among double zeta values of weight 12 coming from Proposition 4. Each row

of the table gives a relation among the (formal) double zeta values displayed in the top line. The

Z1,11 column has been omitted, since all of its entries would be zero.

g(x) Z2,10 Z4,8 Z6,6 Z8,4 Z10,2 Z12 Z3,9 Z5,7 Z7,5 Z9,3 Z11,1

1
2

(
10
10

)
(2x− 1)10 512 128 32 8 2 − 1355

4 −3 −15 −63 −255 −1023
1
2

(
10
8

)
(2x− 1)8 0 384 320 168 72 − 21

4 −99 −243 −387 −243 45
1
2

(
10
6

)
(2x− 1)6 0 0 160 280 252 129

2 −294 −238 −62 −14 210
1
2

(
10
4

)
(2x− 1)4 0 0 0 56 168 51

2 −126 −14 2 −14 210
1
2

(
10
2

)
(2x− 1)2 0 0 0 0 18 − 7

4 9 −3 −3 13 45
(
10
10

)
(x2 − x)5 1 1

6
1

126 0 0 − 331
504 0 0 − 1

21 − 4
9 −2(

10
8

)
(x2 − x)4 0 3 10

7 0 0 − 1
4 0 0 − 15

7 −2 0(
10
6

)
(x2 − x)3 0 0 5 7

2 0 1
2 0 −14 −10 0 0(

10
4

)
(x2 − x)2 0 0 0 7 0 − 4

3 0 28 30 28
3 0(

10
2

)
(x2 − x) 0 0 0 0 9 19

4 −18 −24 −24 −16 0
(
10
10

)
B10(x) 1 0 0 0 0 − 767

1155
5
33 − 41

165 − 31
231 − 41

165 − 61
33(

10
8

)
B8(x) 0 3 0 0 0 1

6 −3 5 2 − 11
3 −3(

10
6

)
B6(x) 0 0 5 0 0 − 4

3 10 −18 −15 16
3 10(

10
4

)
B4(x) 0 0 0 7 0 13

6 −14 14 16 − 14
3 −14(

10
2

)
B2(x) 0 0 0 0 9 1 −3 −9 −9 −1 15
1
2 0 0 0 0 0 − 1

4 1 1 1 1 1

and for the second basis we find

1
2

(
k − 2
r − 1

)
ar,s =





(
ν

s− ν − 1

)
(r, s even),

(−1)ν

(
k − 2− 2ν

r − ν − 1

)
−

(
ν

r − ν − 1

)
(r, s odd)

(we omit the value of λ in this case). In both cases, the coefficients for r, s even
form a triangular matrix. The third family g(x) = B2ν(x) yields Eq. (7), as the
reader can check as an exercise by imitating the proof of Eq. (5) which was given at
the end of Section 3. The following table gives these three collections of relations
for the case k = 12.

5. Double zeta values and period polynomials

In this section we describe various connections between period polynomials and
the (formal) double zeta space, and prove Theorems 3 and 4. Since both of them
involve period polynomials, we begin by reviewing these. The definition of period
polynomials was already given briefly in the Introduction. The motivation comes
from the connection with modular forms, which we will review in the next section.
Here we discuss only the algebraic properties.

The space Wk is defined as

Wk = Ker(1 + S) ∩Ker(1 + U + U2) ⊂ Vk , (39)

i.e. as the intersection of the (−1)-eigenspace of the involution S and the sum
of the

(−1±√−3
2

)
-eigenspaces of the element U of order 3. Since εSε = S and
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εUε = U2, the involution ε acts on Wk and splits it as the direct sum of subspaces
W±

k = Wk ∩ V ±
k of symmetric and antisymmetric polynomials. Since elements

in Wk are also (−1)-eigenfunctions of S and since Sε = εS = δ, we also have
W+

k = W od
k ⊂ V +,od

k and W−
k = W ev

k ⊂ V −,ev
k . Another important property of

period polynomials is given by the following lemma.

Lemma. Let k > 2 be even. Then

Wk = Ker
(
1− T − T ′, Vk

)

and
W±

k = Ker
(
1− T ∓ Tε, Vk

)
.

Proof. It is equivalent for f ∈ Vk to be in Ker(1−T −T ′) or to satisfy f |(1+S) =
f |(1+U +U2), since (1−T−T ′)S = (1+S)−(1+U +U2). But a polynomial which
is fixed by both S and U is fixed by the full modular group and thus vanishes. The
second assertion of the lemma follows from the first, because if f is annihilated by
1− T − T ′ = 1− T − εTε and f |ε = ±f then f is also annihilated by 1− T ∓ Tε,
and conversely if f is annihilated by 1 − T ∓ Tε then f = f |T (1 ± ε) ∈ V ±

k and
hence f |(1− T − T ′) = f |(1− T − εTε) = 0. ¤
Remark. The operator L = 1−T −T ′ plays a key role in the discovery by J. Lewis
that there are holomorphic functions annihilated by this operator which have the
same relation to the so-called Maass wave forms as period polynomials have to
holomorphic modular forms ([10], [11]). We call the equation f |L = 0 the Lewis
equation.

As in the Introduction, we denote by Pk the subspace of Dk spanned by the Pr,s

(and Zk, but it can be omitted by virtue of Theorem 1), and by Pev
k the subspace

spanned by the Pev,ev. Note that Pev
k corresponds to generating functions in V od

k

because of the shift by 1 in the exponents of X and Y .

Theorem 3. The spaces Pev
k and W−

k are canonically isomorphic to each other.
More precisely, to each p ∈ W−

k we associate the coefficients pr,s and qr,s (r +
s = k) which are defined by p(X, Y ) =

∑(
k−2
r−1

)
pr,sX

r−1Y s−1 and p(X + Y, Y ) =∑(
k−2
r−1

)
qr,sX

r−1Y s−1. Then qr,s − qs,r = pr,s (in particular qr,s = qs,r for r, s

even) and ∑

r+s=k
r, s even

qr,sZr,s ≡ 3
∑

r+s=k
r, s odd

qr,sZr,s (mod Zk) , (40)

and conversely, an element
∑

r, s odd cr,sZr,s ∈ Dk belongs to Pev
k if and only if

cr,s = qr,s arising in this way.

Remarks. 1. The equivalence of the first and last statements of the theorem
follows from Theorem 2 : since the Zod,od form a basis of Dk, it is equivalent to
speak of elements of Pev

k or of relations of the form
∑

(∗)Pev,ev =
∑

(∗)Zod,od.
2. Since the double zeta realizations ζ(r)ζ(s) and ζ(k) of Pr,s (r, s even) and

Zk are rational multiples of πk, and since πk is a Q-linear combination of Zod,od’s
by Theorem 1, Theorem 3 as stated here contains the “rough statement” given
in the Introduction. (The number of relations drops from dimW−

k = dim Mk to
dim Sk = dim Mk − 1 because one relation gets used up to eliminate ζ(k).)

Example 1. For every even k > 2, the space W−
k contains the polynomial p(x) =

xk−2 − 1 (in the inhomogeneous notation). Here p(x + 1) =
∑

r 6=1

(
k−2
r−1

)
xr−1, i.e.,

q1,k−1 = 0 and all other qr,s are equal to 1, and Theorem 3 reduces to a weaker
version of Theorem 1.
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Table 2: The coefficients pr,s and qr,s for p(x) = x2(x2 − 1)3 ∈ W−
12.

r 1 2 3 4 5 6 7 8 9 10 11
s 11 10 9 8 7 6 5 4 3 2 1

1260 pr,s 0 0 −28 0 18 0 −18 0 28 0 0
1260 qr,s 0 0 0 84 168 190 150 84 28 0 0

Example 2. The space W−
12 is 2-dimensional, spanned by the two polynomials

p(x) = x10−1 and x2(x2−1)3. For the latter, we have p(x+1) = x8 +8x7 +25x6 +
38x5 +28x4 +8x3, so the pr,s and qr,s of the theorem are given (after multiplication
by 1260) by the table
The qr,s with r and s even (underlined) are symmetric and the relation (40), divided
by 3, becomes

28Z8,4 +
190
3

Z6,6 + 28Z4,8 ≡ 28Z9,3 + 150Z7,5 + 168Z5,7 (mod Z12),

in agreement with Eq. (9) of the Introduction. The example for k = 16 given there
arises in the same way from the polynomial p(x) = x2(x2−1)3(2x4−x2 +2) ∈ W−

16.
Proof. The function q = p|T satisfies q|(1 − ε) = p|(T − Tε) = p|(T + εTε) =
p because p is antisymmetric and satisfies the Lewis equation. This shows that
qr,s − qs,r = pr,s and also means that if we decompose q in the obvious way as
q = qev,+ + qev,− + qod,+ + qod,−, then qev,− = 1

2 p and qod,− = 0. Write [a, b, c] to
denote aqev,+ + bqev,− + cqod,+. Then

[0, 2, 0]
∣∣ T ′ = p|T ′ = p|εTε = −p|Tε = −q|ε = [−1, 1, −1] ,

[1, −1, −1]
∣∣ T ′ = q|ST ′ = p|TST ′ = p|S = −p = [0, −2, 0] ,

and hence

[2, 0, −2]
∣∣ (T ′ − 1) = [−1, −3, −1] − [2, 0, −2] = [−3, −3, 1] .

This says that qod − 3qev is the image under T ′ − 1 of the symmetric polynomial
2
(
qev,+−qod,+

)
, so Proposition 2 implies Eq. (40). (The omitted coefficient of Zk in

(40) is easily determined, by computing the integral in (31), as
∑

(−1)r−1qr,s.) This
gives a map W−

k −→ Pev
k which is obviously injective since the antisymmetrization

of the coefficients on the right-hand side of (40) are the coefficients of p itself.
We omit the proof of surjectivity since it will follow from Theorem 4 below that
dim W−

k = dimPev
k , so that injectivity suffices. ¤

Theorem 3 tells us that, given any relation of the form (29) in Dk with ar,s = as,r

for r and s even, there exists a unique element p ∈ W−
k such that the ar,s with

r, s odd are equal to the numbers qr,s in the theorem. On the other hand, given
an element of Pev

k , its representation as a linear relation of the generators Pev,ev

is not unique, because these generators are not linearly independent. The next
proposition, which is a first form of Theorem 4 of the Introduction, describes the
relations among them, i.e., all relations of the form (29) with ar,s = as,r for all
r and s. It turns out that in any such relation the odd-index ar,s all vanish (in
accordance with the widely believed and numerically verified statement that there
are no relations over Q among products of values of the Riemann zeta function at
odd arguments), while the even-index ar,s are related to the space W+

k .

Proposition 4. Let ar,s and µ be numbers with as,r = ar,s. Then the following
three statements are equivalent:

(i) The relation ∑

r+s=k

ar,sPr,s = µZk (41)

holds in Dk.
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(ii) The generating function

A(X, Y ) =
∑

r+s=k

(
k − 2
r − 1

)
ar,sX

r−1Y s−1 ∈ Vk (42)

can be written as A = H|(1− S) for some H ∈ V U
k ∩ V +

k , and

µ = 〈H,
Xk−1 − Y k−1

X − Y
〉 . (43)

(iii) The generating function

A∗(m, n) =
∑

r+s=k

ar,s

mrns
∈ V ∗

k (44)

can be written as f(m,n)− f(m + n, n)− f(m,m + n) for some symmetric
f ∈ V ∗

k , and
µ = f(1, 1) . (45)

If these statements hold, then ar,s = 0 for odd r and s.

Proof. Except for the assertions about the value of the constant µ, which we will
leave to the reader, each part of this proposition is equivalent to the corresponding
part of Proposition 2 of Section 2 with the extra condition that ar,s = as,r. For
(i) this is obvious; for (iii) it follows because f(m,n)− A∗(m,n) = f(m + n,m) +
f(m + n, n) in Proposition 2 is always symmetric, so that A is symmetric if and
only if f is; and for (ii) it follows because if H ∈ V +

k , then the element H|(T ′−1) is
symmetric if and only if H = H|U (because H|T ′(ε− 1) = H|(1− U)T ), in which
case H|(T ′ − 1) = H|(T − 1) = H|(S − 1). The last assertion of the proposition is
then clear since A ∈ V +

k |(1− S) ⊂ V od
k . ¤

Proposition 5, without the statements concerning µ, says that the following are
equivalent for symmetric A :

(i′)
∑

ar,sPr,s ≡ 0 (mod Zk) ;
(ii′) A ∈ V U,+

k |(1− S) ;
(iii′) A∗ ∈ V ∗

k |(1− T − T ′) (in the obvious notation).
Statement (ii′) in turn is equivalent to

(iv′) A ∈ V od
k and A ⊥ W+

k with respect to the scalar product (34),
because for v ∈ V we have:

v is orthogonal to (V U,+
k )|(1− S) = Vk|(1 + U + U2)(1 + ε)(1− S)

⇔ v|(1− S)(1 + ε)(1 + U + U2) = 0

⇔ v|(1− S)(1 + ε) ∈ Ker(1 + U + U2) ∩Ker(1 + S) ∩Ker(1− ε) = W+
k

⇔ v ∈ W+
k + V −

k + V ev
k .

On the other hand, (i′) is equivalent to the condition that
∑

ar,sPr,s = 0 for any
realization {Zr,s, Pr,s, Zk} of Dk with Zk = 0, while (iv′) says that all aod,od are
zero and

∑
ar,spr,s = 0 for any p =

∑
pr,sX

r−1Y s−1 ∈ W+
k . The equivalence of (i′)

and (iv′) therefore says that any symmetric collection of numbers {Pr,s (r, s odd)}
can be extended to a realization of Dk with Zk = 0, while a symmetric collection
of numbers {Pr,s (r, s even)} can be extended to a realization of Dk with Zk = 0 if
and only if the corresponding generating function belongs to W+

k . This is precisely
the statement of Theorem 4 as given in the Introduction in the case Zk = 0. (For
the full statement we need the extended period polynomial space Ŵ+

k , which will
be discussed in the next section in the context of modular forms.) Before doing
that, we give a slight improvement of the result just stated. This result says that,
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if P is any polynomial belonging to V +,ev
k or to W+

k ⊂ V +,od
k , then there exists a

Z ∈ Vk with

Z | (1 + ε) = P , Z |T (1 + ε) = P . (46)

The following proposition makes this explicit:

Proposition 5. (i) Let P ∈ V +,ev
k . Then Z = 1

2 P |Λ with Λ as in (35) gives a
solution of Eqs. (46).

(ii) Let P ∈ W+
k . Then Z = 1

3 P |(T−1 + 1) gives a solution of Eqs. (46).

Proof. (i) The identities Λ(1 + ε) = 1 + ε and ΛT = S + T (1− ε) together with
P |ε = P |δ = P immediately imply (46).

(ii) By Lemma 5, P satisfies the Lewis equation P |(1 − T − T ′) = 0. Hence,
using P |ε = P and P |δ = −P , we find

P |(1 + T−1)(1 + ε) = 2P + P |(T−1 − δT−1ε) = 3P + P |(1− T − T ′)T−1 = 3P

and P |(T−1 + 1)T (1 + ε) = 2P + P |(T + T ′) = 3P . ¤

6. Double zeta values and modular forms

In this section we reinterpret the results of Section 5 from the modular point
of view. To do this, we begin by reviewing the theory of period polynomials of
modular forms on PSL2(Z), including various supplementary results which are less
well-known and which are needed here.

The period polynomial associated to a cusp form f ∈ Sk can be defined by

Pf (X,Y ) =
∫ ∞

0

(X − Y τ)k−2 f(τ) dτ . (47)

The identity (aX + bY )− (cX + dY )τ = (a− cτ)(X − γ−1(τ)Y ) together with the
modularity of f shows that

Pf

∣∣γ(X, Y ) =
∫ γ−1(∞)

γ−1(0)

(X − Y τ)k−2 f(τ) dτ

for any γ =
(

a b
c d

)
∈ Γ1 . In particular,

Pf |(1− T − T ′) =
( ∫ ∞

0

−
∫ ∞

−1

−
∫ −1

0

)
(X − Y τ)k−2 f(τ) dτ = 0 ,

so Pf ∈ Wk by Lemma 5. (One can also verify that Pf |(1+S) = Pf |(1+U+U2) = 0
directly by a similar calculation.) This gives the basic connection between cusp
forms and period polynomials. The complete Eichler-Shimura-Manin theory, of
which summaries can be found in many places (e.g. [9]), tells us that the maps
assigning to f the symmetric (odd) and antisymmetric (even) parts P+

f and P−f
of Pf give isomorphisms from the space Sk of cusp forms of weight k on Γ1 onto
W+

k and a codimension 1 subspace of W−
k . (The latter was determined in [8].)

The theory is also “defined over Q” in the sense that the even and odd period
polynomials of a normalized Hecke eigenform f are proportional to polynomials
with coefficients in the number field generated by the Fourier coefficients of f ,
and transform properly under Gal(Q/Q). For instance, the even and odd period
polynomials of the modular form ∆ ∈ S12, in the inhomogeneous version, are
multiples of 36

691 (x10−1) − x2(x2−1)3 and x(x2−1)2(x2−4)(4x2−1), respectively.
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For f ∈ Mk with f(∞) = a0 6= 0 the integral (47) diverges, but the modified
definition [17]

P̂f (X, Y ) =
∫ ∞

τ0

(X − Y τ)k−2
(
f(τ)− a0

)
dτ +

∫ τ0

0

(X − Y τ)k−2
(
f(τ)− a0

τk

)
dτ

+
a0

k − 1

(
1
Y
− τ1−k

0

X

)
(X − Y τ0)k−1 (any τ0 ∈ H)

makes sense, since the integrals converge and the derivative of the right-hand side
with respect to τ0 vanishes. We call this function the extended period polynomial
of f . For instance, the extended period polynomial of the Eisenstein series Gk is

2πi ζ(k − 1)
2k − 2

(Xk−2 − Y k−2) − (2πi)k

2k − 2

k∑
r=0

Br

r!
Bk−r

(k − r)!
Xr−1Y k−r−1 ,

where Br denotes the rth Bernoulli number.
The function P̂f (X, Y ) no longer lies in Vk, but in the larger space V̂k =⊕
r+s=k
r,s > 0

C · Xr−1Y s−1. On the other hand, the same calculation as before shows

that it is again annihilated by 1 + S, 1 + U + U2 and 1 − T − T ′. (The group Γ1

does not act on V̂k, but it acts on the larger space C(X,Y ) of rational functions in
two variables, so this statement makes sense.) In other words, P̂f belongs to the
space

Ŵk := Ker(1 + S, V̂k) ∩Ker(1 + U + U2, V̂k) = Ker(1− T − T ′, V̂k) ,

which we call the space of extended period polynomials. This space fits into a short
exact sequence 0 −→ Wk −→ Ŵk

λ−→ C −→ 0, where λ associates to P̂ ∈ Ŵk the
coefficient of Xk−1/Y in P̂ . By writing P̂ = P +λ(P̂ )(Xk−1/Y +Y k−1/X) we can
identify Ŵk with the space

̂̂
W k =

{
(P, λ) ∈ Vk × C | P |(1 + S) = P |(1 + U + U2) + λΦk = 0

}
,

where Φk ∈ Vk is the polynomial

Φk(X, Y ) =
(Xk−1

Y
+

Y k−1

X

)∣∣∣ (1 + U + U2)

=
(Xk−1 − (X − Y )k−1

Y
+

Y k−1 + (X − Y )k−1

X
+

Xk−1 − Y k−1

X − Y

)
.

Corresponding to the canonical splitting Mk = Sk ⊕ C · Gk of modular forms
into cusp forms and Eisenstein series, we have the splittings Ŵk = Wk ⊕ C · Êk,
̂̂
W k = Wk ⊕ C · (Ek, Bk), where

Êk(X, Y ) =
∑

r+s=k
r, s > 0

(
k

r

)
BrBsX

r−1Y s−1 = Ek(X,Y ) + Bk

(Y k−1

X
+

Xk−1

Y

)
. (48)

The space Ŵk also splits into symmetric and antisymmetric parts Ŵ±
k . Since Êk is

symmetric, we have Ŵ+
k = W+

k ⊕ C · Êk and Ŵ−
k = W−

k .

If f and g are two cusp forms, then the Petersson scalar product (f, g) is propor-
tional to the pairing 〈P+

f |(T − T−1), P−g 〉 ([7], [8]). (It is essential that odd period
polynomials are always paired with even ones, because if f is a normalized Hecke
eigenform then the coefficients of P±f belong to ω±(f)Q[X,Y ] with some constants
ω±(f) whose product is essentially (f, f). But the “straight” pairing 〈P+

f , P−g 〉
would vanish since P+

f and P−g have opposite symmetry properties and also op-
posite parity. The effect of |(T − T−1) is to change odd polynomials to even ones



DOUBLE ZETA VALUES AND MODULAR FORMS 19

and vice versa.) This pairing is Hecke invariant, but we do not explain this here
since we have not discussed the action of Hecke operators on period polynomials.
It extends in a natural way to a pairing Ŵ+

k × W−
k → C in such a way that the

codimension 1 subspace of W−
k corresponding to period polynomials of cusp forms

is precisely the space of polynomials whose pairing with Êk vanishes (cf. [8]). The
result (Theorem 9 of [8]) is

{P−f | f ∈ Sk} =
{ ∑

r+s=k

(
k−2
r−1

)
ar,sX

r−1Y s−1
∣∣∣

∑

r+s=k

(−1)
r−1
2 κr,sar,s = 0

}
,

where

κr,s = −κs,r = 2
∑

0<j 6 k
j even

(
j − 1
r − 1

)(
k

j

)
BjBk−j −

(
k

r

)
BrBs

+
[
(−1)r−1 +

(
k − 1
r − 1

)
−

(
k − 1

r

)]
Bk .

(49)

Equation (49) says that κr,s is essentially the coefficient of Xr−1Y s−1 in Ek|T with
Ek as in (48).

We can now easily extend Proposition 5 (and hence the preliminary version of
Theorem 4 mentioned in the previous section) to a statement concerning Ŵ+

k rather
than W+

k . Given any symmetric extended period polynomial

P̂ =
∑

r+s=k
r,s > 0

r, s even

pr,sX
r−1Y s−1 ∈ Ŵ+

k

(so that λ(P̂ ) = pk,0 = p0,k), there is a realization of Pk with

Pr,s 7→
{

pr,s (r, s even),
0 (r, s odd),

Zk 7→ −2 pk,0 .

To see this, instead of going through the whole proof of Proposition 5, keeping
careful track of the constant µ, it is sufficient (since W+

k has codimension 1 in
Ŵ+

k ) to check this for one single extended “polynomial” P̂ which belongs to Ŵ+
k

but not to W+
k , and this is easy: the function Êk defined in (48) has coefficients

Pr,s =
(
k
r

)
BrBs = 4k! βrβs, where βr = ζ(r)/(2πi)r = −Br/2r! (r > 0 even), and

on the other hand the original double zeta realization of Dk has Pr,s = ζ(r)ζ(s) =
(2πi)kβrβs and Zk = ζ(k) = (2πi)kβk. This completes the discussion of extended
period polynomials and the proof of Theorem 4.

We also mention the corresponding extension of Proposition 5:

Supplement to Proposition 5: If P̂ = P + λ(Xk−1Y −1 + X−1Y k−1), then we
have a solution of (25) with Pk = P and Zk = −2λ given by

Zk =
1
3
P

∣∣(T−1 + 1) +
λ

6
Xk−1

Y

∣∣∣∣ U2(1 + ε)(5− 3U + Uε)

=
1
3
P

∣∣(T−1 + 1) +
λ

6
Xk−1 − Y k−1

X − Y

∣∣∣∣ (5− 3U + Uε) .

Proof. Just apply the calculation of the proof of part (ii) of Proposition 5 to P̂

with Ẑk = 1
3 P̂ |(1 + T−1) since P̂ satisfies the same relations as P . ¤

If we apply this result to the special case P̂ = 1
4k! Êk then we find that, as well

as the “Euler realization” of Dk in R with ZE
r,s = ζ(r, s), PE

r,s = ζ(r)ζ(s) and
ZE

k = ζ(k), we also have a “Bernoulli realization” with ZB
k = βk, PB

r,s = βrβs (so
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that PB
r,s = 0 if r and s are odd and k > 2), and with ZB

r,s equal to the “double
Bernoulli number”

ZB
r,s =

1
3

∑

m+n=k

(
m− 1
r − 1

)
βmβn +

βrβs

3
− βk

12

[
5 + 3

(
k − 1
r − 1

)
−

(
k − 1

r

)]

=
1
3

∑

m+n=k
m,n > 0

(
m− 1
r − 1

)
βmβn − βk

12

[
1 +

(
k − 1
r − 1

)
−

(
k − 1

r

)]
+

1
3
(βrβs − βk) .

These are almost exactly the same as the numbers (49) occurring in the result
on the image of cusp forms in W−

k cited above! Also note that the number ZB
r,s is

essentially the double zeta value ζ(1−r, 1−s)/(r−1)!(s−1)! at negative arguments,
which has been studied in [1].

The Bernoulli realization has the same even-index pr,s as the Euler realization
(up to a factor (2πi)k), but 0 instead of the presumably transcendental values
ζ(od)ζ(od)/(2πi)k; the fact that both the original Pr,s and the new ones can be
realized in Dk is an illustration of the fact that the numbers Pod,od in Pk are com-
pletely unconstrained (this corresponds to the vanishing of aod,od in Proposition 5).

The results of Section 5 were formulated purely algebraically, but we can now
easily relate them to the theory of modular forms. A result of Rankin ([13]; see
also [8]) says that, for a normalized Hecke eigenform f ∈ Sk, one has

∑

r+s=k
r, s even

(f, GrGs)Xr−1Y s−1 = cf P+
f (X, Y ) ,

where cf is essentially P−f (1, 0).
In particular, the cusp forms GrGs− βrβs

βk
Gk satisfy the same linear relations as

elements of W+
k , so they form the coefficients of an element

Gk(τ ;X, Y ) =
∑

r, s > 1
r+s=k

(
Gr(τ)Gs(τ)− βrβs

βk
Gk(τ)

)
Xr−1Y s−1 ∈ W+

k ⊗ Sk .

But then setting Ĝk = Gk − 1
2 Bk

Gk(τ)Êk gives the much simpler statement that
the polynomial

Ĝk(τ ;X,Y ) =
∑

r, s > 0
r+s=k

Gr(τ)Gs(τ)Xr−1Y s−1

belongs to Ŵ+
k ⊗Mk. Theorem 5 follows immediately.

7. Double Eisenstein series

At the end of the last section, we applied Rankin’s result relating products
of Eisenstein series to period polynomials of cusp forms to show that there is a
realization of the double shuffle space Dk sending Pr,s to Gr(τ)Gs(τ) and Zk to
Gk(τ) for all r, s and k. This proof, however, is very indirect, and in view of the
simplicity of the final statement one would expect that there should be a simpler
and more natural argument. This is indeed the case, as we now explain. This
alternative approach also leads directly to the double Eisenstein series which are
the final topic of this paper.

We present the argument in a more abstract form than we will use here. Let A be
a discrete subgroup of C (or possibly some more general commutative topological
field) which is totally ordered, i.e. can be decomposed into a disjoint union A+ ∪
{0} ∪(−A+) with A+ closed under addition. For m, n ∈ A we write n Â 0 to mean
n ∈ A+ and m Â n to mean m− n Â 0. Then we claim that, at least in the range
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for which the sums Z(r) =
∑

mÂ0 m−r converge, the numbers Pr,s = Z(r)Z(s) and
Zk = Z(k) give a realization of Pk. Indeed, by (iii) of Proposition 2 we can write
A∗(m,n) = f(m,n)− f(m + n,n)− f(m,m + n) for some f ∈ V ∗

k ⊗ C and
∑

r+s=k

ar,sZ(r)Z(s) =
∑

m, nÂ 0

A∗(m,n) =
( ∑

m, nÂ 0

−
∑

mÂnÂ 0

−
∑

nÂmÂ 0

)
f(m,n)

=
∑

m=nÂ 0

A∗(m,n) = f(1, 1)Z(k) .

Applying this concept to the special case where A = Zτ + Z for some number τ
in the upper half plane H with the ordering described in the Introduction, we find
that indeed the functions {Gr(τ)Gs(τ), Gk(τ)} give a realization of the {Pr,s, Zk}-
part of Dk. The corresponding realization of the {Zr,s}-part is given by the double
Eisenstein series Gr,s as defined in the Introduction. In this section, we study these
in more detail.

A simple estimate shows that the series defining Gk converges absolutely if and
only if k > 2 and the series defining Gr,s if and only if s > 1 and r > 2. Our
first object is to compute the Fourier expansion of Gr,s (Theorem 6). We begin
by recalling the corresponding computation for Gk, which is of course well-known.
We define power series ϕ0

k(q) and ϕk(q) in Q[[q]] — both actually polynomials of
degree k in q/(1− q) — by

ϕ0
k(q) =

(−1)k

(k − 1)!

∞∑
u=1

uk−1 qu , ϕk(q) = −1
2
δk,1 + ϕ0

k(q) (k > 1).

The Lipschitz formula says that
∑

a∈Z

1
(τ + a)k

= (2πi)kϕk(q) (50)

for τ ∈ H and all k > 1, where q = e2πiτ as usual and where the sum on the left-
hand side has to be interpreted as a Cauchy principal value if k = 1. Applying this
to Gk(τ) with k > 2, where the summation in the non-absolutely convergent case
k = 2 is to be carried out in the order Â, we find

Gk(τ) =
∑
a>0

1
ak

+
∑
m>0

∑

a∈Z

1
(mτ + a)k

= ζ(k) + (2πi)k gk(q),

where

gk(q) =
∑
m>0

ϕ0
k(qm) = −

∑
m, u>0

(−u)k−1

(k − 1)!
qmu . (51)

The statement of Theorem 6, which we repeat here for convenience, was that the
Fourier expansion of Gr,s(τ) in the convergent case is given by the analogous formula

Gr,s(τ) = ζ(r, s) +
∑

h+p=k

Cp
r,s (2πi)hgh(q)ζ(p) + (2πi)kgr,s(q) , (52)

where k = r + s, Cp
r,s is a simple numerical coefficient given by (13), and

gr,s(q) =
∑

m>n>0

ϕ0
r(q

m)ϕ0
s(q

n) =
∑

m>n>0
u, v>0

(−u)r−1

(r − 1)!
(−v)s−1

(s− 1)!
qmu+nv. (53)

(The condition h > 1 and p > 1 in (12) can be dropped, even though the definitions
of ζ̃(p) and gh(q) are problematic in these cases, because Cp

r,s vanishes when p = 1
or p = r + s− 1 unless r = 1.)
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Proof of Theorem 6. We divide the sum of the defining series of

Gr,s(τ) =
∑

mτ+aÂnτ+bÂ 0

1
(mτ + a)r(nτ + b)s

into four terms, according as m = n = 0, m > n = 0, m = n > 0, or m >
n > 0. It is obvious that the terms of the first type give the double zeta value
ζ(r, s) and that those of the second type give (Gr(τ)− ζ(r))ζ(s) = (2πi)rgr(q)ζ(s),
while those of the fourth type, again by virtue of the Lipschitz formula (50), give
(2πi)k

∑
m>n>0 ϕr(mτ)ϕs(nτ). (Note that it does not matter here whether we

write ϕrϕs or ϕ0
rϕ

0
s since we are assuming that both r and s are greater than 1.)

Finally, the sum of the terms of the third type can be written as
∑

m>0 Ψr,s(mτ),
where

Ψr,s(τ) =
∑

a>b

1
(τ + a)r(τ + b)s

.

This sum converges absolutely because we are assuming that r, s > 2, and is ob-
viously periodic. To calculate its Fourier development, we use the partial fraction
decomposition

1
(τ + a)r(τ + b)s

=
∑

h+p=r+s

[ (−1)s
(
p−1
s−1

)

cp (τ + a)h
+

(−1)p−r
(
p−1
r−1

)

cp (τ + b)h

]

(compare (19)), where c = a − b > 0 and where we use our usual convention that
the condition “h + p = k” tacitly includes “h> 1, p > 1 .” Using (50) yet again, we
obtain

Ψr,s(τ) =
∑

h+p=r+s

[
(−1)s

(
p− 1
s− 1

)
+ (−1)p−r

(
p− 1
r − 1

)]
ζ(p) (2πi)hϕh(τ) ,

where the implied interchange of order of summation is justified because the ex-
pression in square brackets vanishes if p = 1 (because r and s are > 1) or h = 1
(because the binomial coefficient

(
r+s−2

r−1

)
is symmetric in r and s). Replacing τ by

mτ and summing over m> 1 replaces ϕh by gh in this expression, and combining
with the terms already computed, we obtain the desired formula (52). ¤

As explained in the Introduction, we want to do two things: find the “right”
definition of the double Eisenstein series Gr,s(τ) in the cases when the original
series defining it does not converge absolutely (i.e., if r = 1 or 2 or if s = 1), and
give a purely combinatorial proof that the extended function satisfy the double
shuffle relations. As also already explained, for the latter purpose we can ignore
the term ζ(r, s) and the terms with p odd in the middle sum in (52), because they
individually satisfy the double shuffle relations (the latter because of the corollary
to Proposition 2 in Section 2). If we remove these terms, then what is left, after
division by (2πi)k (where k = r + s is the total weight as usual) is the power series
Zr,s(q) defined in (17). We now extend this definition to all values of r and s by
setting

Zr,s(q) = gr,s(q) + βr,s(q) +
1
2

εr,s(q) (r, s > 1), (54)

where gr,s(q) is defined by (53), βr,s(q) by

βr,s(q) =
∑

h+p=k

Cp
r,s βp gh(q) (r, s > 1, r + s = k) (55)

with βp = − Bp

2 p!
(Bp = pth Bernoulli number), and

εr,s(q) = δr,2 g∗s (q)− δr,1 g∗s−1(q) + δs,1

(
g∗r−1(q) + gr(q)

)
+ δr,1δs,1g2(q) , (56)
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g∗k(q) = −
∑
m>0

mϕ0
k+1(q

m) =
(−1)k

k!

∑
m, u>0

mukqum =
1
k

q
d

dq
gk(q) . (57)

Notice that βp was previously used only for p even, where it was defined by βp =
(2πi)−pζ(p) and hence equal to −Bp/2p! by Euler’s theorem; now we take the latter
formula as the definition for all values of p. This does not affect the definition when
r and s are larger than 1, so that (55) agrees with (16) in these cases, because βp is
0 for odd p > 1 and C1

r,s = 0 for r, s > 1 (as we already used in the above proof).
Since the further correction terms (56) are non-zero only if r ≤ 2 or s = 1, they do
not occur in the region of convergence of Gr,s, so that (54) agrees with the earlier
definition (17) in the cases where it was applicable. The reason for the various terms
in (56) will become clear in the course of the proof of Theorem 7, but one term
has a clear explanation which we can mention now: in the above derivation, the
only place where it mattered that s was strictly greater than 1 was for the absolute
convergence of the inner sum in Gr,s(τ) =

∑
m,a(mτ + a)−r

∑
n

∑
b(nτ + b)−s, and

if we interpret this sum as a Cauchy principal value and use (50) here too, then we
see that the only effect on the final calculation is to replace the factor ϕ0

s(q) in (53)
by ϕs(q). Since they differ only by the constant −1/2 when s = 1, and not at all
otherwise, this adds − 1

2δs,1

∑
m>0(m−1)ϕ0

r(q
m) = 1

2δs,1

(
g∗r−1(q)+gr(q)

)
to gr,s(q),

and this accounts for the third term in the definition of εr,s(q). Finally, we mention
that (56) apparently contains the term g∗0(q) when r = 1 or s = 1, and this is not
defined by the last formula in (57) (although the other two formulas do still make
sense and lead to the definition g∗0(q) = g2(q)), but this is not important because
the two terms in (56) that potentially involve g∗0(q) occur only when r = s = 1 and
then cancel.

After these long preliminaries we can finally state and prove the full version of
Theorem 7 from the Introduction.

Theorem 7. There is a realization in Q[[q]]0 of the double shuffle relations (20)
for all weights with Zr,s(q) defined by (54),

Pr,s(q) = gr(q)gs(q) + βrgs(q) + βsgr(q) +
1
2
(δr,2 g∗s (q) + δs,2 g∗r (q)) (58)

for all r, s > 1, and with Zk(q) = gk(q) for k > 2, Z2(q) = 0.

Proof. The proof will be shorter than the discussion leading up to the statement.
Of course we use generating functions. We drop the “(q)” in the names of elements
of Q[[q]] and systematically write γ(X) and γ(X, Y ) for the generating functions∑

k > 1 γkXk−1 and
∑

r, s > 1 γr,sX
r−1Y s−1 associated to sequences {γk} or {γr,s}

indexed by one or two integers, respectively. Then from the definitions (51), (57),
(53), (55) and (56) we have

β(X) =
∑

k > 1

βk Xk−1 =
1
2

(
1
X

− 1
eX − 1

)
,

g(X) =
∑

k > 1

gk Xk−1 = −
∑
u>0

e−uX qu

1− qu
,

g∗(X) =
∑

k > 1

g∗k Xk−1 =
1
X

(∑
u>0

e−uX qu

(1− qu)2
− g2

)
,

g(X,Y ) =
∑

r, s > 1

gr,s Xr−1Y s−1 =
∑

m>n>0
u, v>0

e−uX−vY qmu+nv

=
∑

u, v>0

e−uX−vY qu

1− qu

qu+v

1− qu+v
,
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β(X,Y ) =
∑

r, s > 1

βr,s Xr−1Y s−1 =
∑

h, p > 1

βp gh

( ∑

r+s=k

Cp
r,sX

r−1Y s−1

)

=
∑

h, p > 1

βp gh

(
Y p−1Xh−1 − (X − Y )p−1(Xh−1 − Y h−1)

)

= β(Y ) g(X) − β(X − Y )
(
g(X)− g(Y )

)
,

ε(X,Y ) =
∑

r, s > 1

εr,s Xr−1Y s−1 = (X − Y )g∗(Y ) + Xg∗(X) + g(X) + g2,

and we want to show that the generating functions

Z(X, Y ) = g(X, Y ) + β(X, Y ) +
1
2

ε(X, Y ) ,

P(X, Y ) = g(X)g(Y ) + β(X)g(Y ) + β(Y )g(X) +
1
2
(
Xg∗(Y ) + Y g∗(X)

)
,

z(X) = g(X) − g2

satisfy (27). So we must calculate Z(X, Y )+Z(Y, X) and Z(X+Y, Y )+Z(X+Y,X)
for each of the three pieces Z = g, β, and ε constituting Z.

From the above formulas for the generating functions we find

g(X, Y ) + g(Y,X) =
∑

u, v>0

e−uX−vY

(
qu

1− qu
+

qv

1− qv

)
qu+v

1− qu+v

=
∑

u, v>0

e−uX−vY

(
qu

1− qu

qv

1− qv
− qu+v

1− qu+v

)

= g(X)g(Y ) −
∑
w>0

e(1−w)Y − e(1−w)X

eX − eY

qw

1− qw

= g(X)g(Y ) +
eY

eX − eY
g(Y ) − eX

eX − eY
g(X)

= g(X)g(Y ) − g(X) + g(Y )
2

− coth
(X − Y

2
) g(X)− g(Y )

2
,

β(X, Y ) + β(Y,X) = β(Y )g(X) + β(X)g(Y )

− g(X)− g(Y )
X − Y

+ coth
(X − Y

2
) g(X)− g(Y )

2
ε(X,Y ) + ε(Y,X) = Xg∗(Y ) + Y g∗(X) + g(X) + g(Y ) + 2g2 ,

and adding up these three equations (the last with a coefficient 1/2) we obtain the
first of equations (27) for Z, P and z as defined above. Similarly, we have

g(X + Y, Y ) + g(X + Y, X) =
( ∑

v>u>0

+
∑

u>v>0

)
e−uX−vY qu

1− qu

qv

1− qv

=
( ∑

u, v>0

−
∑

u=v>0

)
e−uX−vY qu

1− qu

qv

1− qv

= g(X)g(Y ) −
∑
u>0

e−u(X+Y )

(
qu

(1− qu)2
− qu

1− qu

)

= g(X)g(Y ) − (X + Y )g∗(X + Y ) − g2 − g(X + Y ) ,

β(X + Y, Y ) + β(X + Y, X) = β(X)g(Y ) + β(Y )g(X) ,

ε(X + Y, Y ) + ε(X + Y, X) = Xg∗(Y ) + Y g∗(X) + 2(X + Y )g∗(X + Y )

+ 2g(X + Y ) + 2g2 ,

and combining these gives the second of equations (27). ¤
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Remarks. 1. It is notable that the power series defined by (58), with the constant
term βrβs added, is a modular form of weight r + s for all even r, s > 0, the
correction terms δr,2g

∗
s (q) and δs,2g

∗
r (q) being just what is needed to compensate

for the non-modularity of (βr + gr(q))(βs + gs(q)) when r or s is equal to 2.
2. One can also ask whether it is possible to lift Theorem 7 from Q[[q]]0 to all of

Q[[q]] by adding a suitable constant term to Zr,s(q) in such a way that the relations
(20) still hold when we add βrβs to Pr,s(q) in order to make it modular for r and
s even. This is equivalent to finding a realization of Dk in Q with Pr,s = βrβs for
r and s even. One such realization is provided by the “Bernoulli realization” given
in Section 6, but there may be other ones which are more naturally related to the
combinatorial double Eisenstein series Zr,s(q).
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Mathématiques d’aujourd’hui, Cassini, Paris (2000), 99-123.

[17] Zagier, D. Periods of modular forms and Jacobi theta functions. Invent. Math. 104 (1991),
no. 3, 449–465.

[18] Zagier, D. Values of zeta functions and their applications. First European Congress of
Mathematics, Vol. II (Paris, 1992), 497–512, Progr. Math., 120, Birkhäuser, Basel, 1994.


