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Abstract

Hyperbolic space can be tessellated in many intricate and fascinating
ways. Firstly we want to take an interesting element of one tessellation
and build a Euclidian 3-d model that demonstrates its symmetries. Next
we find an economical way of printing it using the 3-d printer, which
keeps its structural integrity. Finally once we have got the models, Dan
Yasaki experimentally showed these tessellations can be constructed by
using only eight types of smaller “building blocks”, in different numbers
and arrangements. The plan is to create a puzzle using that idea allowing
the structure and symmetry to be explored.
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1 Introduction

1.1 Hyperbolic Space

Around 300 B.C. Euclid wanted formalise and collate the geometry of the day
in one place. In his work called the “Elements” he had five axioms from which
he proved many theorems and built up the geometry which today is known as
Euclidean geometry. However his fifth axiom seem to many to be unnecessary,
and over the years mathematicians tried to deduce the fifth from the other four.
Through this Hyperbolic Geometry was discovered.

Today we can express the fifth axiom as,“Through any point not lying on a
straight line there exists one and only one straight line that does not intersect
the first.” If we replace one and only one by at least two this forms the basis
to this new geometry. We will visualise this space mostly in this paper by the
Upper-Half Plane Model (UHP), with points in Hyperbolic 2-Space denoted by,
H2 := {x + iy | y > 0;x, y ∈ R} and the Upper-Half Space Model, with points
in Hyperbolic 3-Space denoted by H3 := {z + jw | w > 0;w ∈ R, z ∈ C}. Here
H3 is a subset of points from the Quaternions, denoted H.

In Hyperbolic space the shortest lines between two points are arcs of half
circles centre on the real axis and vertical lines perpendicular to the real line,
and planes are half spheres centred on the complex plane and vertical planes
perpendicular to the complex plane. We take the boundary to be the real
line in H2 and the complex plane in H3 both with the point at infinity, i.e.
∂H2 = R ∪ {∞}, and ∂H3 = C ∪ {∞}.

1.2 Fundamental Domains

If we consider a Möbius Transformation, z 7→ az+b
cz+d , that maps the UHP to

the UHP, we will have real a, b, c and d. Möbius transformations of this type
also have the property that they are conformal maps, hence with the added
condition that ad−bc = 1, any isometry of H2 can be represented by the matrix
A =

(
a b
c d

)
with det(A) = 1, i.e. A ∈ SL2(R), where an isometry is a map from

one metric space to another that preserves the distance between points in the
respective metric.

Now if we take the map that translates along the real line,
(
1 1
0 1

)
equivalent

to z 7→ z + 1; and the reflected inversion map,
(
0 −1
1 0

)
equivalent to z 7→ − 1

z ,
then denote the group generated by these two elements, Γ ⊆ SL2(Z) we have an
infinite group that is “arithmetic”, which without going into detail is important
in producing tessellation which cover the whole space [2].
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We also need to be familiar with the concept of group actions: An action of
a group G on a set X is a function,

ϕ : X ×G → X
(x, g) 7→ ϕ(x, g)

with the properties that,

(1) ϕ(ϕ(x, g), h) = ϕ(x, gh) ∀ x ∈ X; g, h ∈ G [Closure]
(2) ϕ(x, e) = x ∀ x ∈ X; e identity of G [Identity]

This can be also viewed as a group homomorphism ϕ : G → SX , SX the
symmetric group on X and ϕ(g) assigned a permutation such that ϕ(g)ϕ(h) =
ϕ(gh).

If we take our Hyperbolic 2-Space and the group Γ, then the group action
of Γ on a single element z of our space produce many images of that element
called the Γ-orbit of the action on z. A fundamental domain for the action of
Γ is defined as a set of points which contains exactly one element from each of
these Γ-orbits for all z in our space, H2.

For this Γ if we take the subset, {z ∈ H2 : |z| > 1, |Re(z)| < 1
2} with the

boundary on one side and half the arc at the bottom, this is a fundamental
domain for the action of Γ = 〈

(
1 1
0 1

)
,
(
0 −1
1 0

)
〉 on H2. Each cell in [Fig. 1]

represents a Γ translate of the fundamental domain.

Figure 1: The fundamental domain for the action of Γ on H2 [source: Wikipedia]

This notion leads us to the idea of a tessellation, by finding a fundamental
domain, all the isometric translates of it will cover the whole of the space, hence
will be our tessellation for the space. We are not too concerned about restricting
which points are included at the boundary of the fundamental domain, so we
include all of them. This means there will be a slight overlap when we apply
the Γ translates, but that will not matter in finding our tessellation.
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Moving to Hyperbolic 3-Space, our isometries of H3 are represented by el-
ements of the group SL2(C), and it is here where we search for subgroups,
Γ ⊆ SL2(C) that act on H3 to produce fundamental domains from which we
can take a union to form interesting tessellations.

1.3 The Tessellations of H3

Take the imaginary quadratic number field K = Q(
√
−d ), with d > 0 a square-

free integer and dK the discriminant of K and OK the ring of integers in K.
Then OK has a Z-basis, {1, θ}, with

θ =

{
1+
√
−d

2 −d ≡ 1 mod 4,
√
−d −d ≡ 2, 3 mod 4.

For each d, we obtain the tessellation from points in Z[θ] ⊆ C of the form,{
x

z − w
,

y

z − w
· θ
}
∈ SL2(Z[θ]) (1)

There is a Γ-equivariant bijection between those points that form the boundary
of the fundamental domain and a particular set of integer solutions to,

Qd(x, y, z, w) = x2 + d · y2 + z2 − w2 (2)

Here our solution set has the added condition that the z and w component must
have the same parity (odd/even), with the GCD of the four components equal
to one, except when the z and w components have opposite parity when you
multiply all the entries by two. This will give us finitely many points and our
bijection [1].

Thus we have a way of generating fundamental domains for any d. For
example d = 1 we are looking a fundamental domain corresponding to the
group SL2(Z[i]), with Z[i] the Gaussian integers. It turns out that if we glue
together four copies of our fundamental domain, i.e. take a union, we obtain an
Octahedron which represents a tessellation of our space [Fig. 2].
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Figure 2: Tessellation of H3 with d = 1 [Source: J. Cremona, Comp. Math. 51, no.3

(1984) [3]]

For d = 2 our group is now SL2(Z[
√
−2 ]) and the corresponding union of

fundamental domains to obtain our tessellating polytope is show in [Fig.3].

Figure 3: Tessellation of H3 with d = 2 [Source: J. Cremona, Comp. Math. 51, no.3
(1984) [3]]

Going back to our model for hyperbolic space (Upper-Half Space Model) we
can interpret the diagrams on the left as the intersection of 4 and 10 half-spheres
respectively and 4 vertical planes that correspond to the faces on out tessellating
polytope. [Fig. 4] is a representation of these half spheres. The diagrams on
the right are projections of the polytope from the point at infinity. Note that
the vertices of these polytopes are all on the boundary, ∂H3 and are of the form
in (1).
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Figure 4: Another view of the fundamental domain for d = 2 [using Mathematica] [2]

Thus our first glimpse at what these polytopes look like can be visualised
by bringing the point at infinity down as in [Fig. 5].

Figure 5: A tangible representation of the fundamental domain for d = 2 [using
Mathematica] [2]

I already have a comprehensive list of the points needed to form these fun-
damental domains for d up to 696 [9] in the form of integer solutions to (2) as a
list of vertices coordinates and vectors for the vertices that make up each face
and edge for all of the polytopes needed to tessellate the space for every d. My
starting point is to find a way to “spherify” these fundamental domains in a
way that preserves their symmetry.
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2 Creating the Polytopes

2.1 Initial Thoughts

To immediately get from the four dimensional points generated by (2) to three
we just remove one of the coordinates, say the last, and plot the resulting points.
We get a shape which is skewed off in one direction, as demonstrated by Matthew
Spencer in his 2012 summer project. Removing the other coordinates in turn
gives the same basic shape except they are skewed in a different way [Fig. 6].
From observation, removing the last coordinate gives the least skewed polytope.

Figure 6: 1st, 2nd, 3rd and 4th coordinate removed respectively for d = 2 [using

Maple]

To find the a way of getting a non skewed polytope I consider a linear
transformation that takes the 4-dimensional points and outputs 3-dimensional
points that lie on a sphere.

2.2 The Transformation

We first go back to considing equation (2) that generates the vertices of our
polytopes,

x2 + d · y2 + z2 − w2 = 0

A set of solutions that are invariant of d occur when the y component is 0. These
are {0, 0, 1, 1}, {0, 0, -1, 1} and {-2, 0, 0, 2}, where the solution is denoted by
{x, y, z, w}. Let us assume that these points are actually from an equilateral
triangle side length 2 and thus we can map them to the points {0, 0, 1}, {0, 0,
-1} and {-

√
3 , 0, 0} respectively. This with a fourth point will uniquely define

a transformation from 4-d to 3-d.

2.3 Classes of Polytope and Initial Results

The first polytopes found for each d can be classified into at least four types.
If we look at their underlying symmetry group or the stabiliser of the polytope
we can group them into ones isomorphic to the Octahedron/Cube [C2×S4], the
Tetrahedron [S4], the Triangular Prism [C2×D3] and the Hexagonal Cap [D3].

7



2.3.1 Octahedral symmetry, [C2 × S4]

For d satisfying the relation,

3d− 2 = n2; n, d ∈ Z (3)

We have another triple of points that will always be included in our union of
fundamental domains as they satisfy the conditions in (2), namely

{−2d, 2
√

3d− 2 , 1, 4d− 1},
{−2d, 2

√
3d− 2 , −1, 4d− 1},

{−2d+ 2, 2
√

3d− 2 , 0, 4d− 2}.

This gives another triangle that is opposite the first one pointing in the other
direction. Hence if we map it so the two centres align and the vertices lie on
a sphere we will obtain our un-skewed shape for these cases. It turns out that

the most interesting and complex polytopes are of this form, with d = n2+2
3 .

This then already allows us to form a whole family of polytopes as they will all
contain the triple of points described above. The linear transformation for this
class is then,

L :

x
y
z
w

7→

√
3
2 · x +

√
3d−2
6 ·

√
3 · y√

6
3 · y
z

(4)

It turns out that the w is not needed in the linear transformation, and that our
first guess that removing the last coordinate was a step in the right direction.

Note this does not centre the polytope on the origin and a translation of
√
3
3

along the x−axis and Yt along the y− axis is required to move the vertices onto
a sphere, radius r centred on the origin, which is included below.

d 1 2 6 9 17 22 34 ... n2+2
3√

3d− 2 1 2 4 5 7 8 10 ... n

r
√

2 2 2
√

3 3
√

2
√

34 2
√

11 2
√

17 ...
√

2d

Table 1: Values relating to (4)

2.3.2 Tetrahedra and Octahedra

For d of the form, d = 3n2 we obtain a Tetrahedron, and for d = 3n2 − 2 we
obtain an Octahedron for the first polytopes in the list for each d.

2.3.3 Triangular Prism symmetry, [C2 ×D3]

More interestingly, if we take d of the form d = 3n2 + 4
α · n with 4

α · n, α ∈ N
then what we get are structures that have symmetry isomorphic to that of the
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triangular prism. These polytopes have the triple of points which again satisfy
the conditions in (2) for all valid d,

{−αn, α, 1, 2αn+ 1},
{−αn, α, −1, 2αn+ 1},
{−αn− 2, α, 0, 2αn+ 2}.

This produces another equilateral triangle opposite the first, oriented in the
same way. Like above this can be used to calculate the transformation for this
class, which in this case is non-unique as the triangular prism can have different
length sides to its triangular faces. If we impose the condition that the points
lie on a sphere then indeed our transformation is unique, and it is these results I
have calculated in what follows. (5) is the general transformation for this class
with the first few values for K, n, and d for each α in Table 2.

L :

x
y
z
w

7→

√
3
2 · x + n

√
3

2 · y +
√
3
3

K · y + α · K2
z

(5)

α 1 2 3

K 2 2 2 2 2 1 1 1 2 2
√

3 2
√

5
n 1 2 3 4 5 1 3 5 3 9 15
d 7 20 39 64 95 5 33 85 31 225 695

α 4 5 6 8 10

K
√

2
√

6
√

10
√

14 -
√

2 1 - -
n 2 6 10 14 5 3 2 4 3
d 14 114 310 602 79 29 13 50 77

Table 2: Some data for first few α

2.4 Results

For general d the transformation the maps the 4-d points {x, y, z, w} to a
sphere radius r, centred on the origin is as follows:

T :

x
y
z
w

7→

√
3
2 · x + k · y +

√
3
3

K · y + Yt
z

(6)

Table 3 gives the values of k, K, Yt and r which are valid for all d of
the form listed, and Table 4 gives the values for a few α where m ∈ N. In
Table 5 find the data for the first polytopes for each d up to d = 34 for the
transformation in (6).
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Class d k K Yt r

Octahedral n2+2
3

√
3d− 2 ·

√
3
6

√
6
3 −

√
3d− 2 ·

√
6
3

√
2d

Triangular Prism 3n2 + 4
α · n

n
√
3

2 Kα α · Kα

2 rα

Tetrahedron 3n2
√

3d ·
√
3
6

2
√
6

3 −
√
6
6

√
6
2

Octahedron 3n2 − 2 d√
d+2
·
√
3
6

2
√
6

3

√
3√
d+2
·
√
6
3

√
2

Table 3: General Transformations

α n Kα rα

1 m 2
√
21
2

3 6m− 3 2
√

n
3

√
d
n

4 4m− 2
√
n 2

√
d
n

Table 4: Values for α ≤ 4

2.5 Final Thoughts on Theory

There are still a few cases that I haven’t been able to classify so a complete list
of the transformations would have to be calculated by hand. Also I have only
comprehensively looked into values of α up to four, but I have used larger α and
calculated the Kα for those cases individually, e.g. for α = 10, n = 10 : d =
304, Kα = 2 Note that I have used data that includes square d and d ≡ 0 mod
4, although this is not a proper representation of our quadratic number field K
it helped in finding the patterns and structures presented above. There is an
underlying relation between d and 4d that produced the same first polytope, for

example d of the form n2+2
3 , 4d is the same with its transformation given by

−2k, K = 2
√
6

3 and −Yt, where k and −Yt are the entries for the corresponding
d. Also the is a change in sign between these two cases for k and Yt, this doesn’t
change anything just represents a slightly different fundamental domain but the
end result is the same and the minus signs that occur on the y component can
be dropped (as may have been done in some of the generalised transformations
above for ease of presentation).

I also looked at the normal vectors to the set of solutions in our 4-d space,

as they lie in a supporting hyperplane. For the case where d = n2+2
3 the normal

is given by {1, −
√

3d− 2 , 0, 2}. It is thought these hyperplanes for each d is
of the form {1, *, 0, 2}, where * denotes half-integers [1].
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d Stabiliser Vertices Class k K Yt r

1 C2 × S4 6 Octahedral
√
3
6

√
6
3 -

√
6
3

√
2

2 C2 × S4 12 Octahedral
√
3
6

2
√
6

3 - 2
√
6

3 2

3 S4 6 Triangular Prism -
√
3
6

2
√
6

3

√
6
6

√
6
2

4 C2 × S4 6 Octahedral - 2
√
3

6
2
√
6

3

√
6
3

√
2

5 C2 ×D3 6 Triangular Prism
√
3
2 1 -1

√
21
3

6 C2 × S4 24 Octahedral 4
√
3

6

√
6
3 - 4

√
6

3 2
√

3

7 C2 ×D3 6 Triangular Prism
√
3
2 2 -1

√
21
3

8 C2 × S4 12 Octahedral - 2
√
3

3
2
√
6

3 - 2
√
6

3 2

9 C2 × S4 30 Octahedral 5
√
3

6

√
6
3 - 5

√
6

3 3
√

2

10 C2 × S4 6 Octahedral 5
√
3

6

√
6
6 -

√
6
3

√
2

11 S4 12 Tetrahedral 5
√
3

6
2
√
6

3 - 5
√
6

6

√
22
2

12 S4 4 Tetrahedral - 2
√
3

3
2
√
6

3

√
6
6

√
6
2

13 C2 ×D3 12 Triangular Prism
√

3 1 -4 2
√
39
3

14 C2 ×D3 12 Triangular Prism
√

3
√

2 -2
√

2 2
√
21
3

15 C2 × S4 6 Octahedral 5
√
3

6
2
√
6

3 -
√
6
3

√
2

16 C2 ×D3 6 Triangular Prism -
√

3 2 2 4
√
3

3

17 C2 × S4 48 Octahedral 7
√
3

6

√
6
3 - 7

√
6

3

√
34

18 D3 9 Hexagonal Cap 7
√
3

6

√
6
3 - 4

√
6

3 2
√

3

19 S4 12 Tetrahedral 7
√
3

6
2
√
6

3 - 7
√
6

6

√
38
2

20 C2 ×D3 6 Triangular Prism -
√

3 2 1
√
21
3

21 C2 × S4 6 Octahedral 7
√
3

6

√
6
3 -

√
6
3

√
2

22 C2 × S4 24 Octahedral 4
√
3

3

√
6
3 - 8

√
6

3 2
√

11

23 D3 9 Hexagonal Cap 7
√
3

6
2
√
6

3 - 2
√
6

3 2

24 C2 × S4 24 Octahedral - 4
√
3

3
2
√
6

3
4
√
6

3 2
√

3

25 C2 × S4 6 Octahedral 25
√
3

18

√
6
9 -

√
6
3

√
2

26 D3 9 Hexagonal Cap 4
√
3

3

√
6
3 - 2

√
6

3 2

27 S4 4 Tetrahedral 7
√
3

6
2
√
6

3 -
√
6
6

√
6
2

28 D3 6 Hexagonal Cap - 4
√
3

3

√
6 5

√
6

6

√
22
2

29 C2 ×D3 18 Triangular Prism 3
√
3

2

√
2 -3

√
2

√
174
3

30 C2 ×D3 6 Triangular Prism 3
√
3

2
1
2 -1

√
21
3

31 C2 ×D3 18 Triangular Prism 3
√
3

2 2 -3
√
93
3

32 C2 × S4 6 Octahedral - 4
√
3

3
2
√
6

3

√
6
3

√
2

33 C2 ×D3 6 Triangular Prism 3
√
3

2 1 -1
√
21
3

34 C2 × S4 48 Octahedral 5
√
3

3

√
6
3 - 10

√
6

3 2
√

17

Table 5: Data for First Polytopes with d ≤ 34
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3 3-d Printing

3.1 Software

I have mostly looked at free open source software to build the models. Open-
SCAD [5] was found to be particularly useful and was predominantly used to
export the polytopes in the .stl formal that can be imported into the 3-d print-
ers software. A invaluable module for OpenSCAD written by Kit Wallace and
downloaded from his home page [6] allowed me to input the vertices as vectors,
faces as vectors of the vertices in each one and edges as vectors of each end
vertex. All of this data was taken from the files created by another Durham
student two years previously. With the module it will place cylinders along each
edge and spheres at each vertex so creating a wire-frame is very simple from the
list of transformed points. Exporting with some of the models can take over an
hour if not more for the larger models in particular.

3.2 3-d Printers

After looking at all available options for 3-d printing, I have been working with
a powder bed and Ink jet head 3-d printer, the ZPrinterr 650. For this project
in particular, the way the models are printed means that no support structure
needs to be put in place during printing. With other types of 3-d printer, such
as Fused Deposition Modeling (FDM), these models would collapse when trying
to print convex polytopes such as the ones we are dealing with.

Figure 7: 3D Systems ZPrinterr 650
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The powder bed printer works by laying a layer of starch powder in the
printing chamber and an ink-jet printing head fires droplets of coloured binder
onto the points in each layer that are to be printed. This process repeats and
can take over 10 hours from some of the models. Once the printer has finished,
the models need to be ’excavated’. This just means we need to remove the
excess powder from the print chamber that hasn’t solidified which can then be
reused in another print. We do this by vacuuming it up very carefully, trying
not to disturb our models as although they are solid they are still very fragile,
and can easily break. If we try to remove the hollow structure with powder still
inside it can cause the whole thing to fall apart under the weight of the excess
powder so consideration into the design of the polytopes must be taken into
account when printing them with this method.

Figure 8: Models of different thickness for d = 19 being “excavated”

Once removed from the printer the models are then cleaned. The left over
powder still stuck on can be blown off using one of the fine tools in the printers
processing chamber. The models then need to be glued using cyanoacrylate,
a strong fast acting adhesive. This process involves pouring the adhesive over
the model and allowing it to soak in. It is a slightly exothermic reaction and
solidifies the whole model completely.
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Figure 9: Models for d = 41 being cleaned

Figure 10: Finished models for d = 194 and 41 [back], and d = 17 and 19 [front]
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4 The Puzzle

4.1 The Idea

If we take one of our polytopes that represents one tessellation, then we can
directly compare it to a tessellation using the same subgroup by another method
found by Dan Yasaki [7]. This in theory should hopefully give us a way of
decomposing our shape into smaller polytopes that we can use to create a puzzle.
For the puzzle to be satisfying but challenging we wanted to find a way to get
the pieces to connect such that you knew if they were correctly fitted and for it
to be not too complicated with loads of components.

4.2 Comparing the tessellations

First we define cross ratio of four distinct points to be,

(z1, z2 : z3, z4) =
(z1 − z3)(z2 − z4)

(z2 − z3)(z1 − z4)
(7)

then the dilogarithm function,

Li2(z) =

∞∑
k=1

zk

k2
= z +

z2

22
+
z3

32
+ ... (8)

and the Bloch - Wigner function,

D2(z) = Im(Li2(z)) + Arg(1− z) log(|z|), z ∈ C\[0,∞) (9)

Then the hyperbolic volume of a 3-simplex with vertices on the boundary of
H3 is, |D2((z1, z2 : z3, z4))|.

The Bloch - Wegner function has the property that,

D2(z) = D2

(
1− 1

z

)
= D2

(
1

1− z

)
= −D2

(
1

z

)
= −D2(1−z) = −D2

(
1− 1

1− z

)
so since the six possible values of the cross ratio are: λ, 1 − 1

λ ,
1

1−λ ,
1
λ , 1 −

λ and 1− 1
1−λ , by taking the absolute value it doesn’t matter which cross ratio

we calculate.
Thus to find the volume of our polytopes we first decompose them into 3-

simplexes and apply the Bloch - Wigner function to each component of this
triangulation and sum the absolute values.

We use the triangulation in the data for each d and the data calculated
independently and separately by Dan Yasaki [8] to compare the volumes of two
tessellations for the same d. If we get equal volumes then it suggest we can find
a decomposition of our first polytope into smaller Yasaki type one.
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4.3 Fitting it all together

The idea for constructing the puzzle is to use spherical magnets that were taken
from hobby kits, such as Zen Magnets. These would give us a way of connecting
the pieces together at the vertices and hold the pieces in place, while the puzzle
was being constructed. I tested combining the 3-d printer and these magnets
and the result was very pleasing. However these magnets have a fixed behaviour
when more than two come together. This would be a problem around vertices
where more than 4 pieces we joining together. To get abound this I employed
the use of steel ball bearings that behaved in a better way.

Figure 11: Four pieces for the decomposition d = 6 fitted together using only Zen
Magnets in the method described above

The initial calculations showed that we could decompose the first polytope
corresponding to d = 6 into a Truncated Tetrahedron and four Hexagonal Caps.
Our hyperbolic volume comes out as:

31.0930373... = 7.9183340...+ 4× 5.7936758...

the decomposition values calculated from Yasaki’s data [8]. Also for d = 17 we
can decompose the first polytope into: a Truncated Tetrahedron, four Hexagonal
Caps, twelve quadrangle based pyramids and six Triangular Prisms. However
these calculations do not tell us how to decompose our shapes into these con-
stituent parts, and it is here that these decompositions become quite arbitrary.
Looking at other cases for example d = 34 and 57 we can just decompose them
in any way that we like however our pieces will not necessarily represent a tes-
sellating polytope of our bigger Hyperbolic Space. Furthermore for this class of

polytope (d = n2+2
3 ) we have two faces that are equilateral triangles side length

2, but with increasing d the radius of the sphere around these shapes increases
with

√
d and as such side lengths of faces of these polytopes are different. This

is evident as each of these has the underlying symmetry of the octahedron and
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can be decomposed in very similar ways into basis structure containing a Trun-
cated Tetrahedron and four Hexagonal Caps, or a Cuboctahedron. This means
that it would be very unlikely to find the pieces from one case could be arranged
into the other as initially hoped. Also they are decomposed in a very similar
way, so once you understand how one fits together you could make the jump
easily to the more complicated cases.

5 Summary

In this project I have managed to calculate a mathematical way of transforming
the points generated into nicely symmetric models and have successfully been
able to print them. I have found some underlying structure to these polytopes
in general and presented my findings here, and since this is in general, infinitely
many different models from the same class can be rendered. There is still more
work to be done, as I have mostly looked only at the first polytopes for each d,
but my method can easily be applied to cases where we don’t necessarily have
a constant set of fixed points. Additional research could be carried out into the
classes of polytopes, and potentially every d could be classified. Furthermore
different symmetry groups not mentioned here could be possible.
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Figure 12: Wireframe model for d = 281 [using OpenSCAD] [5]

Figure 13: Wireframe model for d = 482 [using OpenSCAD] [5]

Figure 14: Wireframe model for d = 1046 [using OpenSCAD] [5]
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