
J
H
E
P
1
0
(
2
0
1
2
)
0
7
5

Published for SISSA by Springer

Received: May 14, 2012

Accepted: September 8, 2012

Published: October 11, 2012

From polygons and symbols to polylogarithmic

functions

Claude Duhr,a,b Herbert Ganglc and John R. Rhodesc

aInstitute for Particle Physics Phenomenology, University of Durham,

Durham, DH1 3LE, U.K.
bInstitut für theoretische Physik, ETH Zürich,

Wolfgang-Paulistr. 27, CH-8093, Switzerland
cDepartment of Mathematical Sciences, University of Durham,

Durham, DH1 3LE, U.K.

E-mail: duhrc@itp.phys.ethz.ch, herbert.gangl@durham.ac.uk,

j.r.rhodes@durham.ac.uk

Abstract: We present a review of the symbol map, a mathematical tool introduced

by Goncharov and used by him and collaborators in the context of N = 4 SYM for

simplifying expressions among multiple polylogarithms, and we recall its main properties.

A recipe is given for how to obtain the symbol of a multiple polylogarithm in terms of

the combinatorial properties of an associated rooted decorated polygon, and it is indicated

how that recipe relates to a similar explicit formula for it previously given by Goncharov.

We also outline a systematic approach to constructing a function corresponding to a given

symbol, and illustrate it in the particular case of harmonic polylogarithms up to weight four.

Furthermore, part of the ambiguity of this process is highlighted by exhibiting a family of

non-trivial elements in the kernel of the symbol map for arbitrary weight.

Keywords: Scattering Amplitudes, Supersymmetric gauge theory

ArXiv ePrint: 1110.0458

c© SISSA 2012 doi:10.1007/JHEP10(2012)075

mailto:duhrc@itp.phys.ethz.ch
mailto:herbert.gangl@durham.ac.uk
mailto:j.r.rhodes@durham.ac.uk
http://arxiv.org/abs/1110.0458
http://dx.doi.org/10.1007/JHEP10(2012)075

J
H
E
P
1
0
(
2
0
1
2
)
0
7
5

Contents

1 Introduction 1

2 Short review of multiple polylogarithms 3

3 Symbols and polygons 6

3.1 An example in a nutshell 6

3.2 Rules of symbol calculus 10

3.3 Relationship to the symbol of ref. [63]. 14

4 A simple example 19

5 Integrating symbols: an algorithmic approach 22

5.1 Choosing the types of functions 23

5.2 Finding the arguments 24

5.3 Integrating the symbol (1) 27

5.4 A set of projectors 28

5.5 Integrating the symbol (2) 30

5.6 Elements in the kernel of the symbol map 32

6 Application: a spanning set for harmonic polylogarithms 34

6.1 Example 37

7 Conclusion 41

A Review on shuffle algebras 41

B Selected examples of symbols 43

B.1 The symbol of a generic multiple polylogarithm of weight one 45

B.2 The symbol of a generic multiple polylogarithm of weight two 45

B.3 The symbol of a generic multiple polylogarithm of weight three 46

B.4 The symbol of a generic multiple polylogarithm of weight four 46

C Proof of Proposition 4 49

D Some considerations on the implementation of the algorithm 57

E Analytic continuation of the spanning set of functions for harmonic poly-

logarithms 58

E.1 Analytic representation inside the unit disc 58

E.2 Analytic representation outside the unit disc: inversion relations 59

– i –

J
H
E
P
1
0
(
2
0
1
2
)
0
7
5

F Inversion formulas for the spanning set 60

F.1 Weight three 60

F.2 Weight four 62

G Expression of HPL’s in terms of the spanning set 67

G.1 Results for weight two 67

G.2 Results for weight three 67

G.3 Results for weight four 68

1 Introduction

Polylogarithms and their multivariable generalizations [1, 2] play an equally important

role in modern mathematics and in physics. In mathematics they occur for instance in

connection with algebraic K-theory and mixed Tate motives, e.g. [3–8], with Hilbert’s

third problem (on scissors congruences), e.g. [9–11], as volume functions for hyperbolic

spaces, e.g. [11–16, 18], and are also related to characteristic classes, e.g. [17], special

values of L-functions in algebraic number theory, e.g. [5, 7, 18], algebraic cycles, e.g. [19–

21] or, in the form of iterated integrals, in algebraic topology, e.g. [22–24]. In physics,

the computation of higher order corrections to physical observables requires the analytical

evaluation of Feynman integrals that can generally be expressed in terms of (special classes

of) multiple polylogarithms, e.g. [25–59]. While in all of these applications it would be

desirable to have a minimal spanning set — “basis functions” in physics parlance — for

the polylogarithmic expressions involved in a given problem, it is well known that these

latter functions satisfy various intricate functional equations among themselves, making

the question of how to find a minimal spanning set very hard to answer in general. As

a consequence, seemingly complicated results, say for a Feynman integral, may admit a

much shorter analytic representation, the simplicity of the answer being hidden due to the

existence of an abundance of functional equations among these functions. There is thus

a strong interest for a better understanding of the functional equations among multiple

polylogarithms, both from a formal mathematical standpoint and in view of practical

applications in physics.

A way to approach functional equations among (multiple) polylogarithms is provided

by the so-called symbol map [62, 63], a linear map that associates to each multiple polylog-

arithm of weight n an element in the n-fold tensor power of some vector space of one-forms.

The virtue of the symbol map is that it captures to a good extent the main combinatorial

and analytical properties of certain transcendental functions, and in particular it is ex-

pected that all functional equations among multiple polylogarithms are in the kernel of the

symbol map. Loosely speaking, this means that a necessary condition for two expressions

written in terms of multiple polylogarithms to be equal modulo functional equations is that

they have the same symbol, a condition that is usually much easier to check than proving

equality at the level of the functions. The inverse problem (sometimes called integration of

– 1 –

J
H
E
P
1
0
(
2
0
1
2
)
0
7
5

a symbol) of finding a function whose symbol matches a given tensor satisfying a certain

integrability condition is much harder and we know of no general algorithm to construct

such a function.

While special cases of the symbol map have been profitably used by mathematicians

for over two decades (for example in connection with functional equations see e.g. refs. [5, 7,

60, 61]), it has only very recently been introduced into physics in the context of the N = 4

Super Yang-Mills (SYM) theory in ref. [63], where it was applied to greatly simplify the

analytic expression for the two-loop six-point remainder function obtained in ref. [64, 65]. In

the wake of that work, the symbol map has seen various applications, mostly in the context

of N = 4 SYM. In particular, by now the symbols of all two-loop remainder functions are

completely known [66], while at three loops the symbols of the remainder functions for the

hexagon in general kinematics [67] and for the octagon in special kinematics [68] are known

up to some free parameters that could not be fixed from general considerations. However,

only in the latter octagon case an integrated form of the symbol is also known. Other

approaches, aiming at the determination of the symbol of loop amplitudes by exploiting

the operator product expansion in the collinear limit [69, 70] or the relationship between

Feynman integrals and the volumes of polyhedra in non-euclidean spaces [71, 72], have

also been considered. Furthermore, the symbol map was recently used to obtain compact

analytic expressions for certain one-loop hexagon integrals in D = 6 dimensions [73–76].

More phenomenological applications, as e.g. in ref. [77], have also been considered.

The aim of this paper is twofold: While the symbol map has already been extensively

used in the N = 4 SYM community in physics, it seems still rather little known in other

areas of physics in which the computation of Feynman integrals plays an important role.

On the one hand, we therefore present a concise review on this topic, putting special

emphasis on how to apply the symbol map to obtain simpler or shorter analytic results

for functions arising from certain Feynman integrals. On the other hand, we believe that

our work goes beyond the existing literature on the subject in various aspects. While so

far the symbol of a transcendental function was defined recursively by considering iterated

differentials, we introduce a simple diagrammatic rule that allows to directly read off the

symbol from all possible “triangulations” of a certain decorated polygon associated to a

multiple polylogarithm [21]. Furthermore, we also address the problem of how to integrate a

symbol to a function by presenting an effective approach to construct a candidate spanning

set of functions in terms of which the symbol might be integrated.

The structure of the paper is as follows: In section 2 we give a short review of multiple

polylogarithms and of their properties. In section 3 we review the main properties of the

symbol map and we show how to obtain the symbol of a multiple polylogarithm as the

weighted sum of all possible maximal dissections of a certain decorated polygon associated

to the polylogarithm. Moreover, we indicate how to relate it to a formula originally given

by Goncharov in ref. [8]. In section 4 we give a short example of how to integrate a symbol

following the approach introduced in refs. [63, 78], before generalizing this procedure to

higher weights in section 5. In order to highlight remaining difficulties and ambiguities

when trying to integrate to a function, we also give a family of non-trivial elements in the

kernel of the symbol map. We illustrate these concepts in section 6 where we apply them

– 2 –

J
H
E
P
1
0
(
2
0
1
2
)
0
7
5

to derive a spanning set up to weight four for a special class of multiple polylogarithms,

the so-called harmonic polylogarithms [25]. The five (rather long) appendices contain a

summary of the mathematical notions used throughout the paper, as well as some technical

details and proofs left out in the main text. We also include an appendix with a collection

of symbols for multiple polylogarithms up to weight four.

Remark. The authors wish the reader to be aware that this paper contains the work of

both physicists and mathematicians. As a consequence, it should be noted that the paper

has been written to try to accommodate the language of both communities. We tried to

find a compromise in the level of details given, and so while some arguments may go deeper

than felt necessary by some, the text may be too sketchy at times for others.

2 Short review of multiple polylogarithms

Definition. Multiple polylogarithms can be defined recursively, for n ≥ 0, via the iterated

integral [1, 2]

G(a1, . . . , an;x) =

∫ x

0

dt

t− a1
G(a2, . . . , an; t) , (2.1)

with G(x) = G(;x) = 1, an exception being when x = 0 in which case we put G(0) = 0

(clearly any expression
∫ 0

0 . . . should be zero), and with ai ∈ C are chosen constants and x

is a complex variable. In the following, we will also consider G(a1, . . . , an;x) to be functions

of a1, . . . , an. In the special case where all the ai’s are zero, we define, using the obvious

vector notation ~an = (a, . . . , a︸ ︷︷ ︸
n

), a ∈ C,

G(~0n;x) =
1

n!
logn x , (2.2)

consistent with the case n = 0 above. Note that, while in the Mathematics literature these

functions appear already in the early 20th century in the works of Poincaré and of Lappo-

Danilevsky [79] as “hyperlogarithms”, as well as in the 1960’s in Chen’s work on iterated

integrals (e.g., [22]),1 in the physics literature these functions are often called Goncharov

polylogarithms, due to the wealth of structure that the latter has established for them

over the last 20 years. Throughout this paper, we follow the physics convention for the

definition of the iterated integrals, which differs slightly from the mathematical one; e.g., in

ref. [2], the function corresponding to G(a1, . . . , an;x) would be denoted I(0; an, . . . , a1;x),

i.e., with the reverse order of the ai but keeping the same variable x.

We will refer to the vector ~a = (a1, . . . , an) as the vector of singularities attached to

the multiple polylogarithm and the number of elements n, counted with multiplicities, in

that vector is called the weight of the multiple polylogarithm.

Properties. We collect here a number of useful and well-known properties (cf. e.g. ref. [2,

8]). Iterated integrals form a shuffle algebra [81] (see appendix A for a short review of

shuffle algebras), which allows one to express the product of two multiple polylogarithms of

1In a sense, they already made an appearance in Kummer’s pioneering work [80] in 1840.

– 3 –

J
H
E
P
1
0
(
2
0
1
2
)
0
7
5

weight n1 and n2 as a linear combination with integer coefficients of multiple polylogarithms

of weight n1 + n2, via

G(a1, . . . , an1 ;x)G(an1+1, . . . , an1+n2 ;x) =
∑

σ∈Σ(n1,n2)

G(aσ(1), . . . , aσ(n1+n2);x), (2.3)

where Σ(n1, n2) denotes the set of all shuffles of n1 + n2 elements, i.e., the subset of the

symmetric group Sn1+n2 defined by (cf. ref. [22], eq. (1.5.6))

Σ(n1, n2) = {σ ∈ Sn1+n2 |σ−1(1) < . . . < σ−1(n1) and σ−1(n1+1) < . . . < σ−1(n1+n2)} .
(2.4)

The algebraic properties of multiple polylogarithms imply that not all the G(~a;x) for fixed

x are independent, but that there are (polynomial) relations among them. In particular,

we can reduce them, modulo products of lower weight functions, to functions whose right-

most index of all the vectors of singularities is non-zero (apart from objects of the form

G(~0n;x)), e.g.,

G(a, 0, 0;x) = G(0, 0;x)G(a;x)−G(0, 0, a;x)−G(0, a, 0;x)

= G(0, 0;x)G(a;x)−G(0, 0, a;x)− (G(0, a;x)G(0;x)− 2G(0, 0, a;x))

= G(0, 0;x)G(a;x) +G(0, 0, a;x)−G(0, a;x)G(0;x) ,

(2.5)

where the middle summand is of the desired form (and the remaining summands are prod-

ucts of lower weight functions).

If the (rightmost) index an of ~a is non-zero, then the function G(~a;x) is invariant

under a rescaling of all its arguments, i.e., for any k ∈ C∗ we have

G(k~a; k x) = G(~a;x) (an 6= 0) . (2.6)

Furthermore, multiple polylogarithms satisfy the Hölder convolution [82], i.e., whenever

a1 6= 1 and an 6= 0, we have, ∀p ∈ C∗,

G(a1, . . . , an; 1) =

n∑
k=0

(−1)kG

(
1− ak, . . . , 1− a1; 1− 1

p

)
G

(
ak+1, . . . , an;

1

p

)
. (2.7)

Below in section 5 we will be particularly interested in the limiting case p → ∞ of this

identity,

G(a1, . . . , an; 1) = (−1)nG (1− an, . . . , 1− a1; 1) . (2.8)

Whenever they converge, multiple polylogarithms can equally well be represented [1]

as multiple nested sums (e.g., for |xi| < 1)

Lim1,...,mk(x1, . . . , xk) =
∑

0<n1<n2<···<nk

xn1
1 xn2

2 · · ·x
nk
k

nm1
1 nm2

2 · · ·n
mk
k

=
∞∑

nk=1

xnkk
nmkk

nk−1∑
nk−1=1

. . .

n2−1∑
n1=1

xn1
1

nm1
1

.

(2.9)

Note that we are using Goncharov’s original summation convention [1]; other authors define

Lim1,...,mk(x1, . . . , xk) using the reverse summation convention instead, i.e. n1 > · · · > nk.

– 4 –

J
H
E
P
1
0
(
2
0
1
2
)
0
7
5

The G and Li functions define in fact the same class of functions and are related by

Lim1,...,mk(x1, . . . , xk) = (−1)kGmk,...,m1

(
1

xk
, . . . ,

1

x1 . . . xk

)
, (2.10)

(note the reverse order of the indices for G) where we used the notation

Gm1,...,mk (t1, . . . , tk) = G(0, . . . , 0︸ ︷︷ ︸
m1−1

, t1, . . . , 0, . . . , 0︸ ︷︷ ︸
mk−1

, tk; 1) . (2.11)

It is possible to find closed expressions for (very few) special classes of multiple polylog-

arithms, for arbitrary weight, in terms of classical polylogarithm functions, e.g., for a 6= 0

we have

G(~0n;x) =
1

n!
logn x, G(~an;x) =

1

n!
logn

(
1− x

a

)
,

G(~0n−1, a;x) = −Lin

(x
a

)
, G(~0n,~ap;x) = (−1)p Sn,p

(x
a

)
,

(2.12)

where Sn,p denotes the Nielsen polylogarithm [83]. Moreover, up to weight three, multiple

polylogarithms are well-known to be expressible in terms of ordinary logarithms, diloga-

rithms and trilogarithms (cf. ref. [84], section 8.4.3, implicitly, as well as refs. [11, 15]). In

particular, if a and b are non-zero and different, we find

G(a, b;x) = Li2

(
b− x
b− a

)
− Li2

(
b

b− a

)
+ log

(
1− x

b

)
log

(
x− a
b− a

)
. (2.13)

Aim. The aim of this paper is to present an algorithmic approach how to deal with — in

fact rather to circumvent — the complicated functional equations that relate multiple poly-

logarithms, and how to find, given a choice of certain singularities ai, a (possibly minimal)

spanning set for functions in which to express multiple polylogarithms with singularities

only in these ai, provided such a set exists. The approach we present is rather generic and

can be applied to any expression involving multiple polylogarithms. This is made possible

by using results closely related to work of Goncharov, Spradlin, Vergu and Volovich [63],

which in turn was inspired by the theory of (mixed Tate) motives,2 and in particular by

using a certain tensor calculus associated to iterated integrals, which is called “symbol

calculus” in the following (the name “symbol” originating from [63] and from ref. [62]),

and which we will review in the next section.

An important remark is that the construction of a symbol seems to be a rather spe-

cial case of a very general construction by Chen [22], where it appears as the image of

an iterated integral as a 0-cocycle in the so-called “bar construction” attached to, say, X

equal to the projective line minus a number of points (more generally, the construction has

been investigated for a hyperplane configuration [92], section 3), and it lands in the n-fold

2Let us point out that this is far from being the first exhibit of a direct connection between mixed Tate

motives and mathematical physics, as such a relationship has been explored, e.g., by Kreimer in work with

Bloch and Esnault [85, 86], such a connection was clearly apparent from letter correspondence between

Broadhurst and Deligne [87] resulting e.g. in ref. [88], work of Belkale-Brosnan [89] or more recently by

Brown [90] and others. One should also mention work of Connes and Marcolli [91] in this direction.

– 5 –

J
H
E
P
1
0
(
2
0
1
2
)
0
7
5

tensor product of the vector space of 1-forms on the underlying space X. Moreover, Chen

characterised the image as the formal words in these 1-forms satisfying a natural integra-

bility condition. A polygon attached to an iterated integral enjoys the useful property that

it gives a very concise way of explicitly producing integrable words of that kind. We also

note that Goncharov has generalized the construction of a symbol to a considerably larger

setting, for any so-called framed mixed Hodge-Tate structures (ref. [62]).

As an application, we restrict ourselves in section 6 to a specific subclass of multiple

polylogarithms that are of particular importance in applications in high-energy physics.

These so-called harmonic polylogarithms (HPL’s) H(~a;x) were first singled out and thor-

oughly studied in ref. [25]. HPL’s correspond to a special case of the iterated integral

defined in eq. (2.1) where ai ∈ {−1, 0, 1}. More precisely, they are defined via

H(~a;x) = (−1)kG(~a;x) , ai ∈ {−1, 0, 1} , (2.14)

where k is the number of elements in ~a equal to (+1) (this slightly puzzling sign arises from

earlier ad-hoc conventions when authors used the 1-form dt
1−t rather than dt

t−1). Many one-

loop and two-loop Feynman integrals can be expressed in terms of HPL’s up to weight four

and generalizations thereof [26, 27]. As harmonic polylogarithms are just a special case of

the multiple polylogarithms introduced at the beginning of this section, all HPL’s through

weight three can be expressed through classical polylogarithms. By contrast, similar to

the general case of multiple polylogarithms, it is expected that HPL’s of weight ≥ 4 are no

longer expressible in terms of classical ones alone. In section 6 we illustrate our technique

by constructing a spanning set of harmonic polylogarithms in weight 4 for which we indeed

needed three non-classical functions.

3 Symbols and polygons

The differential structure of multiple polylogarithms can be captured very well combi-

natorially using a certain kind of decorated polygons with some additional structure, as

developed in ref. [21], where they were called R-deco polygons. We note that there are re-

lated notions that had occurred previously in Goncharov’s work, e.g. in refs. [8, 93]. There

is an algebraic object attached to such a polygon, and hence to the corresponding multiple

polylogarithm. This object, which has been dubbed a symbol in ref. [63], is an element in a

tensor power of a certain vector space and contains a lot of information about the original

function.

3.1 An example in a nutshell

In this subsection we give a quick idea of how, following ref. [21], one can associate to a

multiple polylogarithm — or rather to an associated rooted decorated polygon — its symbol

(we show in section 3.2 that this definition is equivalent to the definition given in ref. [63]).

In the following subsection we then give a more detailed account of the construction.

A multiple polylogarithm of weight n gives rise to a certain (n + 1)-gon. As a “fore-

shadowing” example, we first give the 4-gon P = P (c, b, a, x) attached to some weight 3

multiple polylogarithm G(a, b, c;x) = −Li1,1,1(b/c, a/b, x/a) = I(0; c, b, a;x):

– 6 –

J
H
E
P
1
0
(
2
0
1
2
)
0
7
5

P (c, b, a, x) =

x

a

b

c

•
←→ G(a, b, c;x)

which comes equipped with distinct decorations (in this order) c, b, a and x, the latter

decoration x being for the distinguished root side (drawn by a double line in the picture),

and also carries information on the orientation of the polygon in the form of a fat vertex

(which should be thought of as the “first” vertex, while the root side — adjacent to the

first vertex — is the “last” side).

In a first step, one lists all possible ways to draw the maximal number of non-intersecting

arrows (an arrow is a directed line from a vertex of P to a non-adjacent side), which for

an (n+ 1)-gon amounts to n− 1 such arrows, and one formally adds the resulting objects

(the framing polygon is identical, while each copy is equipped with a different maximal set

of arrows).

In our example n = 3, such a maximal set contains n − 1 = 2 arrows, and there are

precisely 12 different such sets, given by

x

a

b

c

• II II UUUU x

a

b

c

•
))))
55 55

x

a

b

c

•

				�� ��

x

a

b

c

•
iiii
uuuu

x

a

b

c

• GG GG

77 77

x

a

b

c

•
'' ''

�� ��

x

a

b

c

•

����

wwww

x

a

b

c

•
gggg
WWWW

x

a

b

c

• GG GG

����

x

a

b

c

•
'' ''gggg

x

a

b

c

• WWWW

�� ��

x

a

b

c

•
77 77wwww

In a second step, to each such maximal set A of arrows in P , we associate a rooted

tree (as the tree dual to the polygon dissection defined by the arrows) whose decorations

are (decorated and rooted) 2-gons. As an example, to the 4-gons in the last column above

we attach

x

a

b

c

•
iiii
uuuu• •
•

uuuu ←→

x•
c
c•
a
c•
b

•

•

•

– 7 –

J
H
E
P
1
0
(
2
0
1
2
)
0
7
5

x

a

b

c

•
gggg
WWWW• •

•

WWWW

←→
c•
b

x•
c

x•
a

•

• •

x

a

b

c

•
77 77wwww • •
•

wwww ←→

x•
c
c•
a
a•
b

•

•

•

Any linear order on the vertices of such a rooted tree which is compatible in the sense

discussed below in section 3.2 with the partial order on it (only the middle tree above is

non-linear hence allows more than one such linear order) now gives a term in the symbol

S(P) attached to P . In practice, this means that every branching in a tree contributes to

the symbol by the shuffle of (the vertices that appear on each of) its branches (see below

for a more detailed description).

Third step: each of the 2-gons B in one of the linear orders on the vertices now is

mapped via a suitable map µ to a rational function in the original decorations of the

polygons (in the example a natural target space would be the (multiplicative group of the)

function field Q(a, b, c, x) of rational functions in the variables a, b, c, x). More precisely,

if B =
y•
x

for x 6= y, y 6= 0, where y denotes the root decoration, then we map B

to µ(B) = 1− y/x, provided x 6= 0, and to µ(B) = y otherwise. The case of a 2-gon with

identical decorations y = x needs special attention. In this situation we naively obtain

µ(B) = 0, which morally corresponds to the divergent integral G(x; y) = G(x;x). This

problem can be circumvented by introducing a small ‘regulator’3 ε such that x and y do no

longer coincide, and we drop in the symbol all terms of the form . . .⊗ ε⊗ . . . before taking

the limit ε→ 0. It should however be noted that the limit depends on the regularization,

e.g. if we choose y = (1− ε)x, we obtain µ(B) = 1− (1− ε) = ε and

. . .⊗ µ(B)⊗ . . . = . . .⊗ ε⊗ . . .→ 0 , (3.1)

while the choice y = x− ε leads to µ(B) = 1− (x− ε)/x = ε/x

. . .⊗ µ(B)⊗ . . . = . . .⊗ (ε/x)⊗ . . .→ − . . .⊗ x⊗ (3.2)

In practice we observe however that, at least for the two different regularizations presented

above, the final result for the symbol of a finite quantity is independent of the way we

3For a detailed discussion on how to regularize multiple polylogarithms we refer to ref. [2].

– 8 –

J
H
E
P
1
0
(
2
0
1
2
)
0
7
5

regularized the 2-gons with identical decorations. For this reason we will from now on

always define µ(B) = 1, which corresponds to regularization prescription of eq. (3.1).

Last step: fixing the signs. We need to invoke a sign for the individual elementary

tensors, and this sign is determined by using the number of backward arrows in a dissection.

In order to see this quickly, it is convenient to “break up” the polygon at its first vertex

(in the pictures it is typically indicated by a bullet). Then we “roll out” the sequence of

sides and arrange it as a line from left to right, starting with the first vertex and ending

with the root side; dissecting arrows inside the polygon will be stretched out (in a way that

they still do not intersect). We give it for the third example above:

x

a

b

c

•
77 77

α

wwww β ←→ •
c
•

b
•

a
•

x

α
��

β

��

Now a backward arrow is one which, in the rolled-out version of the polygon, has its

end point to the left of its starting point (i.e. points from right to left, like β above), while

a forward arrow has it to its right (i.e. points from left to right, like α above).

Here is a more formal definition: there is a natural linear order on the sides e1, . . . , en
of an n-gon as above, starting with the non-root side e1 incident with the first vertex and

ending with the root side en (in the example above it is the linear order given by the

sides e1, . . . , e4 decorated by c, b, a and x, and the vertices v1 = e4 ∩ e1 (the first vertex),

v2 = e1 ∩ e2, v3 = e2 ∩ e3, v4 = e3 ∩ e4). This induces a linear order on the vertices vj
which arise as the intersection of ej and ej−1 (indices taken modulo n), where the first

vertex is the smallest element in that order. Then a (non-trivial) arrow can be encoded

by a pair (vj , ek) with k /∈ {j − 1, j}, and it is backward if and only if k < j − 1. With

these notions, the sign attached to a polygon P with a maximal arrow set A is given by

(−1)#{backward arrows of A}. In the three four-gons discussed above in more detail we get two

backward arrows for the first maximal dissection of the square and one backward arrow for

the remaining two dissections.

Putting all of the above ingredients together and writing τA for the tree dual to the

maximal set of arrows A, and (τA,≺) for its partial order, the final formula for the symbol

S(P) of an n-gon P is

S(P) =
∑

max sets A
of arrows in P

(−1)#{backward arrows of A}
∑

linear orders λ
compatible with (τA,≺)

µ
(

a1•
b1

)
⊗· · ·⊗µ

(
an−1•
bn−1

)
.

(3.3)

As an example, the first and third of the three maximal sets of arrows above give

+µ
(

x•
c

)
⊗ µ

(
c•
a

)
⊗ µ

(
c•
b

)
=
(

1− x

c

)
⊗
(

1− c

a

)
⊗
(

1− c

b

)

– 9 –

J
H
E
P
1
0
(
2
0
1
2
)
0
7
5

and

−µ
(

x•
c

)
⊗ µ

(
c•
a

)
⊗ µ

(
a•
b

)
= −

(
1− x

c

)
⊗
(

1− c

a

)
⊗
(

1− a

b

)
,

respectively, while the middle term (corresponding to a non-linear dual tree, i.e. a dual

tree with branchings) contributes via the shuffle product of the two branches

−µ
(

x•
c

)
⊗
(
µ
(

c•
b

)
qqµ

(
x•
a

))
= −µ

(
x•
c

)
⊗ µ

(
c•
b

)
⊗ µ

(
x•
a

)
− µ

(
x•
c

)
⊗ µ

(
x•
a

)
⊗ µ

(
c•
b

)
= −

(
1− x

c

)
⊗
(

1− c

b

)
⊗
(

1− x

a

)
−
(

1− x

c

)
⊗
(

1− x

a

)
⊗
(

1− c

b

)
,

where we introduced the symbol for the shuffle product

aqq b = a⊗ b+ b⊗ a . (3.4)

Motivation and justification of this assignment has been given to an extent in ref. [21],

where it forms part of an expression arising from the well-known bar construction in al-

gebraic topology applied to a differential graded algebra on the polygons above (which in

turn is motivated by certain algebraic cycles originally studied by Bloch [94] and Bloch-

Kriz [19]).

The first (and rather similar) description of symbols, in terms of trivalent trees, has

been given, under the name⊗m-invariant, by Goncharov (ref. [8], section 4.4). In section 3.3

below we discuss the relationship between the two descriptions.

To summarize: an important part of the differential structure of a weight n multiple

polylogarithm is captured by a certain decorated (n+ 1)-gon. More precisely, if the argu-

ments of the multiple polylogarithm are expressed in terms of variables/constants x1, . . . ,

xm for some m, the polygon is an (n + 1)-gon with decoration by simple expressions in

x1, . . . , xm; now to this (rooted decorated oriented) polygon there is attached in a natural

way an expression (its “symbol”) in V ⊗n where V is a finite rank submodule (it might be

convenient for the reader to think of V as a finite dimensional vector space) of the space

Q(x1, . . . , xm)× (of infinite rank), i.e., the invertible (= non-zero) rational functions in the

variables x1, . . . , xm.

3.2 Rules of symbol calculus

Roughly, a symbol is a formal sum of elementary n-fold tensors a1⊗· · ·⊗an, and one works

in each tensor factor as with (a refined form of) d log terms. In other words, each factor ai
in a tensor product is tacitly understood as

d log ai ≡
dai
ai

. (3.5)

Furthermore, we use shuffle products and the following rules (essentially boiling down to

multilinearity, but in an unusual form, as we pass from multiplicative to additive notation):

– 10 –

J
H
E
P
1
0
(
2
0
1
2
)
0
7
5

• Distributivity.

C ⊗ (a · b)⊗D = C ⊗ a⊗D + C ⊗ b⊗D (3.6)

and consequently

C ⊗ an ⊗D = n
(
C ⊗ a⊗D

)
, n ∈ Z, (3.7)

where C and D denote fixed elementary tensors. Note that n here is a coefficient

rather than part of the first tensor factor; in particular, putting n = 0 we see that

C ⊗ 1⊗D = 0.

• Neglecting torsion.

We will “work up to torsion”, which means that we will put

C ⊗ ρn ⊗D = 0 , n ∈ Z, (3.8)

for ρn an n-th root of unity (by eq. (3.7), we have n
(
C ⊗ ρn ⊗D

)
= 0, in any case).

• Shuffle product.

An important property of the symbol is that it preserves products: more precisely,

it maps the product of two multiple polylogarithms to the shuffle product of their

respective symbols, i.e.

S
(
G(a1, . . . , ar;x)G(b1, . . . , bs; y)

)
= S

(
G(a1, . . . , ar;x)

)
qqS

(
G(b1, . . . , bs; y)

)
(3.9)

where qq is the symbol used for the shuffle product of two tensors, defined on

elementary tensors by

(a1 ⊗ . . .⊗ an1)qq (an1+1 ⊗ . . .⊗ an1+n2) =
∑

σ∈Σ(n1,n2)

aσ−1(1) ⊗ . . .⊗ aσ−1(n1+n2) ,

(3.10)

where Σ(n1, n2) was defined in eq. (2.4). For more details on shuffle algebras, we

refer to appendix A. We note that, on the left hand side of eq. (3.9), the shuffle

permutations are applied to the arguments of the two functions (cf. e.g. eq. (2.3)),

while on right hand side one shuffles the tensor factors instead, in a completely

analogous fashion.

Note that eq. (3.9) is a rather non-trivial fact, as one can already see in the first

non-obvious case:

S
(
G(a;x)G(b;x)

)
= S

(
G(a, b;x) +G(b, a;x)

)
=

=
((

1− x

a
)⊗ (1− x

b
) −

(
1− x

a
)⊗ (1− a

b
) +

(
1− x

b
)⊗ (1− b

a
)
)

+
((

1− x

b
)⊗ (1− x

a
) −

(
1− x

b
)⊗ (1− b

a
) +

(
1− x

a
)⊗ (1− a

b
)
)
,

which agrees with S
(
G(a;x)

)
qqS

(
G(b;x)

)
=
(
1− x

a)⊗ (1− x
b) +

(
1− x

b)⊗ (1− x
a),

due to cancellations of terms.

– 11 –

J
H
E
P
1
0
(
2
0
1
2
)
0
7
5

We will encounter expressions which involve both tensor and shuffle products —

in order to avoid writing many parentheses, our convention is that a shuffle takes

precedence over a tensor, i.e.

a⊗ bqq c ≡ a⊗ (bqq c) . (3.11)

Furthermore, we abbreviate elementary tensors with the same factors as follows:

a⊗n = a⊗ · · · ⊗ a︸ ︷︷ ︸
n times

. (3.12)

• Refined d log terms.

We emphasise here already, though, that we will not treat d log c for a rational con-

stant c as zero (as opposed to ref. [63], but in line with the non-reduced symbol of

ref. [62]) since we would lose a lot of important information this way. Instead we

extend the above calculus to rational numbers in complete analogy with the above;

so we have, e.g.,

C ⊗ 2m · 3n · x−5 ⊗D = m(C ⊗ 2⊗D) + n(C ⊗ 3⊗D) − 5 (C ⊗ x⊗D) . (3.13)

• Root decoration 0 annihilates:

since G(. . . ; 0) = 0, we also need to put S(G(. . . ; 0)) = 0, and this indicates that we

can (and will) ignore polygons whose root side is decorated by 0.

Linear orders of a tree. For a rooted tree T , which we view without a fixed embedding

into the plane, hence e.g. we consider as equal the two trees

•

• •v1 v2

v0

and

•

• •v2 v1

v0

there is a natural partial order ≺ on its vertices vj (j ∈ J), given as follows: the root vertex

v0 ≺ vj for any j ∈ J , and vj ≺ vk for vj 6= v0 if and only if there is a direct path from

root to a leaf passing first through vj and then through vk.

A linear order on the vertices of T which is compatible with the order ≺ is a sequence

(v0, vj1 , . . . , vjr) of all the vertices vj (j ∈ J) such that vji ≺ vjk implies ji ≤ jk. (This

means that if two vertices are in a relation with respect to the partial order, then they

should be related in any compatible linear order in the same way, while if they are not

related in the partial order, there is no condition for how they should be related in that

linear order.) In the example, there are precisely two linear orders which are compatible

with the partial order, as the root vertex always comes first: (v0, v1, v2) and (v0, v2, v1).

Definition of a symbol. Now we are ready to give a complete definition of the sym-

bol attached to a (rooted decorated oriented) (n + 1)-gon P with decoration sequence

(t1, . . . , tn, x), the last member x being the root decoration, and then extend it by lin-

earity and shuffle product to any sum of (products of) polygons, hence also for multiple

polylogarithms:

– 12 –

J
H
E
P
1
0
(
2
0
1
2
)
0
7
5

S(P) =
∑

max sets A
of arrows in P

(−1)#{backward arrows of A}
∑

linear orders λ
compatible with (τA,≺)

µ
(
πA,λ1

)
⊗ · · · ⊗ µ

(
πA,λn

)
,

(3.14)

where the 2-gons πA,λν are determined by the maximal dissection A together with the linear

order λ which is compatible with the partial order ≺ on τA, the dual tree of the dissection

A, in the manner given above in the second step of section 3.1 (i.e. for each 2-gon arising

from the dissection of A there is a vertex of τA decorated by that 2-gon, and for any two

2-gons that are adjacent there is an edge in τA connecting the corresponding vertices.

Integrability condition. A very useful property of the rooted decorated polygons, found

by the second author in collaboration with F. Brown and A. Levin, is that each polygon

(or rather its symbol) satisfies a certain integrability condition. Indeed, an arbitrary sum

of elementary tensors does not necessarily lie in the image of the symbol map. Instead, it

was pointed out in ref. [92], making explicit in a special case the very general approach of

Chen [22], that a necessary and sufficient condition for a symbol

S =
∑

I=(i1,...,im)

cI ωi1 ⊗ · · · ⊗ ωim (cI ∈ Q) , (3.15)

to be integrable to a function is that∑
I=(i1,...,im)

cI ωi1 ⊗ · · · ⊗ (ωij ∧ ωij+1)⊗ · · · ⊗ ωim = 0 for all 1 ≤ j ≤ m, (3.16)

where ωij ∧ ωij+1 denotes the usual exterior product of two differential forms. We rewrite

this for our purposes as∑
I=(i1,...,im)

cI
[
d logωij ∧ d logωij+1

]
ωi1 ⊗ · · · ⊗ ω̂ij ⊗ ω̂ij+1 ⊗ · · · ⊗ ωim = 0 , (3.17)

where the hats indicate that we omit the corresponding factors in the tensor product. As

an example, we indicate the statement for G(a, b;x), whose symbol

S
(
G(a, b;x)

)
=
(

1− x

b

)
⊗
(

1− x

a

)
−
(

1− x

b

)
⊗
(

1− b

a

)
+
(

1− x

a

)
⊗
(

1− a

b

)
(3.18)

satisfies

d log
(

1−x
b

)
∧d log

(
1−x

a

)
− d log

(
1−x

b

)
∧d log

(
1− b

a

)
+d log

(
1−x

a

)
∧d log

(
1−a

b

)
= 0 ,

(3.19)

where we recall that d log x = dx/x. Indeed, writing

d log
(

1− α

β

)
=
dy − dβ
y − β

∣∣∣α
y=0

(3.20)

– 13 –

J
H
E
P
1
0
(
2
0
1
2
)
0
7
5

the left-hand side of eq. (3.19) becomes

dy − db
y − b

∣∣∣x
y=0
∧ dy − da

y − a

∣∣∣x
y=0
− dy − db

y − b

∣∣∣x
y=0
∧ dy − da

y − a

∣∣∣b
y=0

+
dy − da
y − a

∣∣∣x
y=0
∧ dy − db

y − b

∣∣∣a
y=0

(3.21)

and we find, e.g., that the coefficient of dx ∧ da is given by

1

x− b
· −1

x− a
− 1

x− b
· −1

b− a
+

1

x− a
· 1

a− b
= 0 . (3.22)

The coefficients of dx ∧ db and db ∧ da vanish in a similar way.

Note that the integrability condition also plays an important role in ref. [62].

3.3 Relationship to the symbol of ref. [63].

In ref. [63], the Goncharov, Spradlin, Vergu and Volovich use the differential equation for

multiple polylogarithms recursively to arrive at the definition of a symbol. More precisely,

if F : Cn → C denotes a complex valued function depending on n complex variables xk,

1 ≤ k ≤ n, the authors of ref. [63] define the “symbol of the transcendental function” F in

the following recursive way: if the total differential of F can be expressed in the form

dF =
∑
i

Fi d logRi , (3.23)

where Fi and Ri are functions of the variables xk, and Ri are moreover rational functions,

then the symbol of F is defined recursively via

S(F) =
∑
i

S(Fi)⊗Ri . (3.24)

In the case where F is a multiple polylogarithm, we can write down the differential of F in

an explicit form. For example, in the special case where all the arguments of the multiple

polylogarithm are generic (i.e., they are mutually different and do not take particular

values), we obtain [2]

dG(an−1, . . . , a1; an) =

n−1∑
i=1

G(an−1, . . . , âi, . . . , a1; an) d log

(
ai − ai+1

ai − ai−1

)
. (3.25)

The symbol of G(a1, . . . , an−1; an) is then defined in the form

S(G(an−1, . . . , a1; an)) =
n−1∑
i=1

S(G(an−1, . . . , âi, . . . , a1; an))⊗
(
ai − ai+1

ai − ai−1

)
. (3.26)

The symbol we just obtained looks seemingly different from the definition we gave in

eq. (3.14), which consists in summing over all possible maximal sets of arrows of the

polygon P (a1, . . . , an−1, an) associated to G(an−1, . . . , a1; an). In the following we show

that the two definitions are equivalent up to a rearrangement of the terms in the sum, and

hence give rise to the same tensor.

– 14 –

J
H
E
P
1
0
(
2
0
1
2
)
0
7
5

Let us consider the n-gon P = P (a1, . . . , an) (i.e. with sides decorated by ai, the

last one an decorating the root side). We will show that the symbol of P satisfies the

recursion (3.26). For simplicity, we will concentrate here on the case of generic decorations.

Let ΛP be the set of all linear orders on the dual tree attached to any of the maximal sets

of arrows of P . Then there is an obvious bijection between the terms in the double sum

in eq. (3.14) and the elements in ΛP . We can partition ΛP by collecting all those linear

orders into a subset which share the same last 2-gon that decorates the last vertex of this

linear order. This partitions ΛP into a priori 2n subsets, as those last vertices correspond

precisely to the 2-gons that we can cut off from P .

Note that cutting off the last 2-gon in a linear order on a maximal dissection corre-

sponds to contracting the associated edge in the dual tree. Note also that, clearly, the last

vertex must be a leaf of the (rooted) dual tree, and hence each last 2-gon necessarily cuts

off two successive sides of P .

Remark. For each n-gon P with n > 2, there are three ways to cut off a 2-gon, resulting

in two different ones. None of these can become the last one in any linear order in ΛP .

More explicitly, these are the two 2-gons
an•
an−1

and
an•
a1

. The former can arise

only by cutting off the root side, while the latter can arise both by cutting off the root side

and by cutting off the first side and the first vertex. As a consequence, ΛP partitions into

only 2n− 3 non-empty subsets (of same cardinality) of the above type.

In view of the above, it is clear that any such subset indexes exactly the linear orders

ΛP̃ on the (dual trees of the maximal dissections of the) subpolygon P̃ of P which is

obtained from P by cutting off a fixed 2-gon, followed by contracting the dissecting arrow

to a point.

There are typically two ways of cutting off a 2-gon in which such a subpolygon P̃

can occur: for i = 2, . . . , n − 1, cutting off the 2-gon
ai±1•
ai

leaves a complementary

subpolygon P̃±i which is identified with P̃i upon contraction of the dissecting arrow. Note

that P̃+
i and P̃−i will give terms of opposite parity, as precisely one of them corresponds to

a forward arrow. The only exception arises from cutting off
a2•
a1

, which corresponds

to a forward arrow, for which only one complementary subpolygon P̃+
1 can occur.

In summary, we get:

Claim. There is a bijection of sets

ΛP
1:1←→

n−1⋃
i=1

ΛP̃+
i
×
{

ai+1•
ai

} ∪ n−1⋃
i=2

ΛP̃−i
×
{

ai−1•
ai

} . (3.27)

Moreover, the sign of a maximal set of arrows of ΛP agrees with the sign of the correspond-

ing maximal set of arrows in ΛP̃+
i

and is opposite to the sign of the corresponding maximal

set of arrows of ΛP̃−i
.

– 15 –

J
H
E
P
1
0
(
2
0
1
2
)
0
7
5

All we need to note here is that the above remark ensures that both ΛP̃±n and ΛP̃−1
are empty, so are left out at the right hand side, and that cutting off a 2-gon of the form

ai+1•
ai

corresponds to a forward arrow, hence contributes a sign +1 to the maximal

dissection, while
ai−1•
ai

corresponds to a backward arrow, hence contributes a sign −1.

Due to the bijection (3.27), we can rewrite eq. (3.14) by first summing over all sub-

polygons P̃±i , followed by a sum over all possible elements in ΛP̃±i
. The inner sum then

evaluates to the symbol of the subpolygon P̃±i , and we are left with

S(P) =

n−1∑
i=1

S(P̃+
i)⊗ µ

(
ai+1•
ai

)
−
n−1∑
i=2

S(P̃−i)⊗ µ
(

ai−1•
ai

)
, (3.28)

where the relative minus sign arises because, as discussed above, ΛP̃±i
contribute with op-

posite signs. After identification of P̃+
i and P̃−i , eq. (3.28) agrees with the recursion (3.26)

modulo the additivity of the symbol. In order to finish the proof, we need to show that also

the base steps of the recursions are the same. It is indeed easy to check by explicit compu-

tation that, e.g., the symbol of G(a2, a1; a3) obtained from the recursive definition (3.26)

agrees with the symbol obtained from our polygon construction, eq. (3.14).

We note that in ref. [63] the d log of a constant is put to 0. Although this seems

rather natural (and turns out to be sufficient in several cases), we advocate to use a refined

version of this (which is what is typically used when working with symbols in a number

field, in accordance with ref. [62]): for each element of a set of multiplicatively independent

elements in a given number field one can choose a logarithm independently but then the

logarithm of any product formed from those elements is determined. For example, we will

see in section 6 that in the context of harmonic polylogarithms the only constants that

need to be treated in this fashion are powers of 2, and hence it is sufficient to think of “2”

as an irreducible element. The reason for considering this refined version is that it is very

helpful for recognising functions from which a given symbol might originate. In particular,

it has proved to be very useful, e.g., when “recognizing” HPL’s for keeping track of terms

which come from a (shuffle) product of polylogarithms, see section 6.

While the symbol of a multiple polylogarithm obtained by considering the maximal

set of arrows of the associated decorated polygon is equivalent to the symbol obtained

from the recursive definition (3.26), we believe that both approaches have their virtues.

While the latter might be easier to implement into a computer program in general, it is

strictly speaking only valid in the case of generic arguments of the polylogarithms. Indeed,

if the arguments are non-generic, we obtain divergences in the right-hand side of eq. (3.25),

e.g. when ai = ai+1 for some i. It is then in principle necessary to resort to a careful

regularization to deal with the degenerate cases [2]. The definition of the symbol based on

the decorated polygons, being combinatorial in nature, avoids this problem by construction

and allows to identify very easily the degenerate cases (they correspond, e.g., to arrows

ending on a side whose decoration is zero), and to discard them from the start, avoiding

in this way the need of regularization. Furthermore, as we will see in the next section,

– 16 –

J
H
E
P
1
0
(
2
0
1
2
)
0
7
5

a1

a2 a3

a4

a5

1

23 4

Figure 1. A (maximal) dissection and dual

tree for a pentagon.

a1

a2 a3

a4

a5

1

23 4

Figure 2. Figure 1, with all trivial arrows

added.

the polygon approach has naturally built in the refined ‘d log-prescription’, because the

combinatorial nature of the construction does not make a distinction between constants as

e.g. “2” for which one might be typically tempted to define d log 2 = 0.

Relating polygon dissections to binary trees. We indicate how to directly relate the

terms in the symbol definition via polygons in section 3.1 to the one via binary trees given

in ref. [8], section 4.4, by working out a concrete example. For details, we refer to [97].

The map attaching to a maximal dissection a binary tree is not immediate and it is

helpful to invoke associated ternary trees (i.e., trees where all the vertices are tetravalent)

with level structure as a suitable index set. Note that this map is surjective but far from

injective.

Let us concentrate on the terms in the symbol of a multiple polylogarithm arising from

a given linear order on the dual tree of the maximal dissection shown in figure 1. Our goal

is to map this maximal dissection for this given linear order to a binary tree. We start

by adding all possible trivial arrows to the dissection, i.e., all possible arrows that end on

adjacent sides (see figure 2).

Next, we ‘complete’ the dual tree of a maximal polygon dissection (including all the

trivial arrows) in a natural way to a ternary tree, as shown in figure 3. The new edges cor-

respond to (the parts cut-off by) the trivial arrows. We then remove the arrows (and trivial

arrows) and extend the leaves of the dual tree to the sides of the polygon, thereby decom-

posing the polygon into 2n regions, half of which are naturally associated with one vertex

each and are shaded in figure 4, while the remaining half are associated with one side each.

The root vertex of the ternary tree (marked with a square) is inherited from the root

edge of the polygon (and is on the leaf closest to the first vertex of the polygon on the root

edge). We ‘break’ the polygon at the root vertex of the ternary tree and ‘roll-out’ in a

similar way to the last step in section 3.1. The edges of the polygon will then form a base

line, which is not part of the ternary tree. Applying this to figure 4 we obtain figure 5.

It is crucial to note that we induce a height ordering on the internal vertices of the level

ternary tree inherited from the linear order on the dual tree.

– 17 –

J
H
E
P
1
0
(
2
0
1
2
)
0
7
5

a1

a2 a3

a4

a5

1

23 4

Figure 3. Figure 2, with its associated

ternary tree (a square denoting its root side).

a1

a2 a3

a4

a5

1

23 4

Figure 4. Figure 1, with the shaded regions

induced by the ternary tree.

1

2

3

4

a1 a2 a3 a4 a5

Figure 5. The ternary tree associated to the rolled-out version of the pentagon in figure 4.

The final step involves a horizontal “shrinking” of the shaded regions which, due to the

choice of shading, will alternate along the base line. Within each shaded region we identify

all points of the same height. The horizontal shrinking process will identify two outgoing

edges for each internal vertex (and leave the other two in place), whence a binary tree.

For our example, we show a step which is part of the way through the horizontal

contraction (Figure 6). This gives rise, by construction, to a binary tree (Figure 7).

We have thus shown how we can relate the maximal dissection with a given linear order

on its dual tree to a binary level tree. It is easy to see that we obtain all the binary trees

(with the same decoration as the polygon) in this way. Now a typical term ai+1−ai
ai−1−ai in the

setting of ref. [8], section 4.4, gives rise to two terms ai+1−ai
−ai and ai−1−ai

−ai (the latter giving

rise to a sign) in the polygon setting, and in general an elementary tensor in weight w in

the former setting gives rise to 2k terms (k ≤ w) in the latter one. Moreover, only the latter

setting gives rise to signs, hence the binary tree description seems often preferable. A more

detailed proof, establishing in fact a bijection between the terms arising from maximal

dissections on the one hand and from the binary trees on the other, will be given in [97].

– 18 –

J
H
E
P
1
0
(
2
0
1
2
)
0
7
5

a1 a2 a3 a4 a5

Figure 6. Intermediate stage for the hori-

zontal contraction of Figure 5 to Figure 7.

a1 a2 a3 a4 a5

Figure 7. The ternary tree associated to

the maximal dissection of figure 1.

Symbols for classical polylogarithms. The polygons attached to classical polyloga-

rithms Lim(x) = −G(0, . . . , 0︸ ︷︷ ︸
m−1 terms

, 1;x), are given by decorations 1 (for the first side) and 0

(for the remaining non-root sides) as well as x (for the root side). Their attached symbol

consists of (the negative of) a single elementary tensor, in fact we have

S
(
Lim(x)

)
= −

(
(1− x)⊗ x⊗ · · · ⊗ x︸ ︷︷ ︸

m−1 factors

)
, (3.29)

where we have m factors (“weight” m) on the right hand side. (Note the parentheses which

separate the coefficient, here −1, from the actual tensor, to avoid a misinterpretation as

(x− 1)⊗ x⊗ · · · ⊗ x.)

Such tensors have long been considered in connection with functional equations of

polylogarithms — in fact, Zagier [5, 60] has given a criterion for such equations built on

those tensors, which has been used (cf. ref. [61]) to find the first non-trivial equations for

Li6 and Li7 (beyond weight 7 none are known), and the corresponding expressions for

multiple polylogarithms are important already in Goncharov’s early work (e.g. [7]) where

he generalises the underlying tensor algebra considerably.

4 A simple example

The symbol attached to G(−1, 1;x). In this section we illustrate the fact that the

symbol calculus provides a convenient tool to detect functional equations among (multiple)

polylogarithms, on the example of G(−1, 1;x) (which happens to coincide with the HPL

−H(−1, 1;x)). Even though we could of course immediately apply eq. (2.13) to express

G(−1, 1;x) in terms of classical polylogarithms, we will derive a similar functional equation

using the tensor calculus introduced in the previous section. The multiple polylogarithm

G(−1, 1;x) is associated to a trigon via

G(−1, 1;x) ←→ P (1,−1, x) =

x

−11

•
. (4.1)

– 19 –

J
H
E
P
1
0
(
2
0
1
2
)
0
7
5

The three maximal dissections of the trigon can easily be translated into the tensor asso-

ciated to the polylogarithm,

x

−11

•

↓
x

−11
&& &&

•
+

x

−11

OOOO•
−

x

−11
xxxx

•

↓

µ
(

x•
−1

)
⊗ µ

(
−1•
1

)
+ µ

(
x•
1

)
⊗ µ

(
x•
−1

)
− µ

(
x•
1

)
⊗ µ

(
1•
−1

)
The last line allows to read off the symbol of G(−1, 1;x) as

S(G(−1, 1;x))

=

(
1− x

−1

)
⊗
(

1− −1

1

)
+
(

1− x

1

)
⊗
(

1− x

−1

)
−
(

1− x

1

)
⊗
(

1− 1

−1

)
= (1 + x)⊗ 2 + (1− x)⊗ (1 + x)− (1− x)⊗ 2 .

(4.2)

Before turning to the question of how to attach a function to this symbol, let us

briefly comment on how this symbol could have been obtained by using the recursive

definition (3.26). Using eq. (3.25), we obtain

dG(−1, 1;x) = G(−1;x) d log
(

1− (−1)
)

+G(1;x) d log

(
(−1)− x
(−1)− 1

)
= G(−1;x) d log 2 +G(1;x) d log(1 + x)−G(1;x) d log 2 .

(4.3)

The three terms in the last line of this equation are in one-to-one correspondence with

the three terms in the symbol in eq. (4.2). Note, however, that we had to treat all the

arguments of the (three-variable) function G(•, •; •) as generic, and to use the refined ‘d log-

prescription’, i.e. d log 2 6= 0. Putting to zero all the d log 2 terms is equivalent to putting

to zero all elementary tensors in the symbol where a factor inside a tensor product is

constant [63]. As we will see below, we prefer to keep these terms as they provide us with

valuable information about the function that should be associated to the symbol.

Attaching a function to a symbol. Since every multiple polylogarithm of weight two

can be expressed as a combination of classical polylogarithms, we make the ansatz that

G(−1, 1;x) can be written, up to an additive constant, in the form∑
i

ci Li2(fi(x)) +
∑
j,k

cjk log(gj(x)) log(hk(x)) , (4.4)

such that the tensor associated to this expression corresponds to the tensor in eq. (4.2),

where ci and cjk are rational numbers and fi, gj and hk ∈ Q(x) are rational functions. We

subdivide this problem into smaller ones by postulating that we can distinguish between

– 20 –

J
H
E
P
1
0
(
2
0
1
2
)
0
7
5

the three different contributions in eq. (4.2). By using a procedure suggested in ref. [63, 78]

we can distinguish the first sum in eq. (4.4) from the second by projecting the respective

symbols onto their symmetric or alternating parts: each term in the second sum will give

zero contribution for the latter one, while each summand in the first sum will give a non-zero

contribution. Indeed, the tensor associated to a product of logarithms is totally symmetric,

and hence its contribution to the tensor vanishes if we project onto the antisymmetric

component of the tensor in eq. (4.2).

Preparatory steps: decomposing tensors into symmetric and antisymmetric

parts. We recall that, for a vector space V (over C, say, or more generally over a field of

characteristic 6= 2) there is a direct sum decomposition into symmetric and antisymmetric

parts V ⊗ V = (V � V) ⊕ (V ∧ V) (other notations, as used e.g. in refs. [5] or [7], are

V � V = Sym2(V), and V ∧ V =
∧

2 V), and V � V is generated by a � b (for some a,

b ∈ V), while V ∧V is generated by a∧ b where we introduce the following rather standard

notations for symmetric and antisymmetric tensors,

a� b ≡ a⊗ b+ b⊗ a ,
a ∧ b ≡ a⊗ b− b⊗ a .

(4.5)

Back to the example. With this notation, the decomposition of a generic elementary

rank two tensor (i.e., a ⊗ b for some a, b ∈ V) into its symmetric and antisymmetric

components can be expressed as

a⊗ b =
1

2
(a� b) +

1

2
(a ∧ b) . (4.6)

Concentrating solely on the antisymmetric component of eq. (4.2), and using the antisym-

metry of the wedge product which, e.g., induces 2 ∧ 2 = 0, we obtain

(1 + x) ∧ 2 − (1− x) ∧ 2 + (1− x) ∧ (1 + x)

=
1− x

2
∧ 1 + x

2
=

(
1− 1 + x

2

)
∧ 1 + x

2
.

(4.7)

As the tensor associated to a product of logarithms does not have an antisymmetric com-

ponent, eq. (4.7) suggests that it is the antisymmetric part of the tensor associated to some

sum of dilogarithms, and from eq. (3.29), it is easily identified as the antisymmetric part

of S
(
−Li2

(
1+x

2

))
.

Having identified the dilogarithm contributions to G(−1, 1;x), we can proceed via a

bootstrap procedure and subtract off this contribution, leaving only a totally symmetric

tensor

S
(
G(−1, 1;x) + Li2

(
1 + x

2

))
= 2� (1 + x)− 1

2
(2� 2)

= S
(

log 2 log(1 + x)− 1

2
log2 2

)
.

(4.8)

– 21 –

J
H
E
P
1
0
(
2
0
1
2
)
0
7
5

Fixing the constant. We have shown that the tensor associated to G(−1, 1;x) equals

the tensor associated to the combination −Li2
(

1+x
2

)
+ log 2 log(1 +x)− 1

2 log2 2. It would

be premature, however, to conclude that both expressions are equal, but they are equal

only up to an additive constant independent of x. Indeed, specializing to x = 0, and using

the fact that G(−1, 1;x = 0) = 0 and Li2(1/2) = π2

12 −
1
2 log2 2, we see that{

G(−1, 1;x)−
[
−Li2

(
1 + x

2

)
+ log 2 log(1 + x)− 1

2
log2 2

]}∣∣x=0

=
π2

12
. (4.9)

Thus, we obtain

G(−1, 1;x) = −Li2

(
1 + x

2

)
+ log 2 log(1 + x)− 1

2
log2 2 +

π2

12
. (4.10)

Note that this additive constant is not detected by the symbol, because

S(π2) = −S(log2(−1)) = 0 . (4.11)

5 Integrating symbols: an algorithmic approach

In the previous section we illustrated how the symbol calculus can be used to derive a

functional equation among polylogarithms. While in that weight two example all the steps

were easily carried out by hand, an algorithmic approach is desirable in more complicated

cases. In this section, we present our approach that often allows to integrate a symbol of

a (transcendental) function, i.e., to find a function F , written as a linear combination of

(products of) multiple polylogarithms, whose symbol matches a given tensor S, which in

the following we always assume to satisfy the integrability condition (3.17).

From the example of the previous section it should be clear that the main challenges

to address when going to higher weight w are

1. choosing appropriate arguments of the desired function types (as a few examples of

function types of weight four, we list Li4, Li2,2 or Li2 log log) such that their symbols

span the vector space in which the tensor S lies;

2. finding the generalization of the decomposition of weight two tensors into symmetric

and antisymmetric parts (indicated in the simple example of weight two in section 4)

to higher weights. This problem was addressed up to weight four in refs. [63, 78].

Let us assume that we have a linear combination S (with rational coefficients) of

elementary tensors where the factors in each elementary tensor are rational functions of

some variables x1, . . . , xn. In the following we assume the tensor to be of “pure weight” w,

i.e., each elementary tensor is assumed to have the same number w of factors. Without loss

of generality we can then assume that S takes the form (all sums are assumed to be finite)

S =
∑

i1,...,iw

ci1,...,iw

(
Ri1(x1, . . . , xn)⊗ . . .⊗Riw(x1, . . . , xn)

)
, (5.1)

– 22 –

J
H
E
P
1
0
(
2
0
1
2
)
0
7
5

where Ri`(x1, . . . , xn) (1 ≤ i` ≤ m(S) for some m(S) determined by the initial tensor S) are

rational functions in the variables xi and the ci1,...,iw are rational numbers. Distributivity

(cf. eqs. (3.6), (3.7)) then implies that, without loss of generality, S can be rewritten (with

adapted constants c̃j1,...,jw ∈ Q) as

S =
∑

j1,...,jw

c̃j1,...,jw πj1 ⊗ . . .⊗ πjw , (5.2)

where πj = πj(x1, . . . , xn) (1 ≤ j ≤ K for some K) are suitably chosen rational functions

which are multiplicatively independent (i.e., there is no non-trivial relation of the form∏K
j=1 π

rj
j = ±1, for rj ∈ Z). In practice, we achieve this by simply factorizing the rational

functions Ri(x1, . . . , xn) in eq. (5.1) into irreducible polynomials over Q, say (i.e., polynomi-

als in Q[x1, . . . , xn] that cannot be written as the product of two non-constant polynomials

in Q[x1, . . . , xn]). Let us denote the set of these polynomials by PS = {π1, . . . , πK}, which

will constitute our building blocks in the following. The symbol can then be seen as an

element of the tensor algebra over the Q-vector space generated by the elements from the

set PS (more precisely, we should consider it as an element of the wth grading of the tensor

algebra over the Z-module 〈±
∏K
j=1 π

rj
j | rj ∈ Z〉). Our goal is now to find a function, say F ,

that is a rational linear combination of (multiple) polylogarithms (and products thereof)

whose arguments are rational functions in the xi such that S(F) = S. The method to

achieve this proceeds in two steps: first we have to decide on the types of functions that

should appear in F , and then we have to concoct suitable rational functions in the xi
as arguments of these functions such that for some linear combination of these functions

the resulting expression fulfills the condition S(F) = S. Note that this latter step is not

algorithmic in general, as it may involve finding arguments for the functions that have

singularities outside PS .

5.1 Choosing the types of functions

Our first goal is to construct a set of function types (our ‘basic types’) out of which we

can construct our candidate function F . This involves two steps, and we want both the

functions and their arguments to be ‘as simple as possible’, but we need to take into

account that all the possible function types one can write down for a given weight are

related by an abundance of functional equations. The main criterion we will use in the

following is that a function type that can be written as a product of lower weight function

types is ‘simpler’ than a function type of pure weight/transcendentality (i.e., a function

that cannot be written as a sum of terms, each of which being a product of lower weights).

Furthermore, we are guided by the conjecture (which the second author learned many

years ago from Goncharov) that a multiple polylogarithm Lim1,...,mk with mj = 1 for some

j can be expressed in terms of multiple polylogarithms where no index is equal to 1. This

conjecture suggests to put a restriction on the function types of pure transcendentality

that can appear for a given weight. Furthermore, the shuffle and stuffle relations provide

us with further constraints. As an example, we can deduce from

Lim1,m2(x, y) + Lim2,m1(y, x) = Lim1(x) Lim2(y)− Lim1+m2(x y) . (5.3)

– 23 –

J
H
E
P
1
0
(
2
0
1
2
)
0
7
5

Weight Basic function types of pure weight

1 log x

2 Li2(x)

3 Li3(x)

4 Li4(x), Li2,2(x, y)

5 Li5(x), Li2,3(x, y)

6 Li6(x), Li2,4(x, y), Li3,3(x, y), Li2,2,2(x, y, z)

Table 1. Indecomposable multiple polylogarithms of pure weight ≤ 6.

that we can hence ignore Lim2,m1 with m2 < m1. For low weights, natural sets of (presum-

ably independent) functions which are indecomposable, i.e. cannot be written in terms of

products of lower order functions, are given in table 1.

5.2 Finding the arguments

Having at hand a suitable set to construct the basic function types from, we still need

to find the arguments of these function types. In the context of particle physics it has

proved helpful to use guidance from educated guesses, motivated by physical constraints

(cf. refs. [67, 68]), to construct the symbol and/or the functions expressing the desired

physical quantities. To see how one might proceed even without any such guidance, let us

concentrate first on classical polylogarithms only.

We start by defining, for PS = {πj}j as above, the set

PS = PS ∪ P ′S , (5.4)

where P ′S is the set of all irreducible polynomials (possibly including prime numbers as

well) that appear in πi ± πj and 1 ± πi, ∀πi, πj ∈ PS . The reason for introducing this

enlarged set of polynomials will be clarified below.4 Let us denote the elements of PS by

πi. Since S is constructed out of the irreducible polynomials πi ∈ PS ⊂ PS , it is perhaps

reasonable to hope that all arguments appearing in the polylogarithmic expressions needed

for S can be written in the form

R±n1,...,nk
(x1, . . . , xn) = ±πn1

1 (x1, . . . , xn) . . . πnkk (x1, . . . , xn) , (5.5)

where n1, . . . , nk are integers. Let us denote the set of these functions R±n1,...,nk
(x1, . . . , xn)

by RS , i.e. this is, up to sign, the multiplicative span of the πj ∈ PS . Note that in practice

it is often enough to consider RS to be the span of only a subset of the polynomials in

P . Finally, note that the set RS carries a group structure, given by the multiplication of

rational functions.

4In principle one could even consider more complicated definitions for PS by adding sums and differences

of monomials in the πi. In practice, we observe that the definition given above worked in all cases we have

considered so far.

– 24 –

J
H
E
P
1
0
(
2
0
1
2
)
0
7
5

Choosing arguments: the case of classical polylogarithms. However, not all of

the functions in RS are automatically good candidates for arguments of polylogarithms.

Indeed, if for example such a function appears as an argument of a classical polylogarithm,

then by eq. (3.29) for R = R±n1,...,nk
(x1, . . . , xn) we can write

S(Lin(R)) = − (1−R)⊗R⊗ · · · ⊗R︸ ︷︷ ︸
(n−1) times

.
(5.6)

It is now easy to see that if we want this tensor, for given R, to be an element of the tensor

algebra of the vector space generated by the set PS , then we need to impose the constraint

1−R ∈ RS . (5.7)

Let us introduce the notation

R(1)
S = {R ∈ RS | 1−R ∈ RS} ⊂ RS . (5.8)

It follows that, for R ∈ R(1)
S , the symbol of Lin(R) (n ≥ 1) is a linear combination of

tensors of the form π`1⊗ . . .⊗π`n . Hence all the rational functions in the set R(1)
S are good

candidates for arguments of the classical polylogarithms that can appear in our function

F . Note that R(1)
S is no longer a group in general. It can, however, be given some more

structure by considering the following action, on the group of non-zero rational functions,

of the permutation group S3 on three letters, defined for a rational function R and rational

functions σi of one variable by

σ1(R) = R , σ2(R) = 1−R , σ3(R) = 1/R ,

σ4(R) = 1/(1−R) , σ5(R) = 1− 1/R , σ6(R) = R/(R− 1) . (5.9)

Note that the σj form a group (under composition of functions) isomorphic to S3. It is

easy to check that R(1)
S is closed under this action of S3. As S3 is generated by the two

elements σ2 and σ3, it is enough to check that R(1)
S is closed under these two maps. Closure

under σ2 is trivial by definition of R(1)
S . To see that it is also closed under σ3 we have to

check that ∀R ∈ R(1)
S , 1− σ3(R) ∈ RS . Indeed, we have

1− σ3(R) = 1− 1/R = −(1−R)R−1 ∈ RS , (5.10)

because of the group structure of RS .

Before generalizing this construction to the case of polylogarithms of depth > 1, let

us briefly comment on why we needed to enlarge the set of irreducible polynomials out of

which the setR(1)
S is constructed from PS to PS . In some cases it can happen that, if we are

given a combination of polylogarithms whose arguments are rational functions drawn from

the set R(1)
S , then there are cancellations in the symbol S of this function such that the

irreducible polynomials that appear in S are only a subset of the irreducible polynomials in

R(1)
S , i.e., PS ⊂ PS . Let us illustrate this on an example, and let us consider the function

f(x) = −1

3
Li2(1− x3) + Li2(1− x) . (5.11)

– 25 –

J
H
E
P
1
0
(
2
0
1
2
)
0
7
5

The polynomials appearing as arguments of the polylogarithms are products of the irre-

ducible polynomials x, 1 − x and 1 + x + x2. The symbol of f however only involves two

out of the three polynomials,

S [f(x)] = x⊗ (1 + x+ x2) , (5.12)

and so PS = {x, 1+x+x2}. Thus, writing π1(x) = π1(x) = x and π2(x) = π2(x) = 1+x+x2,

we see that we have to include π3(x) = 1−π1(x) = 1−x into the definition of PS . Similar

considerations lead to the definition of PS given at the beginning section. We stress,

though, that it is in practice often sufficient to consider the case PS = PS , and only to

enlarge the set PS if no solutions could be found in this way.

Choosing arguments: the case of polylogarithms of depth > 1. So far we have

only considered classical polylogarithms, but in general we should also be able to make a

sensible ansatz for the arguments of multiple polylogarithms of depth greater than one. In

the following, we find it more convenient to work with the functions Gm1,...,mk defined in

eq. (2.10) rather than with the functions Lim1,...,mk . As the two function types are related

via eq. (2.10), one can easily convert from one representation to the other.

Let us consider a multiple polylogarithm of depth two, say G2,2. We are hence looking

for a pair of rational functions (R1, R2) ∈ RS × RS that are good candidates for the

arguments of G2,2. The symbol of G2,2(R1, R2) is given by

S(G2,2(R1, R2)) = −
(

1− 1

R1

)
⊗R1qq

[(
1− R1

R2

)
⊗ R1

R2

]
−
(

1− 1

R2

)
⊗R2qq

[(
1− R2

R1

)
⊗ R2

R1

]
−
(

1− 1

R2

)
⊗
(

1− R2

R1

)
⊗R1qqR2

+ 2

(
1− 1

R2

)
⊗
(

1− R2

R1

)
⊗R1 ⊗R1 − 2

(
1− 1

R2

)
⊗
(

1− 1

R1

)
⊗R1 ⊗R1

−
(

1− 1

R2

)
⊗R2qq

[(
1− 1

R1

)
⊗R1

]
,

(5.13)

recalling our notation for the shuffle products (see eq. (3.11))

A⊗B ⊗ C qqD = A⊗B ⊗ C ⊗D +A⊗B ⊗D ⊗ C ,
A⊗Bqq (C ⊗D) = A⊗B ⊗ C ⊗D +A⊗ C ⊗B ⊗D +A⊗ C ⊗D ⊗B .

(5.14)

Using the same reasoning as for classical polylogarithms, we see that the candidate argu-

ments for multiple polylogarithms of depth two are pairs of rational functions from the set

R(2)
S = {(R1, R2) ∈ R(1)

S ×R
(1)
S | R1 −R2 ∈ RS} . (5.15)

An important consequence is that no new rational functions are needed to construct the set

R(2)
S , but all the information is already contained in R(1)

S . The new set R(2)
S then consists

of pairs of elements of R(1)
S , subject to the additional constraint that their difference must

again be factorizable in terms of the same prime elements. Moreover, we saw that R(1)
S is

– 26 –

J
H
E
P
1
0
(
2
0
1
2
)
0
7
5

endowed with a natural action of the group S3, defined in eq. (5.9). It is hence natural to

ask for non-trivial symmetry groups that leave the set R(2)
S invariant. First, it is easy to

see that the defining condition for R(2)
S is invariant (up to an overall sign) under swapping

the two entries of any given pair. Second, the action of S3 defined in eq. (5.9) induces a

(simultaneous on both factors) action on R(1)
S ×R

(1)
S , defined for σi ∈ S3 by

(R1, R2)
σi−→ (σi(R1), σi(R2)) . (5.16)

It is now easy to check that R(2)
S is closed under this action. To see this, it is enough

to check that σi(R1) − σi(R2) ∈ RS for i = 1, 2 and whenever (R1, R2) ∈ R(2)
S . Indeed,

we have

σ2(R1)− σ2(R2) = (1−R1)− (1−R2) = −(R1 −R2) ∈ RS ,
σ3(R1)− σ3(R2) = 1/R1 − 1/R2 = −(R1 −R2)R−1

1 R−1
2 ∈ RS ,

(5.17)

where we used the fact that R1−R2 ∈ RS and thatRS is a multiplicative group. Combining

this S3 symmetry with the invariance under an exchange of arguments, here R1 and R2, we

see that R(2)
S is closed under the action of the group S3×S2, defined for (σ, ρ) ∈ S3×S2 by

(R1, R2)
(σ,ρ)7−→

(
σ(Rρ(1)), σ(Rρ(2))

)
, (5.18)

i.e. the factor S2 simply acts as a permutation of the entries.

The previous discussions for depths one and two readily generalize to higher depth.

Our candidate arguments for the multiple polylogarithms of depth k are k-tuples of rational

functions from the set

R(k)
S = {(R1, . . . , Rk) ∈ R

(1)
S × . . .×R

(1)
S | Ri −Rj ∈ RS , 1 ≤ i < j ≤ k} , (5.19)

and using exactly the same argument as in the depth two case, we see that R(k)
S can be

equipped with an action of the group S3 × Sk, acting on (R1, . . . , Rk) ∈ R
(k)
S via

(R1, . . . , Rk)
(σ,ρ)−→

(
σ(Rρ(1)), . . . , σ(Rρ(k))

)
, (5.20)

i.e. the factor Sk simply acts as a permutation of the entries.

5.3 Integrating the symbol (1)

We now turn to the problem of integrating a tensor S that satisfies the integrability con-

dition (3.17). In practice, such tensors could come from computing a Feynman integral

in terms of multiple polylogarithms, or from computing its symbol by other means [66–

68, 70, 73, 76]. Our goal is to find a function F , more precisely a linear combination of

(multiple) polylogarithms, such that S(F) = S. The considerations of the previous section

suggest writing down an ansatz for the set Φ of functions (i.e., function types, together

with rational functions as arguments) to express F in. We assume the “folklore conjecture”

that any functional equation of MPL’s involving different weights should actually split into

– 27 –

J
H
E
P
1
0
(
2
0
1
2
)
0
7
5

functional equations of pure weight, so we can assume S to be of pure weight. It is conve-

nient to partition Φ into subsets Φ(w) according to the weight w, say Φ(w) = {b(w)
i }i. Then

we want to find rational coefficients ci1...i` such that

S =
∑
i

ci S
(
b
(w)
i

)
+

∑
i1,i2

w1+w2=w

ci1i2 S
(
b
(w1)
i1

b
(w2)
i2

)
+

+
∑
i1,i2,i3

w1+w2+w3=w

ci1i2i3 S
(
b
(w1)
i1

b
(w2)
i2

b
(w3)
i3

)
+ (5.21)

+ . . .+
∑

i1,...,iw

ci1...iw S
(
b
(1)
i1
. . . b

(1)
iw

)
where we can assume non-increasing partitions of w, i.e. that wi ≥ wi+1 for all i. In view

of property (3.9), each term on the right hand side can be written as a shuffle of terms

S
(
b
(`)
j

)
. All the terms on both sides of this equation are elements of the grade w part of

the tensor algebra over the vector space spanned by basis vectors labeled by the elements in

PS . We know from linear algebra that a straightforward basis for the tensor space of weight

w tensors over the vector space spanned by PS is given by {π̄i1 ⊗ . . .⊗ π̄iw |π̄i` ∈ PS}. At

this stage we have hence mapped the problem of finding a function F satisfying S(F) = S

into a problem of linear algebra, more precisely the problem of finding the coefficients

ci1...i` such that eq. (5.21) is true. As we know a basis of the tensor algebra, we can just

compute the coefficients by extracting and comparing the coefficient of each basis vector

on either side of the equation and solve the ensuing linear system. Note that the function

F obtained in this way is not unique. Indeed, the map S is non-injective and hence it

would be possible to find a different function F ′ such that F − F ′ in the kernel of S. This

issue will be addressed in section 5.6.

5.4 A set of projectors

Even though we have solved the problem of integrating the symbol in principle and we

have reduced it to a linear algebra problem, the linear system one has to solve can be quite

large. It is therefore preferable to break it down into smaller problems, for example by

introducing a suitable filtration on the target space5 which permits to successively solve

the problem for the filtration pieces. Such a filtration would allow to separate the different

contributions in eq. (5.21): to get the ball rolling, we would like to first solve for the

coefficients of the functions b
(w)
i without having to care about the product terms. This can

be achieved by introducing a projector that sends to zero exactly all the product terms.

Definition 1. Let V be a vector space. We define linear operators Πw acting on elementary

tensors of lengths w ≥ 1 by Π1 = id and for w ≥ 2 by

Πw(a1 ⊗ . . .⊗ aw)

=
w − 1

w
[Πw−1(a1 ⊗ . . .⊗ aw−1)⊗ aw −Πw−1(a2 ⊗ . . .⊗ aw)⊗ a1] .

(5.22)

5A filtration of a vector space V is a sequence {Vi}1≤i≤n of subspaces of V such that V1 ⊂ V2 ⊂ . . . ⊂
Vn = V .

– 28 –

J
H
E
P
1
0
(
2
0
1
2
)
0
7
5

Similar sets of operators acting on shuffle algebras have already been defined in refs. [81,

95], differing from our definition only by an overall normalization (F. Brown, in a text

in preparation on the representation theory of polylogarithms, uses essentially the same

operators, referring to ref. [96], II section 2, Prop. 7a). More precisely, the operators in

refs. [81, 95] are defined by ρ1 = id, and for w ≥ 2 by

ρw(a1 ⊗ . . .⊗ aw) = ρw−1(a1 ⊗ . . .⊗ aw−1)⊗ aw − ρw−1(a2 ⊗ . . .⊗ aw)⊗ a1 . (5.23)

The exact correspondence between Πw and ρw is simply, for all w ≥ 1,

Πw =
1

w
ρw . (5.24)

It follows from refs. [81, 95] that the kernel of ρw corresponds exactly to the ideal6 generated

by all shuffle products. Since Πw and ρw only differ by an overall normalization, we

immediately arrive at the following

Proposition 1. The kernel of Πw equals the ideal generated by all shuffle products, i.e.,

for every element ξ in a shuffle algebra, Πw(ξ) = 0 if and only if ξ can be written as a

linear combination of shuffle products.

In other words, the projectors Πw are by construction such that they annihilate pre-

cisely all shuffles. Conversely, if Πw applied to some tensor ξ does not vanish, then it is

not possible to express ξ as a linear combination of shuffle products.

The reason for the normalization factor w−1
w in Definition 1 is that it makes Πw idem-

potent, in other words, Πw is a projector.

Proposition 2. For any w ∈ N , Πw is idempotent, and hence a projector, i.e.

Π2
w = Πw . (5.25)

Proof. In ref. [81], Lemma 1.2, and also in eq. (2) in ref. [95], it was shown that ρw satisfies

the identity

w (a1 ⊗ . . .⊗ aw) =

w−1∑
k=0

(a1 ⊗ . . .⊗ ak)qq ρw−k(ak+1 ⊗ . . .⊗ aw) . (5.26)

We now act on both sides of this equation with ρw. Since ρw annihilates all shuffles, all

the terms on the right-hand side vanish, except for k = 0. Hence we obtain

w ρw(a1 ⊗ . . .⊗ aw) = ρ2
w(a1 ⊗ . . .⊗ aw) , (5.27)

and so Π2
w = Πw, after dividing both sides by w2.

6An ideal in a commutative algebra A is an additive subgroup I such that ∀a ∈ A and ∀b ∈ I, one has

ab ∈ I.

– 29 –

J
H
E
P
1
0
(
2
0
1
2
)
0
7
5

5.5 Integrating the symbol (2)

The projectors defined in the previous section can be used to improve the chances of suc-

cessful integration of the symbol described in section 5.3. As the kernel of Πw corresponds

to all possible linear combinations of shuffles, its effect on eq. (5.21) is to remove all product

terms, i.e.,

ΠwS =
∑
i

ci ΠwS
(
b
(w)
i

)
, (5.28)

and so we can solve for fewer coefficients ci without having to worry about the product

terms.

Having found the coefficients ci, we are left with the determination of the coefficients

of the product terms. In order to proceed via induction, we determine the behaviour of

shuffles under tensor products of projectors (which are themselves projectors). We first

study the instructive case of a projector Π` ⊗Π`′ which we apply to a shuffle

(a1 ⊗ · · · ⊗ ak)qq (b1 ⊗ · · · ⊗ bk′) , (5.29)

where k + k′ = ` + `′ = w (still w denoting the weight), with k ≥ k′ ≥ 1, ` ≥ `′ ≥ 1 and

k 6= `. We can rewrite the shuffle in a form more suitable to applying Π`⊗Π`′ by regrouping

the sum (5.29) using deconcatenation (i.e. splitting into a left hand part and a right hand

part) of the sequence (1, . . . , k) into two blocks (1, . . . , k1) and (k1 + 1, . . . , k1 + k2), giving

min(k,`)∑
k1=1

(
(a1⊗· · ·⊗ak1)qq (b1⊗· · ·⊗ b`−k1)

)
⊗
(
(ak1+1⊗· · ·⊗ak)qq (b`−k1+1⊗· · ·⊗ bk′)

)
.

(5.30)

Applying Π`⊗Π`′ to this sum will annihilate each of the min(k, `) summands individually,

in fact it will annihilate the left hand factor except (possibly) for k1 = `, since in the other

cases there is a proper shuffle on the left which will be mapped to zero by Π` already, by

virtue of Proposition 1. If the remaining case occurs, the corresponding right hand factor

is mapped to zero by Π`′ instead. For example, if (k1, k2) = (3, 3) and (`1, `2) = (4, 2), we

rewrite

(a1 ⊗ a2 ⊗ a3)qq (b1 ⊗ b2 ⊗ b3) =
(
a1qq (b1 ⊗ b2 ⊗ b3)

)
⊗ (a2 ⊗ a3)

+
(
(a1 ⊗ a2)qq (b1 ⊗ b2)

)
⊗ (a3qq b3)

+
(
(a1 ⊗ a2 ⊗ a3)qq (b1)

)
⊗
(
b2 ⊗ b3

)
,

(5.31)

where already the factor Π4 of Π4 ⊗Π2 annihilates the left part of each of the terms.

More generally, for a partition λ = (λ1, . . . , λr) of w, we call the λ-shuffle of a w-fold

tensor a1 ⊗ · · · ⊗ aw the product

(a1 ⊗ · · · ⊗ aλ1)qq (aλ1+1 ⊗ · · · ⊗ aλ1+λ2)qq . . . qq (aλ1+···+λr−1+1 ⊗ · · · ⊗ aw) (5.32)

and given any partition λ′ = (λ′1, . . . , λ
′
s) with s < r, the projector Πλ′ will vanish on a

λ-shuffle, as we can again regroup its terms according to λ′ and find for each so combined

summand at least one projector factor Πλ′j
which vanishes on the corresponding part. This

sketches a proof of

– 30 –

J
H
E
P
1
0
(
2
0
1
2
)
0
7
5

Proposition 3. For two different non-increasing partitions λ and λ′ of w, of length `(λ)

and `(λ′), respectively, we have that a λ-shuffle vanishes under Πλ′ whenever `(λ) ≥ `(λ′).

This proposition suggests to define a sequence of subspaces, each of which contains

the next one (hence forming a descending filtration). For this, we consider the standard

lexicographic order � on non-increasing partitions of w given by (denoting bxc the largest

integer ≤ x)

(w) � (w − 1, 1) � (w − 2, 2) � . . . � (w − bw
2
c, bw

2
c) � (w − 2, 1, 1) �

� · · · � (2, 1, . . . , 1︸ ︷︷ ︸
w−2 slots

� (1, . . . , 1︸ ︷︷ ︸
w slots

) . (5.33)

As an example, in weight five we have the following non-decreasing partitions, ordered as

(5) � (4, 1) � (3, 2) � (3, 1, 1) � (2, 2, 1) � (2, 1, 1, 1) � (1, 1, 1, 1, 1) . (5.34)

From these, we form the descending filtration alluded to above by taking the span of

all shuffles of partition types greater than a given type λ, say, and denote it by

Fλ = 〈λ′ − shuffles in V for all λ � λ′, λ 6= λ′〉 . (5.35)

Hence F(1,...,1) is the zero space, F(2,1,...,1) is generated by all (1, . . . , 1)-shuffles (i.e. fully

symmetric tensors), F(3,1,...,1) is generated by all (1, . . . , 1)-shuffles and (2, 1, . . . , 1)-shuffles

etc. The proposition now guarantees that Fλ ⊂ ker Πλ. Similarly, we put, for convenience,

the “shifted” sequence

F�λ = 〈λ′ − shuffles in V for all λ � λ′〉 , (5.36)

so that F�
λ+

= Fλ where λ+ denotes the immediate successor of λ in the lexicographic

order � above.

We proceed by induction on λ with respect to the order �, starting with the shuffle

λ = (w). By the analysis above, we can put S(w) ≡
∑

i ciS
(
b
(w)
i

)
, provided we have been

able to solve for the ci. This gives us the basis step for the induction. Now assume we

have found an (integrable) tensor Sλ “approximating” S in the sense that S − Sλ ∈ Fλ.

Then we try to construct a “better approximation” Sλ+ for the successor partition λ+

of λ by finding integrable tensors Tλ+ ∈ F�λ+ = Fλ such that Sλ+ ≡ Sλ + Tλ+ satisfies

S − Sλ+ ∈ Fλ+ . If we are successful in finding such a T+
λ , this finishes the induction step.

We expect to be able to find such a Tλ+ using (certain sums of products of) multiple

polylogarithms, by selecting for each part λ+
r of λ+ an “indecomposable function type”

of weight λ+
r (see table 1) and taking their product. In other words, we assume that the

tensor Tλ+ can be written, as a linear combination of λ+-shuffles, in the form

Tλ+ =
∑
i1,...,il

ci1,...,il S
(
b
(λ+1)
i1

)
qq . . . qqS

(
b
(λ+l)
il

)
, (5.37)

– 31 –

J
H
E
P
1
0
(
2
0
1
2
)
0
7
5

with l = `(λ+) and λ+ = (λ+
1 , . . . , λ

+
l). In the weight 5 example of table 1, the respective

polylogarithmic functions we consider are

(5) ↔ Li5(R1), Li2,3(R1, R2) ,

(4, 1) ↔ Li4(R1) logR2, Li2,2(R1, R2) logR3 ,

(3, 2) ↔ Li3(R1) Li2(R2) ,

(3, 1, 1) ↔ Li3(R1) logR2 logR3 ,

(2, 2, 1) ↔ Li2(R1) Li2(R2) logR3 ,

(2, 1, 1, 1) ↔ Li2(R1) logR2 logR3 logR4 ,

(1, 1, 1, 1, 1) ↔ logR1 logR2 logR3 logR4 logR5 ,

(5.38)

where the Ri correspond to the rational functions as indicated in section 5.2.

Since the proposition implies ΠλFλ = 0, we get Πλ(S − Sλ) = 0. Therefore we

are essentially working at each step in the quotient space F�λ /Fλ and have to solve for

considerably fewer coefficients than if we worked in F�λ . If at any stage we cannot find

a Tλ+ with the desired property, i.e. cannot solve for the corresponding coefficients using

our limited spanning set of input functions b
(s)
i , the algorithm stops (we can of course try

to rerun it with a larger set of input functions). Otherwise, it ends with producing an

integrable tensor S(1,...,1) with S − S(1,...,1) = 0, solving the main part of our integration

problem.

5.6 Elements in the kernel of the symbol map

The algorithmic approach we described in the previous section often allows us, given a

tensor S, to construct a function F such that S(F) = S. Let us now assume that the

tensor S was obtained in some way from an analytic expression F0 (representing, say, a

Feynman integral). It would be premature to conclude that the function F we constructed

is equal to the original expression F0, because they are only equal up to terms that are in

the kernel of S.

In the following we describe a way that, at least in most of the cases we studied so

far, allows to fix this remaining ambiguity by parametrizing F −F0 in a suitable way. The

parametrization we are proposing takes the form

F − F0 =
∑
i

c̃i k̃i +
∑
`

∑
i1,...,i`

w1+...+w`=w

ci1...i` ki1...i` b
(w1)
i1

. . . b
(w`)
i`

, (5.39)

where b
(wk)
ik

are defined in the previous section, and ci1...i` and c̃i are rational coefficients,

and ki1...i` and k̃i are generators of the kernel of the symbol map. Below we give a (non-

exhaustive) list of such generators, which cover a wide range of applications. The free

coefficients can then be fixed by considering special values for the variables xi, e.g., xi = 0

or xi = 1, yielding a linear system for the coefficients.

In order for the above procedure to work we need to know the generators of the kernel

of S. Even though this is a very difficult task to settle in general, we can compile a list of

(presumably transcendental) numbers whose symbol should be defined as zero.

– 32 –

J
H
E
P
1
0
(
2
0
1
2
)
0
7
5

• S(log(−1)) = 0. An associated polygon would be
−1•
0

, and this gives the symbol

−1 which is zero (modulo 2-torsion which we ignore). In particular, this shows that

the symbol does not detect the multivaluedness of the logarithm (let alone of the

polylogarithms), and in particular does not suggest how to fix the branch cuts of the

polylogarithms.

• All multiple zeta values (MZV’s) are in the kernel of S. Indeed, MZV’s can be

defined as the values in xi = 1 for all i = 1, . . . , k of the multiple polylogarithms

Lim1,...,mk(x1, . . . , xk). Then it is easy to see that the associated decorated polygon

will have all decorations equal to 0 or 1, and hence the symbol vanishes.

• In addition, there are combinations of transcendental expressions that individually

have a non-vanishing symbol,7 but there is a linear combination with zero sym-

bol, e.g.,

S
(

Li4

(
1

2

)
+

1

24
log4 2

)
= −

(
1− 1

2

)
⊗ 1

2
⊗ 1

2
⊗ 1

2
+

1

24
(2�2�2�2) = 0 . (5.40)

The previous example is a special case of a more general result for so-called colored multiple

zeta values, defined by the alternating sums

ζ(m1, . . . ,mk; s1, . . . , sk) =
∑

0<n1<n2<···<nk

sn1
1 sn2

2 · · · s
nk
k

nm1
1 nm2

2 · · ·n
mk
k

, (5.41)

with mi ∈ N and si ∈ {±1}. It is easy to check that ζ(1, 1, 1, 1;−1,−1, 1, 1) = −Li4
(

1
2

)
,

and so eq. (5.40) can be written as

S(ζ(1, 1, 1, 1;−1,−1, 1, 1)− 1

24
log4 2) = 0 . (5.42)

More generically, we have

Proposition 4.

1. If at least one of the mi is different from ±1 and (m1, s1) 6= (1, 1), then

S(ζ(m1, . . . ,mk; s1, . . . , sk)) = 0 . (5.43)

2. ∀si ∈ {−1, 1}, ∀m ≥ 1,

S

ζ(1, . . . , 1︸ ︷︷ ︸
m times

;−1, s2, . . . , sm)− 1

m!
logm

1

2

 = 0. (5.44)

The proof of this proposition will be given in appendix C.

7We recall that the “refined” symbol of a constant is not necessarily zero.

– 33 –

J
H
E
P
1
0
(
2
0
1
2
)
0
7
5

6 Application: a spanning set for harmonic polylogarithms

In this section we illustrate our approach by expressing all harmonic polylogarithms (HPL’s)

up to weight four in terms of a spanning set of functions. We start by determining the

arguments our spanning set should depend upon. Indeed, in the case of harmonic polylog-

arithms we can classify all the arguments of the spanning set of functions under the mild

assumption that all the arguments should be rational functions. Then, it is easy to see that

the polygons associated to HPL’s correspond to polygons where the root edge is decorated

by the variable x, and all other sides are decorated only by 0 or ±1. This implies that

the tensor associated to an HPL is an element of the tensor algebra of the vector space

generated by the formal basis vectors [x], [1−x], [1 +x] and [2]. Indeed, the decorations of

the polygon associated to an HPL are all ±1 or 0, except for the root which is decorated

by the variable x. It is then easy to see that any dissection of this polygon will only involve

the following five bigons

µ
(

x•
0

)
= x , µ

(
x•
1

)
= 1− x ,

µ
(

x•
−1

)
= 1 + x , µ

(
−1•
1

)
= µ

(
1•
−1

)
= 2 .

(6.1)

Hence, the sets PHPL and PHPL of irreducible polynomials defined in section 5 are

PHPL = {2, x, 1− x, 1 + x} and PHPL = PHPL ∪ {2± x, 3± x, 1± 2x} . (6.2)

The most general rational function we can construct out of the irreducible polynomials in

PHPL then reads

±xα1 (1−x)α2 (1+x)α3 2α4 (2−x)α5 (2+x)α6 (3−x)α7 (3+x)α8 (1−2x)α9 (1+2x)α10 , (6.3)

with αi ∈ Z. In the case of HPL’s, however, it turns out (a posteriori) that we can restrict

ourselves to the following set of rational functions

RHPL = {±2δ xα (1− x)β (1 + x)γ |α, β, γ, δ ∈ Z} . (6.4)

In the following we denote the elements of RHPL by

R±αβγδ(x) = ±2δ xα (1− x)β (1 + x)γ , (6.5)

with α, β, γ, δ ∈ Z. It follows then from the previous section that we should consider

the subset of these rational functions (those contained in the set R(1)
HPL; see eq. (5.7) and

eq. (5.8)) that satisfy the constraint

1−R±αβγδ(x) = Rsα′β′γ′δ′(x) , (6.6)

for some integers α′, β′, γ′ and δ′, and s = ±1. A little algebra shows that quadruples

(α, β, γ, δ) are confined to the values given in table 2. The first line corresponds to con-

stant arguments, and will not be discussed any further. Note that we could also include

– 34 –

J
H
E
P
1
0
(
2
0
1
2
)
0
7
5

s α β γ δ Rsαβγδ(x) s α β γ δ Rsαβγδ(x)

- 0 0 0 0 -1 + 0 0 0 -1 1/2

+ 1 0 0 0 x - 1 0 0 0 −x
+ 0 1 0 0 1− x + 0 0 -1 0 1/(1 + x)

+ 2 0 0 0 x2 + 0 1 1 0 1− x2

- 1 -1 0 0 x/(x− 1) + 1 0 -1 0 x/(x+ 1)

+ 0 1 -1 0 (1− x)/(1 + x) - 0 1 -1 0 (x− 1)/(x+ 1)

- 2 -2 -2 0 x2/(x2 − 1) + 0 2 -2 0 (1− x)2/(1 + x)2

+ 0 1 0 -1 (1− x)/2 + 0 0 1 -1 (1 + x)/2

- 1 -1 0 1 2x/(x− 1) + 1 0 -1 1 2x/(x+ 1)

+ 2 0 -2 2 4x/(1− x)2 - 2 -2 0 2 −4x/(x+ 1)2

Table 2. Solutions to the constraint (6.6). Only half of the solutions are shown, all other solutions

being related by Rs(−α)(−β)(−γ)(−δ)(x) = 1/Rsαβγδ(x).

the inverses of the arguments in table 2. Using the inversion formula for the classical poly-

logarithms, we can however always express Lin functions with inverted arguments in terms

of polylogarithms taken at the arguments in table 2,

Lin

(
1

x

)
= (−1)n−1Lin (x) + products of lower weight terms, n ≥ 2 . (6.7)

Since furthermore the arguments in table 2 are less than 1 for x ∈ [0, 1], we will in the

following only consider these functions as arguments of the Lin functions. Note however

that even the functions in table 2 are not completely independent, because we can use the

distribution formula for the Lin function to relate three of them, e.g.,

Lin
(
x2
)

= 2n−1 (Lin(x) + Lin(−x)) , (6.8)

and three others using the same equation with x replaced by 1−x
1+x . We finally arrive at the

conclusion that, if we want to reduce all HPL’s to some small (possibly minimal) set of

(multiple) polylogarithms, the Lin sector of that set contains classical polylogarithms with

16 different arguments. As we will see below, for lower weights we can find more relations

among the spanning set of functions, reducing its size even further. In the following we

will also have to deal with multiple polylogarithms of depth greater than one. From the

previous section we know that the pairs of arguments (R1, R2) of these functions come

from table 2, subject to the additional constraint R1 −R2 ∈ RHPL.

Finally, using the results from the previous section, as well as some elementary identi-

ties among classical polylogarithms, we find the following spanning set of indecomposable

functions up to weight four,

• for weight one,

B(1)
1 (x) = log x, B(2)

1 (x) = log(1− x), B(3)
1 (x) = log(1 + x) , B(4)

1 (x) = log 2 ,

(6.9)

– 35 –

J
H
E
P
1
0
(
2
0
1
2
)
0
7
5

• for weight two,

B(1)
2 (x) = Li2(x), B(2)

2 (x) = Li2(−x), B(3)
2 (x) = Li2

(
1− x

2

)
, (6.10)

• for weight three,

B(1)
3 (x) = Li3(x), B(2)

3 (x) = Li3(−x), B(3)
3 (x) = Li3(1− x),

B(4)
3 (x) = Li3

(
1

1 + x

)
, B(5)

3 (x) = Li3

(
1 + x

2

)
, B(6)

3 (x) = Li3

(
1− x

2

)
,

B(7)
3 (x) = Li3

(
1− x
1 + x

)
, B(8)

3 (x) = Li3

(
2x

x− 1

)
,

(6.11)

• for weight four,

B(1)
4 (x) = Li4(x), B(2)

4 (x) = Li4(−x),

B(3)
4 (x) = Li4(1− x), B(4)

4 (x) = Li4

(
1

1 + x

)
,

B(5)
4 (x) = Li4

(
x

x− 1

)
, B(6)

4 (x) = Li4

(
x

x+ 1

)
,

B(7)
4 (x) = Li4

(
1 + x

2

)
, B(8)

4 (x) = Li4

(
1− x

2

)
,

B(9)
4 (x) = Li4

(
1− x
1 + x

)
, B(10)

4 (x) = Li4

(
x− 1

x+ 1

)
,

B(11)
4 (x) = Li4

(
2x

x+ 1

)
, B(12)

4 (x) = Li4

(
2x

x− 1

)
,

B(13)
4 (x) = Li4

(
1− x2

)
, B(14)

4 (x) = Li4

(
x2

x2 − 1

)
,

B(15)
4 (x) = Li4

(
4x

(x+ 1)2

)
.

(6.12)

These functions are sufficient to express all harmonic polylogarithms up to weight three.

Starting from weight four, we need to extend the set of functions by adjoining multiple poly-

logarithms. We find that it is enough to add the following three supplementary functions

in order to express all harmonic polylogarithms up to weight four,

B(16)
4 (x) = Li2,2(−1, x), B(17)

4 (x) = Li2,2

(
1

2
,

2x

x+ 1

)
, B(18)

4 (x) = Li2,2

(
1

2
,

2x

x− 1

)
.

(6.13)

Note that, if the vector of singularities only takes values in the set {0, 1}, we can restrict

ourselves to the smaller spanning set,

• for weight one: B(1)
1 (x), B(2)

1 (x),

• for weight two: B(1)
2 (x),

– 36 –

J
H
E
P
1
0
(
2
0
1
2
)
0
7
5

• for weight three: B(1)
3 (x), B(3)

3 (x),

• for weight four: B(1)
4 (x), B(3)

4 (x), B(5)
4 (x).

Our choice for the spanning set is of course not unique, and we might have chosen a

different set of functions, related to the B(j)
i functions via functional equations. Our choice

was motivated by the fact that B(j)
i (x) is manifestly real for x ∈ [0, 1]. Note that outside

this interval, the branching structure of these functions can be more complicated. This

issue is addressed in appendix E.

6.1 Example

Let us conclude this section by giving an example of how we can apply the procedure of

section 5 to express a generic HPL of weight four in terms of the functions B(i)
j . We discuss

in detail the example of H(0, 0, 1, 1;x) = S2,2(x), all other cases being similar. For the

list of all results, we refer to appendix G. We start by deriving the tensor associated to

H(0, 0, 1, 1;x). The polygon associated to H(0, 0, 1, 1;x) = G(0, 0, 1, 1;x) is

x

01
•

1 0

There is only one relevant maximal dissection of this pentagon (all other dissections give

rise to twogons with decorations 0 and / or 1 which vanish by definition),

x

01
•

1 0

BB BB OOOO \\\\

↔ µ
(

x•
1

)
⊗ µ

(
x•
1

)
⊗ µ

(
x•
0

)
⊗ µ

(
x•
0

)
.

From this dissection we can immediately read of the symbol of H(0, 0, 1, 1;x) as

S(H(0, 0, 1, 1;x)) = (1− x)⊗ (1− x)⊗ x⊗ x . (6.14)

Note that in general the symbol of a harmonic polylogarithm H(a1, . . . , aw;x), with ai ∈
{0, 1} is simply given by (−1)k (aw − x) ⊗ . . . ⊗ (a1 − x), where k is the number of ai’s

equal to 1. Before turning to the question of how to express H(0, 0, 1, 1;x) in terms of

the spanning set, let us review how we could have obtained the symbol (6.14) using the

recursive definition of the symbol (3.26). Note however, that in this case we cannot apply

eq. (3.25) immediately, as the arguments of G(0, 0, 1, 1;x) = H(0, 0, 1, 1;x) are not generic

and we would hence obtain divergences in the right-hand side of eq. (3.25). We therefore

need to use a regularized version of the differential equation (3.25) [2],

dH(0, 0, 1, 1;x) = H(0, 1, 1;x) d log x , (6.15)

and so

S(H(0, 0, 1, 1;x) = S(H(0, 1, 1;x))⊗ x . (6.16)

– 37 –

J
H
E
P
1
0
(
2
0
1
2
)
0
7
5

We can iterate this procedure to compute the symbol of H(0, 1, 1;x). The differential

equation for H(0, 1, 1;x) is

dH(0, 1, 1;x) = H(1, 1;x) d log x , (6.17)

and so we get

S(H(0, 1, 1;x)) = S(H(1, 1;x))⊗ x . (6.18)

The symbol of H(1, 1;x) = 1
2 log2(1− x) is easy to obtain from eq. (3.9),

S(H(1, 1;x)) =
1

2
S(log2(1−x)) =

1

2
S(log(1−x))qqS(log(1−x)) = (1−x)⊗(1−x) . (6.19)

Putting everything together, we immediately arrive at the symbol given in eq. (6.14).

Let us now turn to the actual problem we want to study, namely how to express

H(0, 0, 1, 1;x) in terms of the spanning set for HPL’s defined in the previous section. The

goal is to find rational numbers c
(k)
i1...i`

such that the tensor associated to

18∑
i=1

c
(1)
i B

(i)
4 (x) +

8∑
i=1

4∑
j=1

c
(2)
ij B

(i)
3 (x)B(j)

1 (x) +
3∑

i,j=1

c
(3)
ij B

(i)
2 (x)B(j)

2 (x)

+

3∑
i=1

4∑
j,k=1

c
(4)
ijk B

(i)
2 (x)B(j)

1 (x)B(k)
1 (x) +

4∑
i,j,k,l=1

c
(5)
ijkl B

(i)
1 (x)B(j)

1 (x)B(k)
1 (x)B(l)

1 (x) ,

(6.20)

equals the tensor given in eq. (6.14). The symbol of eq. (6.20) is easily obtained from the

fact that S is linear and maps products of polylogarithms to shuffles, i.e.,

18∑
i=1

c
(1)
i S(B(i)

4 (x)) +

8∑
i=1

4∑
j=1

c
(2)
ij S(B(i)

3 (x))qqS(B(j)
1 (x))

+
3∑

i,j=1

c
(3)
ij S(B(i)

2 (x))qqS(B(j)
2 (x))

+

3∑
i=1

4∑
j,k=1

c
(4)
ijk S(B(i)

2 (x))qqS(B(j)
1 (x))qqS(B(k)

1 (x))

+

4∑
i,j,k,l=1

c
(5)
ijkl S(B(i)

1 (x))qqS(B(j)
1 (x))qqS(B(k)

1 (x))qqS(B(l)
1 (x)) .

(6.21)

– 38 –

J
H
E
P
1
0
(
2
0
1
2
)
0
7
5

The symbol of each function B(i)
j can be easily obtained, e.g.,

S(B(6)
4 (x)) =S

(
Li4

(
x

x+ 1

))
= −

(
1− x

x+ 1

)
⊗
(

x

x+ 1

)
⊗
(

x

x+ 1

)
⊗
(

x

x+ 1

)
= −

(
1

x+ 1

)
⊗
(

x

x+ 1

)
⊗
(

x

x+ 1

)
⊗
(

x

x+ 1

)
= (x+ 1)⊗ x⊗ x⊗ x− (x+ 1)⊗ x⊗ x⊗ (x+ 1)− (x+ 1)⊗ x⊗ (x+ 1)⊗ x

+ (x+ 1)⊗ x⊗ (x+ 1)⊗ (x+ 1)− (x+ 1)⊗ (x+ 1)⊗ x⊗ x
+ (x+ 1)⊗ (x+ 1)⊗ x⊗ (x+ 1) + (x+ 1)⊗ (x+ 1)⊗ (x+ 1)⊗ x
− (x+ 1)⊗ (x+ 1)⊗ (x+ 1)⊗ (x+ 1) .

(6.22)

The different shuffles in eq. (6.21) can be distinguished further by acting with the projectors

defined in the previous section. In particular, we obtain

Π4 S(H(0, 0, 1, 1;x)) =

18∑
i=1

c
(1)
i Π4 S(B(i)

4 (x)) . (6.23)

Equating the coefficients of the different elementary tensors on both sides of this equation,

we obtain a linear system that allows us to solve for the for the coefficients c
(1)
i , 1 ≤ i ≤ 18.

The solution is easily obtained, and is given by

c
(1)
1 = −c(1)

3 = c
(1)
5 = 1 , (6.24)

and all other coefficients are zero. We now proceed recursively, and subtract the (inte-

grable) tensor arising from the solution we have found. By construction, the symbol of this

difference must vanish under the action of the projector Π4,

Π4 S (H(0, 0, 1, 1;x)− L(x)) = 0 , (6.25)

where we defined

L(x) = Li4(x)− Li4(1− x) + Li4

(
x

x− 1

)
. (6.26)

We next turn to the determination of the coefficients c
(2)
ij , i.e., coefficients of terms of the

form B(i)
3 (x)B(j)

1 (x). We can isolate these terms by applying the projector Π3 ⊗Π1,

(Π3 ⊗Π1)S (H(0, 0, 1, 1;x)− L(x))

=
3∑

i,j=1

c
(2)
ij (Π3 ⊗Π1)[S(B(i)

3 (x))qqS(B(j)
1 (x))]

=

3∑
i,j=1

c
(2)
ij [Π3S(B(i)

3 (x))]⊗ [Π1S(B(j)
1 (x))] ,

(6.27)

and equating the coefficients of the elementary tensors on both sides of the equation we

can solve for the coefficients c
(2)
ij . We find c

(2)
12 = −1, and c

(2)
ij = 0 if (i, j) 6= (1, 2). We

– 39 –

J
H
E
P
1
0
(
2
0
1
2
)
0
7
5

again subtract this contribution to find an expression that vanishes under the actions of

both Π4 and Π3 ⊗Π1. Next we act with the projector Π2 ⊗Π2 on this difference

(Π2 ⊗Π2)S (H(0, 0, 1, 1;x)− L(x) + Li3(x) log(1− x)) = 0 , (6.28)

and we immediately conclude that c
(3)
ij = 0, ∀1 ≤ i, j ≤ 3 . Similarly, by acting with the

projector Π2⊗Π1⊗Π1 we conclude that all the coefficients c
(4)
ijk must vanish. The remaining

terms are thus all associated to products of logarithms, which can immediately be read off

from the tensor

S (H(0, 0, 1, 1;x)− L(x) + Li3(x) log(1− x))

=
1

24
(1− x)� (1− x)� (1− x)� (1− x)− 1

6
x� (1− x)� (1− x)� (1− x)

= S
(

1

24
log4(1− x)− 1

6
log x log3(1− x)

)
.

(6.29)

At this stage, we have found a combination of (a product of) functions in our spanning set

that has the same symbol as H(0, 0, 1, 1;x), and so the quantities are equal up to terms

that are mapped to zero by S. We make an ansatz assuming we have found sufficiently

many elements in the kernel of S, as

a1

(
Li4

(
1

2

)
+

1

24
log4 2

)
+ a2 π

4 + ζ3

4∑
i=1

bi B(i)
1 (x)

+ π2

 3∑
i=1

ci B(i)
2 (x) +

4∑
i,j=1

cij B(i)
1 (x)B(j)

1 (x)

 ,

(6.30)

where ai, bi, ci and cij are rational numbers, and ζ3 = ζ(3) denotes the value in s = 3 of

the Riemann ζ function

ζ(s) =

∞∑
n=1

1

ns
. (6.31)

The coefficients can now be fixed by looking at particular values of x. In particular,

harmonic polylogarithms are known analytically up to weight four for x = 0, x = ±1 and

x = ±1
2 . It turns out that in all cases these values are enough to fix all the free coefficients.

In the case of H(0, 0, 1, 1;x), we finally arrive at

H(0, 0, 1, 1;x) = S2,2(x)

= −Li4(1− x) + Li4(x) + Li4

(
x

x− 1

)
− Li3(x) log(1− x) +

1

24
log4(1− x)− 1

6
log x log3(1− x)

+ ζ3 log(1− x) +
1

12
π2 log2(1− x) +

π4

90
.

(6.32)

– 40 –

J
H
E
P
1
0
(
2
0
1
2
)
0
7
5

7 Conclusion

In this paper, we have provided a review of the symbol map, a linear map that associates

to a multiple polylogarithm of weight n an n-fold tensor in a way that captures many of

the combinatorial properties of polylogarithms, and also respects the functional equations

they satisfy. While so far the symbol map was defined recursively via iterated differentials,

we have given a diagrammatic rule where the symbol of a multiple polylogarithm is ob-

tained directly via a weighted sum over the maximal dissections of the decorated polygon

associated to the polylogarithm introduced in ref. [21].

Furthermore, we have addressed the problem of integrating a symbol, i.e., the problem

of finding a function whose symbol matches a given tensor that satisfies the integrability

condition (3.17). We have presented a systematic approach of how to find a candidate

spanning set for such a function. Once this candidate spanning set has been constructed,

and working under the assumptions that its elements suffice to express the integrated

symbol in, we showed how a set of projectors can be defined which help to find a function

whose symbol matches the initial tensor. While our approach falls short of a complete

algorithmic proof and is surely not adequate in all possible scenarios, we nevertheless

believe that it can be applied in many situations, as was for example demonstrated in

ref. [74–76] where our method was successfully applied to obtain new compact analytic

results for certain one-loop hexagon integrals in D = 6 dimensions. Finally, we have used

our approach to derive a spanning set for harmonic polylogarithms up to weight 4, and this

spanning set was recently used to obtain an efficient numerical implementation of harmonic

polylogarithms up to weight four [77].

Acknowledgments

CD is grateful to B. Anastasiou, S. Buehler, P. Heslop, M. Spradlin, C. Vergu and

A. Volovich for useful discussions. HG expresses his thanks to F. Brown and D. Kreimer

for helpful comments. The authors thank E.W.N. Glover for helpful remarks on a prelim-

inary version of the text. JR would like to thank EPSRC for their support. This work

was supported by the Research Executive Agency (REA) of the European Union under the

Grant Agreement number PITN-GA-2010-264564 (LHCPhenoNet).

A Review on shuffle algebras

As shuffle algebras are a recurrent theme when working with multiple polylogarithms and

their symbols, we review in this appendix the most important notions. Before turning to

the special case of shuffle algebras, we first review some basic notions about algebras in

general.

Algebras over a field. An algebra A over a field F (F = R or F = C, say) is a vector

space8 over F together with an associative and distributive multiplication A⊗A → A. In

8More generally, we could consider A to be a module over a ring R.

– 41 –

J
H
E
P
1
0
(
2
0
1
2
)
0
7
5

the case the multiplication has a unit element, the algebra is called unital. Furthermore,

an algebra is said to be graded if A can be written as a direct sum as a vector space,

A =
⊕
n∈I
An , (A.1)

and if ∀a ∈ Am and ∀b ∈ An, we have

a · b ∈ Am+n . (A.2)

One of the most prominent representatives of a graded algebra is the tensor algebra asso-

ciated to an F -vector space V , defined by

T (V) =

∞⊕
n=0

Tn(V) , (A.3)

where T0(V) = F and T1(V) = V , and for n ≥ 2 we define

Tn(V) = V ⊗ . . .⊗ V︸ ︷︷ ︸
n times

. (A.4)

The multiplication on T (V) is defined on elementary tensors a1 ⊗ . . .⊗ an by

Tm(V)⊗ Tn(V) → Tm+n(V)

(a1 ⊗ . . .⊗ am)⊗ (b1 ⊗ . . .⊗ bn) 7→ a1 ⊗ . . .⊗ am ⊗ b1 ⊗ . . .⊗ bn ,
(A.5)

making the tensor algebra into a graded algebra in an obvious way. Furthermore, the tensor

algebra is also unital, the unit being the unit 1 ∈ F .

A homomorphism between two algebras A and B is a linear map φ that preserves the

multiplication, i.e., a linear map φ such that ∀a, b ∈ A, φ(a · b) = φ(a) · φ(b).

Ideals in algebras. An ideal in an algebra A (or more generally in a ring) is an additive

subgroup I of A such that

∀a ∈ A,∀b ∈ I, a · b ∈ I and b · a ∈ I . (A.6)

An easy example of an ideal is given by considering the ring of integer numbers Z and

its subset nZ, n ∈ Z, i.e., the set of all integer multiples of n. The set nZ is obviously

an additive subgroup of Z, and every time we multiply an element of nZ by an integer

number, we obtain another multiple of n. Hence nZ is an ideal of Z. Another example of

an ideal is the kernel of an algebra homomorphism φ. Indeed, Kerφ is a sub-vector space

of A, and hence an additive subgroup. Furthermore, ∀a ∈ A and ∀b ∈ Kerφ, we have

φ(a · b) = φ(a) · φ(b) = φ(a) · 0 = 0 , (A.7)

and so a · b ∈ Kerφ, making Kerφ into an ideal in A.

– 42 –

J
H
E
P
1
0
(
2
0
1
2
)
0
7
5

Shuffle algebras. After this rather general discussion on algebras, let us from now on

focus exclusively on the example of shuffle algebras. As a starting point, let us consider

a set L, whose elements we will refer to as letters, and consider the set W of all words

constructed from elements in L, i.e., the set of all possible concatenations of letters in L,

together with the empty word ε, consisting of no letters (more precisely, W is the free

monoid generated by the elements in L). We can define a multiplication on W given by

concatenation of words, the empty word being the unit element.

Let us now consider the vector space A over some field F given by all formal linear

combinations of words in W. A is then in fact an algebra over F , the multiplication given

simply by the concatenation of words. Furthermore, it is easy to see that A is also graded

by the length of the words (the concatenation of two words with length m and n gives a

word of length m+ n).

We can define another multiplication on A, the so-called shuffle product, defined on

words by

(a1 . . . am)qq (am+1 . . . am+n) =
∑

σ∈Σ(n1,n2)

aσ−1(1) . . . aσ−1(n1+n2), (A.8)

where Σ(n1, n2) denotes the set of all shuffles of n1 + n2 elements, i.e., the subset of the

symmetric group Sn1+n2 defined by

Σ(n1, n2) = {σ ∈ Sn1+n2 |σ−1(1) < . . . < σ−1(n1) and σ−1(n1+1) < . . . < σ−1(n1+n2)} .
(A.9)

The vector space A together with the shuffle product is called a shuffle algebra. A shuffle

algebra is again graded by the length of the words, and the empty word ε is the unit

element of the shuffle algebra. The definition (A.8) of the shuffle product is equivalent to

the following recursive definition, ∀x, y ∈ L, ∀u, v ∈ W,

εqqu = uqq ε = u ,

(xu)qq (yv) = x(uqq (yv)) + y((xu)qq v) .
(A.10)

Note that the tensor algebra of a vector space V can be equipped with a shuffle product

in a natural way: the set of letters L is simply a basis of V , the set of words corresponds

to the elementary tensors a1 ⊗ . . . ⊗ an, the empty word is simply the scalar 1, and the

concatenation of words corresponds to the multiplication (A.5) of two tensors.

In section 2 we have encountered another example of a shuffle algebra, the shuffle

algebra of multiple polylogarithms, eq. (2.3). In that case letters are the elements ai
of the vector of singularities (a1, . . . , an), the latter being the words. Concatenation is

simply defined by the concatenation of the vectors of singularities. The length of a word

corresponds to the weight of the polylogarithm, i.e., the number of components of the

vector of singularities. In other words, the shuffle algebra of polylogarithms is graded by

the weight.

B Selected examples of symbols

In this appendix we compile a list of the symbols of the most commonly used (multiple)

polylogarithms. First of all, the symbol of an ordinary logarithm is simply the argument

– 43 –

J
H
E
P
1
0
(
2
0
1
2
)
0
7
5

of the logarithm,

S(log x) = x . (B.1)

From eq. (3.9) it follows then, for every non-negative integer n,

S
(

1

n!
logn x

)
= x⊗ . . .⊗ x︸ ︷︷ ︸

n times

≡ x⊗n . (B.2)

The symbol of the classical polylogarithms have a similarly simple form, i.e., for every

non-negative integer n we obtain

S (Lin(x)) = −(1− x)⊗ x⊗(n−1) = −(1− x)⊗ x⊗ . . .⊗ x︸ ︷︷ ︸
(n−1) times

, (B.3)

where we used the notation of eq. (B.2). Note that for n = 1, the classical polylogarithm

can be expressed as an ordinary logarithm, Li1(x) = − log(1− x), which is consistent with

the symbols given in eqs. (B.1) and (B.3),

S (Li1(x)) = −(1− x) = S(− log(1− x)) . (B.4)

Finally, the symbol of a Nielson polylogarithm reads,

S(Sn,p(x)) = (−1)p (1− x)⊗p ⊗ x⊗n = (−1)p (1− x)⊗ . . .⊗ (1− x)︸ ︷︷ ︸
p times

⊗x⊗ . . .⊗ x︸ ︷︷ ︸
n times

. (B.5)

Again we note that the Nielson polylogarithms contain the classical polylogarithms as a

special case, Sn−1,1(x) = Lin(x), an identity which is easily verified at the level of the

symbols (B.3) and (B.5).

The previous examples of the classical and Nielson polylogarithms are both just special

cases of harmonic polylogarithms where the components of the vector of singularities take

values in {0, 1},

Lin(x) = H(~0n−1, 1;x) and Sn,p(x) = H(~0n,~1p;x) . (B.6)

The symbol of a harmonic polylogarithm H(a1, . . . , an;x), with ai ∈ {0, 1}, can be written

in the compact form

S(H(a1, . . . , an;x)) = (−1)k (an − x)⊗ . . .⊗ (a1 − x) , (B.7)

where k is the number of components in the vector of singularities (a1, . . . , an) equal to 1.

Indeed, the polygon P (an, . . . , a1, x) associated toG(a1, . . . , an;x) = (−1)kH(a1, . . . , an;x)

has the root side decorated by x, and all other sides decorated by 0 or 1. It is easy to see

that the only relevant maximal dissection of such a polygon is

x•an

an−1

an−2

a1

a2

a3

66 66 99 99 eeee hhhh

– 44 –

J
H
E
P
1
0
(
2
0
1
2
)
0
7
5

All other maximal dissection give rise to bigons decorated only by 0 and / or 1, which give

a zero contribution to the symbol. The non-vanishing dissection produces a term in the

symbol given by

µ
(

x•
an

)
⊗ µ

(
x•

an−1

)
⊗ . . .⊗ µ

(
x•
a2

)
⊗ µ

(
x•
a1

)
, (B.8)

which is equal to the tensor in the right-hand side of eq. (B.7) (apart from the sign).

Generic harmonic polylogarithms where the components of the vector of singularities

take values in {−1, 0, 1} do not admit a compact expression for the symbol. In this case,

the symbol is however easily obtained from the symbols of generic multiple polylogarithms,

which are reviewed up to weight four in the next subsections.

B.1 The symbol of a generic multiple polylogarithm of weight one

A generic multiple polylogarithm of weight one can be written as G(a;x), with a, x ∈ C.

We can associate a bigon to this function via

G(a;x)↔ P (a, x) =
x•
a

. (B.9)

The symbol of G(a;x) is then

S(G(a;x)) = µ
(

x•
a

)
. (B.10)

B.2 The symbol of a generic multiple polylogarithm of weight two

To a generic multiple polylogarithm G(a, b;x) of weight two we associate a trigon

G(a, b;x)↔ P (b, a, x) =

x

ab

•
. (B.11)

The symbol of G(a, b;x) is then obtained by looking at all the maximal dissections of the

trigon, obtained by inserting a single arrow. In the following we give the three maximal

dissections, together with the term in the symbol they correspond to. We use the shorthand

ab|cd ≡ µ
(

b•
a

)
⊗ µ

(
d•
c

)
. (B.12)

The three maximal dissections of the trigon in eq. (B.11), together with the term in the

symbol S(G(a, b;x)) they correspond to, are

x

ab
&& &&

• x

ab

OOOO• x

ab
xxxx

•

+ax|ba +bx|ax −bx|ab

– 45 –

J
H
E
P
1
0
(
2
0
1
2
)
0
7
5

B.3 The symbol of a generic multiple polylogarithm of weight three

To a generic multiple polylogarithm G(a, b, c;x) of weight three we associate a tetragon

G(a, b, c;x)↔ P (c, b, a, x) =

x

a

b

c

•
. (B.13)

The symbol of G(a, b, c;x) is then obtained by looking at all the maximal dissections of the

tetragon, obtained by inserting two non-intersecting arrows. In the following we give the

twelve maximal dissections, together with the term in the symbol they correspond to. We

use the shorthand

ab|cd|ef ≡ µ
(

b•
a

)
⊗ µ

(
d•
c

)
⊗ µ

(
f•
e

)
, (B.14)

as well as the notation for shuffles,

A|BqqC ≡ A|B|C +A|C|B . (B.15)

The twelve maximal dissections of the tetragon in eq. (B.13), together with the term in

the symbol S(G(a, b, c;x)) they correspond to, are
x

a

b

c

• II II UUUU x

a

b

c

•
))))
55 55

x

a

b

c

•

				�� ��

x

a

b

c

•
iiii
uuuu

+cx|bx|ax +ax|ca|ba −bx|abqq cb +cx|ac|bc
x

a

b

c

• GG GG

77 77

x

a

b

c

•
'' ''

�� ��

x

a

b

c

•

����

wwww

x

a

b

c

•
gggg
WWWW

+cx|ax|ba +ax|ba|cb +cx|bc|ab −cx|axqq bc
x

a

b

c

• GG GG

����

x

a

b

c

•
'' ''gggg

x

a

b

c

• WWWW

�� ��

x

a

b

c

•
77 77wwww

−cx|bx|ab −ax|ca|bc bx|axqq cb −cx|ac|ba

B.4 The symbol of a generic multiple polylogarithm of weight four

To a generic multiple polylogarithm G(a, b, c, d;x) of weight two we associate a pentagon

G(a, b, c, d;x)↔ P (d, c, b, a, x) =

x

ad
•

c b

. (B.16)

The symbol of G(a, b, c, d;x) is then obtained by looking at all the maximal dissections of

the pentagon, obtained by inserting three non-intersecting arrows. In the following we give

– 46 –

J
H
E
P
1
0
(
2
0
1
2
)
0
7
5

the 55 maximal dissections, together with the term in the symbol they correspond to. We

use the shorthand

ab|cd|ef |gh ≡ µ
(

b•
a

)
⊗ µ

(
d•
c

)
⊗ µ

(
f•
e

)
⊗ µ

(
h•
g

)
, (B.17)

as well as the notation for shuffles

A|B|C qqD ≡ A|B|C|D +A|B|D|C ,
A|Bqq (C|D) ≡ A|B|C|D +A|C|B|D +A|C|D|B ,

A|BqqC qqD ≡
∑
σ∈S3

A|σ(B)|σ(C)|σ(D) ,

(B.18)

where in the last equation the sum runs over all permutations of the set {B,C,D}. The 55

maximal dissections of the pentagon in eq. (B.16), together with the term in the symbol

S(G(a, b, c, d;x)) they correspond to, are

x

ad
•

c b

BB BB OOOO \\\\
x

ad
•

c b

,, ,,
33 33
BB BB

x

ad
•

c b

�� ���� ��'' ''

x

ad
•

c b

 ���� wwww

x

ad
•

c b

qqqq
kkkk
\\\\

+dx|cx|bx|ax +ax|da|ca|ba −bx|abqq (db|cb) +cx|dcqq (ac|bc) −dx|ad|bd|cd

x

ad
•

c b

\\\\OOOO

�� ��

x

ad
•

c b

tttt 33 33
BB BB

x

ad
•

c b

aaaa

�� ��'' ''

x

ad
•

c b

 ����

EE EE
x

ad
•

c b

qqqq
kkkk

** **

+cx|dcqq (bx|ax) −dx|ad|ca|ba +bx|axqq (db|cb) −cx|dcqq (ac|ba) +dx|ad|bd|cb

x

ad
•

c b

** **kkkk
\\\\

x

ad
•

c b

BB BB OOOO

x

ad
•

c b

,, ,,
33 33

tttt

x

ad
•

c b

�� ���� ��

YYYY
x

ad
•

c b

== ==

���� wwww

+ax|da|bd|cd −dx|cx|bx|ab −ax|da|ca|bc +bx|abqq (db|cd) +dx|cx|ac|bc

x

ad
•

c b

�� ��

OOOO

x

ad
•

c b

tttt 33 33

tttt

x

ad
•

c b

aaaa

�� ��

YYYY
x

ad
•

c b

== ==

����

EE EE
x

ad
•

c b

** **kkkk

** **

−cx|dcqq (bx|ab) +dx|ad|ca|bc −bx|axqq (db|cd) −dx|cx|ac|ba −ax|da|bd|cb

– 47 –

J
H
E
P
1
0
(
2
0
1
2
)
0
7
5

x

ad
•

c b

�� �� �� ��

aaaa x

ad
•

c b

tttt
||||

EE EE
x

ad
•

c b

aaaa
kkkk

** **

x

ad
•

c b

EE EE
LL LL

�� ��

x

ad
•

c b
** **

33 33tttt

+bx|axqq (cb|dc) +dx|cd|ac|ba −dx|axqq (bd|cb) +cx|dcqq (ax|ba) −dx|ad|ba|cb

x

ad
•

c b

** **
"" ""

'' ''

x

ad
•

c b

����

x

ad
•

c b
tttt

mmmm
rrrr

x

ad
•

c b

RRRR
YYYY

\\\\ x

ad
•

c b

== == 66 66

BB BB

+ax|ba|db|cb +cx|dcqq (bc|ab) −dx|ad|cd|bc −dx|cdqq (bx|ax) +dx|ax|ca|ba

x

ad
•

c b

** **

�� ��

YYYY
x

ad
•

c b

����

== == x

ad
•

c b
tttt

kkkk ** **
x

ad
•

c b

OOOO
YYYY

x

ad
•

c b

== == 66 66

tttt

−ax|ba|db|cd +dx|cx|bc|ab +ax|da|cd|bc +dx|cdqq (bx|ab) −dx|ax|ca|bc

x

ad
•

c b

�� �� �� ��
�� ��

x

ad
•

c b

tttt
||||
xxxx

x

ad
•

c b

aaaaiiii
\\\\

x

ad
•

c b

EE EE
LL LLBB BB x

ad
•

c b
** **

11 11
,, ,,

−bx|abqq (cb|dc) −dx|cd|ac|bc +dx|axqq (bd|cd) +dx|cx|ax|ba +ax|da|ba|cb

x

ad
•

c b

,, ,,

�� ��
BB BB

x

ad
•

c b

tttt
�� ��

&& &&

x

ad
•

c b

aaaa

wwww

x

ad
•

c b

EE EE\\\\
rrrr

x

ad
•

c b
** **

BB BB \\\\

+ax|ca|dcqq ba +dx|bd|abqq cb −cx|dcqq bcqq ax +dx|ad|cdqq ba +dx|bx|axqq cb

x

ad
•

c b

** **

wwww

x

ad
•

c b

rrrr

�� ��
\\\\

x

ad
•

c b

\\\\

tttt

BB BB x

ad
•

c b

BB BBYYYY
,, ,,

x

ad
•

c b
'' ''

== ==

�� ��

−ax|ca|dcqq bc −dx|bd|cdqq ab −dx|cx|axqq bc −ax|da|cdqq ba −dx|bx|cbqq ab

x

ad
•

c b

** **

�� ���� ��

x

ad
•

c b

tttt

����

x

ad
•

c b

kkkk

tttt

aaaa x

ad
•

c b

YYYY EE EE
OOOO

x

ad
•

c b
** **

33 33
== ==

+ax|ba|cb|dc −dx|cd|bc|ab +dx|axqq (cd|bc) −dx|cdqq (ax|ba) +dx|ax|ba|cb

– 48 –

J
H
E
P
1
0
(
2
0
1
2
)
0
7
5

C Proof of Proposition 4

In this section we present the proof of Proposition 4. The proof uses the combinatorics of

the decorated polygons introduced in section 3. In order to be able to map the symbol of

colored multiple zeta values (CMZV’s) to polygons, we first have to relate the CMZV’s to

multiple polylogarithms. From the series representations (2.9) and (5.41), it is easy to see

that one has the relation (provided that the CMZV’s converge)

ζ(m1, . . . ,mk; s1, . . . , sk) = (−1)wGm1,...,mk(ŝ1, . . . , ŝk) , (C.1)

where we defined w = m1 + . . .+mk and

ŝj =

j∏
i=1

si . (C.2)

Hence, using the correspondence between multiple polylogarithms and decorated polygons,

we can associate to the CMZV ζ(m1, . . . ,mk; s1, . . . , sk) the polygon9

P (0, . . . , 0︸ ︷︷ ︸
mk−1 times

, ŝk, . . . 0, . . . , 0︸ ︷︷ ︸
m1−1 times

, ŝ1, 1) . (C.3)

We start by introducing concepts needed to prove, and then prove Proposition 4. We

will in fact proof results at the level of the polygons that are slightly more general than

the results given in Proposition 4 but not imposing the restriction (m1, s1) 6= (1, 1) (which

corresponds to divergent CMZV’s). The first proposition we give is a generalization of

statement 2 in the proposition. Statement 1 in Proposition 4 is equivalent to Proposi-

tion C.6.

Proposition C.1. The symbol of P (ε1, . . . , εn, 1) for some εi = ±1 is equal to λa,n(2⊗n) for

λa,n = (−1)a
(
n− 1

a

)
and a = n−max{i | εi = −1} . (C.4)

We start by noting that from the Hölder convolution (2.8) with p =∞ it follows that

P (x1, . . . , xm, 1) has the same symbol as the polygon P (1−xm, . . . , 1−x1, 1). So, without

loss of generality, we consider the polygon P (0, . . . , 0︸ ︷︷ ︸
t0

, 2, 0, . . . , 0︸ ︷︷ ︸
t1

, 2, 0, . . . , 0, 2, 0, . . . , 0︸ ︷︷ ︸
tm

, 1)

and will find its symbol, remembering to take into account the factor of (−1)n. The move

from sides labelled 1 and −1 to sides labelled 0 and 2 increases the number of dissections

that have coefficient 0. The combinatorics of the dissections of polygons of this type is

best captured by a certain type of planar trees, the so-called Hook-arrow trees, which is a

change of view on the maximal dissections, and hence the symbol, of a polygon.

9There is of course the factor (−1)w of eq. (C.1) to be kept in mind.

– 49 –

J
H
E
P
1
0
(
2
0
1
2
)
0
7
5

Hook-arrow trees. Every full dissection of a polygon uniquely defines a certain spanning

tree τ on the vertices which are the midpoints of the polygon sides, and vice-versa. These

vertices, v1, . . . , vn, inherit the label of the side they sit on and they form the vertices of

τ . We induce the edges of τ as all possible lines, between the vi, that do not cross arrows

from the dissection. Here is an example of a full dissection of a 4-gon with the spanning

tree induced:

1

2

3

4

We also induce a root on τ as the vertex lying on the final side of the polygon. The

edges are then oriented towards the root. For the above example of a dissected 4-gon the

rooted spanning tree is:

1

2

3

4

The edges of the tree will not cross by construction; we define interlacing to reflect

this for use in the definition of a hook-arrow tree.

Definition C.2. A tree with a linear order on its vertices wj is said to be interlaced

if there exists a choice of four vertices w1 < . . . < w4 such that both edges {w1, w3} and

{w2, w4} are contained in the tree.

We now give a formal definition of a hook-arrow tree and illustrate the definition with

an example.

Definition C.3. A hook-arrow tree is a rooted spanning tree on a set of vertices in a

linear order, v1 < . . . < vn, which is not interlaced and has root vn.

We can think of a hook-arrow tree as being a tree embedded in the plane on the vertices

arranged in a circle.

– 50 –

J
H
E
P
1
0
(
2
0
1
2
)
0
7
5

1. 2. 3.

2

0

2

0

0

2

0

1

2

0

2

0

0

2

0

1

2

0

2

0

0

2

0

1

Figure 8. Construction of a hook arrow tree corresponding to a maximal dissection. Details are

given in the text.

Example. For the polygon P(2,0,2,0,0,2,0,1) (attached to the multiple polylogarithm

G(0, 2, 0, 0, 2, 0, 2; 1)) we have the following possible maximal dissection

2

0

2
0

0

2

0
1

We note that, for clarity, in this example we give the arrows in the dissection of a polygon

dashed shafts.

We now construct the hook-arrow tree for this dissection, following the method outlined

in Definition C.3 (see also figure 8):

1. add vertices to the middle of each side of the polygon;

2. join all vertices that can be connected without crossing the shaft of an arrow;

3. remove the polygon and arrows and direct tree towards distinguished vertex repre-

senting final side of polygon.

We now reintroduce the dual tree view of a dissection from section 3.1 of ref. [21] as

this is also beneficial in finding the symbol attached to a polygon. As with the dissection

of a polygon using arrows, the dual tree can easily be seen in the hook-arrow tree view.

In figure 9 we illustrate the relationship between maximal dissections, dual trees and hook

arrow trees. For clarity we give the dual tree a dash-dotted line.

– 51 –

J
H
E
P
1
0
(
2
0
1
2
)
0
7
5

2

0

2
0

0

2

0
1

(a)

2

0

2
0

0

2

0
1

(b)

Figure 9. Hook-arrow tree and dual tree (a). Polygon dissection and dual tree (b).

We now elaborate on the interpretation of a hook-arrow tree.

The association between a 2-gon in a polygon dissection, an edge of a hook-arrow tree

and a term of a tensor product in the symbol is

2-gon Directed edge Term represented
b

a

b

a
1− b

a
.

In the dissection of a polygon, we set the coefficient of certain terms in the symbol to

0 if the sides of 2-gons have certain combinations of labels, e.g., µ
(

a•
0

)
= 0. We do

the same in a hook-arrow tree when we have the corresponding edges

1

0

0

a

a

a

for any a.

To obtain the term in the symbol, the edges of the hook-arrow tree are chosen in the

same order as the corresponding 2−gons in the dissection of a polygon. This can also be

seen by viewing the dual tree (this correspondence is shown in the above example). Note

that an explicit algorithm for this purely from the view of the hook-arrow tree can be

written.

The sign of a maximal dissection is determined, in a similar way to the polygons by first

determining the number, α, of ‘backward’ edges in the hook-arrow tree. These correspond

to edges that, respecting their direction, go from one vertex in the order of the vertices

defined by the polygon, to a previous vertex. The sign is then (−1)α.

Remark C.4. As previously mentioned, it is important to note that for every full dis-

section of a polygon there is a unique corresponding hook-arrow tree and that the method

– 52 –

J
H
E
P
1
0
(
2
0
1
2
)
0
7
5

of extracting the symbol from hook-arrow trees is simply a different view of the procedure

for polygons. We include an overview of the construction of an hook-arrow tree because

constructing all possible dissections for the functions required in Proposition C.1 is a lot

easier to view from this perspective. The actual proof then takes place in the dual tree view.

Finally, before the proof of Proposition C.1 we require the following proposition for

which we give a sketch proof involving generating functions.

Proposition C.5. If c, n ∈ Z≥0 then

n∑
i=0

(−1)i
(
n− i+ c

n− i

)(
n+ c+ 1

i

)
= (−1)n

Proof. (Sketch)

Let r = n−i and view the right hand side of the identity as coefficients of the generating

function

Φ(x) =

∞∑
n=0

xn
n∑
r=0

(−1)n−r
(
r + c

r

)(
n+ c+ 1

n− r

)
.

Firstly since for r > n we have
(
n+c+1
n−r

)
= 0, we can change the summation of r to run over

all positive integers. Then by re-ordering the summation signs for small x, and applying

some basic properties of binomial coefficients we can arrive at

Φ(x) =

∞∑
r=0

(−1)r−c−1

xc+1

(
r + c

r

) ∞∑
n=0

(
n+ c+ 1

r + c+ 1

)
(−x)n+c+1.

Then by using

∑
m

(
m

k

)
xm =

xk

(1− x)k+1
and then

∑
m

(
m+ k

k

)
xm =

1

(1− x)k+1

we can show that

Φ(x) =
1

1 + x
=
∞∑
n=0

(−x)n

which proves the result.

Proof. (of Proposition C.1) After applying the Hölder convolution with p =∞, and without

loss of generality, we attempt to find all hook-arrow trees relating to the polygon

P (0, . . . , 0︸ ︷︷ ︸
t0

, 2, 0, . . . , 0︸ ︷︷ ︸
t1

, 2, 0, . . . , 0, 2, 0, . . . , 0︸ ︷︷ ︸
tm

, 1)

which do not represent terms with coefficient 0 in the symbol. After some consideration

we see that these hook-arrow trees must take the following form.

– 53 –

J
H
E
P
1
0
(
2
0
1
2
)
0
7
5

2

2

2

1

·
·

·

0····0

t0

0
·· ··
0

t1,1

0
·· ·
·
0t1,2

0 ··
··

0

t2,1

0
····
0

tm−1,2

0
····

0
tm

Each ti,1 and ti,2, for i = 1, . . . ,m − 1 are chosen integers 0 ≤ ti,1, ti,2 ≤ ti such that

ti,1 + ti,2 = ti. The choice of the ti,j arises from the fact that we can choose where to

partition each group of ti vertices labelled 0, for i = 1, . . . ,m − 1, and attach them to

the vertices labelled 2, remembering that the vertices must not cross. In the case of the

function P (2, 0, 2, 0, 0, 2, 0, 1) from the example above, where m = 3, t0 = 0, t1 = 1, t2 = 2

and t3 = 1, we would have 6 possible valid dissections, arising from two choices of the ti,j
in t1,1 + t1,2 = 1 and three choices from t2,1 + t2,2 = 2. We note that the example above

explored the particular dissection where t1,1 = 0, t1,2 = 1, t2,1 = 1 and t2,2 = 1.

We will now show how it is possible to simplify this tree by effectively removing the

edges joining vertices labelled 2 and 1 and replacing them with edges connecting vertices

labelled 0 and 2. For this we return to the dual tree notation described above, and in

section 3.1. The dual tree of the above hook-arrow tree above is

– 54 –

J
H
E
P
1
0
(
2
0
1
2
)
0
7
5

1
2

2

2

t0
t1,1

1
2

2

2

t1,2
t2,1

1
2

2

2

t2,2
t3,1

1
2

2

2

tm−2,2
tm−1,1

1
2

2

2

tm−1,2
tm

where we

define
to be

α

α

α

α

n
n

α

We claim that

1
2

2

2

tk−1,2
tk,1 1

2

2

2

tk,2
c

can be simplified to

(−1)tk+1+1

times the tree

1
2

2

2

tk−1,2

c+ tk + 1

We will now write the tensor product of the symbol of the left hand dual tree part in

the above claim. Let us recall out convention (3.11) that shuffles takes precedence over a

tensor

a⊗b = a⊗ . . .⊗ a︸ ︷︷ ︸
b

and that a⊗bqq c = (a⊗ . . .⊗ a︸ ︷︷ ︸
b

)qq c.

– 55 –

J
H
E
P
1
0
(
2
0
1
2
)
0
7
5

The left hand dual tree part in the claim will have the symbol

tk∑
tk,1=0

(−1)tk,1
(

1

2
⊗ 2⊗tk−1,2 qq 2⊗tk,1 qq

(
1

2
⊗ 2⊗tk,2 qq 2⊗c

))

= −
tm−1∑

tm−1,1=0

(−1)tm−1,1
(
tm−1−tm−1,1+tm
tm−1−tm−1,1

)(
tm−1+tm+1

tm−1,1

)(
1

2
⊗ 2⊗tk−1,2 qq 2⊗(tm−1+tm+1)

)

= (−1)tk+1+1

(
1

2
⊗ 2⊗tk−1,2 qq 2⊗(c+tk+1)

)
which is exactly the symbol for the tree on the right side. Note that we used Proposition C.5

in the last line of the calculation.

By repeated application of this simplification, starting with c = tm and k = m− 1, we

will arrive at a much simplified tree. By noting that n− a− 1 =
m∑
i=1

(ti + 1) and recalling

that t0 = a we see that this tree is

1
2

2

2

a
n− a− 2

times a factor of (−1)(n−a−1). This represents the symbol

(−1)n−a−1

(
1

2
⊗ 2⊗aqq 2⊗(n−a−2)

)
= (−1)n−a

(
n− 1

a

)
2⊗n

Finally, by including the factor of (−1)n from the application of Hölder involution we find

λa,n = (−1)a
(
n− 1

a

)
.

Proposition C.6. The polygon P (0, . . . , 0︸ ︷︷ ︸
m1−1

, ε1, . . . , 0, . . . , 0︸ ︷︷ ︸
mk−1

, εk, 1) for εi = ±1 and at least

one of the mi 6= 1, has a symbol equal to 0.

– 56 –

J
H
E
P
1
0
(
2
0
1
2
)
0
7
5

Proof. (Sketch) After applying Hölder involution (2.8) with p =∞ we try to find possible

hook-arrow trees which do not correspond to terms with coefficient 0 in the symbol. The

vertices of the hook-arrow tree will be labelled corresponding to the sides of the polygon

P (γ1,1, . . . , γt0,1, 2, γ1,2, . . . , γt1,2, 2, . . . , 2, γ1,m, . . . , γtm,m, 1).

where all the γi,j are equal to either 0 or 1. As in the proof of Proposition C.1, the vertices

labelled 2 must connect directly to the final 1 and the vertices labelled 0 must connect to

a 2. However, there is no way to connect the 1’s to any other vertex without setting the

coefficient of the term to 0. There is therefore no possible non-trivial dissection, and hence

the symbol is zero.

D Some considerations on the implementation of the algorithm

The algorithmic approach presented in section 5 relies on the construction of the sets R(k)

defined in eq. (5.19). The algorithm then consists in selecting the elements of R which

satisfy certain factorization properties. Even though this is a mathematically well-defined

prescription, implementing this algorithm into a computer program can be hampered by

several issues,

1. The set R is infinite, and so we cannot just proceed by ‘trial and error’ to select the

elements that have the right factorization properties.

2. Factorization of polynomials is rather slow (at least on most computer algebra sys-

tems), leading to serious speed issues.

The first issue can be dealt with by decomposing R as

R =

∞⋃
n=0

Rn , (D.1)

where Rn is defined as the subset of R consisting of those elements ±
∏k
i=1 π

ni
i such that

|n1| + . . . + |nk| = n. In order to construct the set R(1), which is the basis out of which

R(k) for arbitrary k is constructed, one can then limit oneself to truncating the tower of

sets in eq. (D.1) to some finite value N < ∞. Indeed, in practical applications one does

not expect rational functions for large values of the sum n of the exponents.10

The second item seems to be harder to solve, since it is related to the capabilities of

the chosen computer algebra system. It is however possible to circumvent this problem by

deriving from the factorization constraints a necessary condition that must be fulfilled and

that can be checked in a fast way by a computer. Since in practice most of the elements

of R will fail this constraint, one can filter out these elements and discard them in an

easier way. In the following we discuss the example of R(1). The generalization to R(k) is

immediate.

10Empirically, we observe that the set R(1) seems to be finite in general.

– 57 –

J
H
E
P
1
0
(
2
0
1
2
)
0
7
5

Let us consider a generic element R in R. Without loss of generality, we can assume

that we can write

R = s
πn1

1 . . . πn``
π
n`+1

`+1 . . . πnkk
, (D.2)

with s = ±1 and ni ∈ N, and πi ∈ P . Checking if R ∈ R(1) is equivalent to checking

whether 1−R ∈ R, i.e., whether 1−R can be written, up to a sign, as a ratio of elements

from the set P . Writing

1−R =
π
n`+1

`+1 . . . πnkk − s π
n1
1 . . . πn``

π
n`+1

`+1 . . . πnkk
, (D.3)

it is easy to see that this condition can only be fulfilled if the polynomial in the numerator

can be factored into a product of elements in P . Let us call Π this numerator. A necessary

condition for R ∈ R(1) is thus that Π can be divided by at least one element in P . We can

further simplify this condition by reducing it from a problem of division of polynomials to

a problem of division of integers. Indeed, we can choose prime numbers {p1, . . . , pm} such

that πi(p1, . . . , pm) 6= πj(p1, . . . , pm), for i 6= j. The necessary condition for R ∈ R(1) then

reduces to checking that the integer number Π(p1, . . . , pm) can be divided by at least one of

the numbers πi(p1, . . . , pm), which is in general much quicker to test on a computer. Note

however that this is a necessary, but not necessarily sufficient, condition for R ∈ R(1).

E Analytic continuation of the spanning set of functions for harmonic

polylogarithms

E.1 Analytic representation inside the unit disc

The analytic expressions for the spanning set {B(i)
j (x)} introduced in section 6 are valid

for x ∈ [0, 1], but the functions might have different analytic representations in different

regions of the complex plane. In particular, since the B(j)
i functions are real when x is in

the range [0, 1], Schwarz’s reflection principle implies that the elements of the spanning set

must satisfy

B(i)
j (x∗) = B(i)

j (x)∗ , (E.1)

where x∗ denotes the complex conjugate of the complex number x. We checked numerically

that the analytic expressions for the elements of the spanning set are valid everywhere inside

the unit disc, except for B(13)
4 (x), where the correct expression for |x| < 1 is

B(13)
4 (x)=

{
Li4(1−x2) , if Re(x)>0 or (Re(x)=0 and Im(x)≥0) ,

Li4(1−x2)− iπ
3 σ(x) log3(1−x2) , otherwise ,

(E.2)

where σ(x) = sign(Im(x)). In order to understand this structure, let us look at the simpler

case of weight two. Then we get

Li2(1− x2) = − log(x2) log
(
1− x2

)
− Li2

(
x2
)

+
π2

6
. (E.3)

– 58 –

J
H
E
P
1
0
(
2
0
1
2
)
0
7
5

The first term in this expression contains log(x2) = 2 log x, which is real for x > 0, but

develops an imaginary part for x < 0, displaying the complicated branch cut structure of

Li2(1− x2). A similar reasoning leads to eq. (E.2).

E.2 Analytic representation outside the unit disc: inversion relations

We now have analytic representations of the elements of the spanning set everywhere inside

the unit disc, and so we can analytically continue them outside the unit disc via inversion

relations, i.e., functional equations of the form

B(i)
j (x) =

∑
k,l

cijkl B
(l)
k

(
1

x

)
+ products of lower weight. (E.4)

These functional equations can easily be obtained for the whole spanning set. Below we

show the explicit inversion formulas for weight one and two. For the the complete list of

inversion formulas for higher weights, we refer to appendix F. Letting σ(x) = sign(Im(x)),

we get, for |x| > 1, x not real,

• for weight one:

B(1)
1 (x) = −B(1)

1

(
1

x

)
,

B(2)
1 (x) = −B(1)

1

(
1

x

)
+ B(2)

1

(
1

x

)
− iπσ(x) ,

B(3)
1 (x) = B(3)

1

(
1

x

)
− B(1)

1

(
1

x

)
,

(E.5)

• for weight two:

B(1)
2 (x) = −iπσ(x)B(1)

1

(
1

x

)
− 1

2
B(1)

1

(
1

x

)2

− B(1)
2

(
1

x

)
+
π2

3
,

B(2)
2 (x) = −1

2
B(1)

1

(
1

x

)2

− B(2)
2

(
1

x

)
− π2

6
,

B(3)
2 (x) = − log 2B(1)

1

(
1

x

)
− 1

2
B(1)

1

(
1

x

)2

+ B(2)
1

(
1

x

)
B(1)

1

(
1

x

)
+ B(1)

2

(
1

x

)
− B(2)

2

(
1

x

)
+ B(3)

2

(
1

x

)
− π2

4
,

(E.6)

Note that the value of σ is ambiguous for real values of x. This ambiguity can be resolved by

the ‘iε’ prescription commonly used in the physics literature. According to this prescription,

we need to assign a small imaginary part to real value of x, i.e., if x is real, we need to

perform the replacement x→ x+ iε, and this replacement fixes at the same time the value

of σ. Note however that some care is needed when applying the inversion formulas to real

– 59 –

J
H
E
P
1
0
(
2
0
1
2
)
0
7
5

values of x because Schwarz’ reflection principle implies

B(i)
j (x± iε) =

∑
k,l

cijkl B
(l)
k

(
1

x± iε

)
+ products of lower weight

=
∑
k,l

cijkl B
(l)
k

(
1

x
∓ iε

)
+ products of lower weight

=
∑
k,l

cijkl B
(l)
k

(
1

x
± iε

)∗
+ products of lower weight.

(E.7)

If x lies on the unit circle, |x| = 1, there is an ambiguity whether to use the expression

for B(i)
j (x) valid inside or outside the unit circle. We checked numerically that the two

values agree in all cases, except for B(14)
5 (x) = Li4

(
4x

(1+x)2

)
. In this case, we find

B(15)
4

(
eiϕ
)

= Li4

(
1

cos2 ϕ
2

)
, (E.8)

i.e., the argument of Li4 is real and greater than 1 for every x on the unit circle (except for

x = −1, where the result is divergent), and we have an ambiguity on the imaginary part

of B(15)
4

(
eiϕ
)
. This ambiguity can be lifted by requiring the function to be continuous in a

neighborhood of the unit circle. To study this, let us consider a circle which is infinitesimally

close to the unit circle, i.e., we choose x = (1−ε) eiϕ, for some infinitesimal ε. We then find

4x

(1 + x)2
=

1

cos2 ϕ
2

(
1 + iε tan

ϕ

2
+O(ε2)

)
, (E.9)

i.e., we see that for |x| = 1, we have,

B(15)
4 (x) = Li4

(
4x

(1 + x)2
+ iσε

)
, (E.10)

with σ(x) = sign(Im(x)).

F Inversion formulas for the spanning set

In this appendix we present the inversion formulas for the spanning set for weight three

and four, valid for x ∈ C×.

F.1 Weight three

B(1)
3 (x) =

1

2
iπσ(x)B(1)

1

(
1

x

)2

+
1

6
B(1)

1

(
1

x

)3

− 1

3
π2B(1)

1

(
1

x

)
+ B(1)

3

(
1

x

)
,

B(2)
3 (x) =

1

6
B(1)

1

(
1

x

)3

+
1

6
π2B(1)

1

(
1

x

)
+ B(2)

3

(
1

x

)
,

(F.1)

– 60 –

J
H
E
P
1
0
(
2
0
1
2
)
0
7
5

B(3)
3 (x) =

1

6
B(1)

1

(
1

x

)3

− 1

2
B(2)

1

(
1

x

)
B(1)

1

(
1

x

)2

+
1

6
π2B(1)

1

(
1

x

)
− B(1)

3

(
1

x

)
− B(3)

3

(
1

x

)
+ ζ3 ,

B(4)
3 (x) =

1

3
B(3)

1

(
1

x

)3

− 1

2
B(1)

1

(
1

x

)
B(3)

1

(
1

x

)2

− 1

6
π2B(3)

1

(
1

x

)
− B(2)

3

(
1

x

)
− B(4)

3

(
1

x

)
+ ζ3 ,

B(5)
3 (x) = iπσ(x) log 2B(1)

1

(
1

x

)
− iπσ(x) log 2B(3)

1

(
1

x

)
+

1

2
log2 2B(1)

1

(
1

x

)
− 1

2
log2 2B(3)

1

(
1

x

)
+

1

2
log 2B(1)

1

(
1

x

)2

− log 2B(3)
1

(
1

x

)
B(1)

1

(
1

x

)
− 1

2
log 2B(2)

1

(
1

x

)2

+ log 2B(2)
1

(
1

x

)
B(3)

1

(
1

x

)
+

1

2
iπσ(x)B(1)

1

(
1

x

)2

− iπσ(x)B(3)
1

(
1

x

)
B(1)

1

(
1

x

)
+

1

2
iπσ(x)B(3)

1

(
1

x

)2

+
1

6
B(1)

1

(
1

x

)3

− 1

2
B(3)

1

(
1

x

)
B(1)

1

(
1

x

)2

− 1

2
B(2)

1

(
1

x

)2

B(1)
1

(
1

x

)
+ B(2)

1

(
1

x

)
B(3)

1

(
1

x

)
B(1)

1

(
1

x

)
− 1

3
π2B(1)

1

(
1

x

)
+

1

6
B(2)

1

(
1

x

)3

+
1

6
B(3)

1

(
1

x

)3

− 1

2
B(2)

1

(
1

x

)
B(3)

1

(
1

x

)2

+
1

6
π2B(2)

1

(
1

x

)
+

1

6
π2B(3)

1

(
1

x

)
− B(7)

3

(
1

x

)
− B(8)

3

(
1

x

)
+

1

2
iπσ(x) log2 2 +

1

6
log3 2− 1

3
π2 log 2 + ζ3 ,

B(6)
3 (x) =

1

2
log2 2B(1)

1

(
1

x

)
− 1

2
log2 2B(2)

1

(
1

x

)
+

1

2
log 2B(1)

1

(
1

x

)2

− log 2B(2)
1

(
1

x

)
B(1)

1

(
1

x

)
+

1

2
log 2B(2)

1

(
1

x

)2

+
1

6
B(1)

1

(
1

x

)3

− 1

2
B(2)

1

(
1

x

)
B(1)

1

(
1

x

)2

+
1

2
B(2)

1

(
1

x

)2

B(1)
1

(
1

x

)
+

1

6
π2B(1)

1

(
1

x

)
− 1

6
B(2)

1

(
1

x

)3

− 1

6
π2B(2)

1

(
1

x

)
+ B(8)

3

(
1

x

)
+

1

6
log3 2 +

1

6
π2 log 2 ,

B(7)
3 (x) = −1

2
log2 2B(3)

1

(
1

x

)
− 1

2
log2 2B(2)

1

(
1

x

)
+ log 2B(2)

1

(
1

x

)
B(3)

1

(
1

x

)
+

1

6
B(3)

1

(
1

x

)3

− 1

2
B(2)

1

(
1

x

)
B(3)

1

(
1

x

)2

+
1

6
π2B(3)

1

(
1

x

)
− B(5)

3

(
1

x

)
− B(6)

3

(
1

x

)
+

1

3
log3 2− 1

6
π2 log 2 + ζ3 ,

– 61 –

J
H
E
P
1
0
(
2
0
1
2
)
0
7
5

B(8)
3 (x) = iπσ(x) log 2B(2)

1

(
1

x

)
+

1

2
log2 2B(2)

1

(
1

x

)
− 1

2
log 2B(2)

1

(
1

x

)2

− 1

2
iπσ(x)B(2)

1

(
1

x

)2

+
1

6
B(2)

1

(
1

x

)3

− 1

3
π2B(2)

1

(
1

x

)
+ B(6)

3

(
1

x

)
− 1

2
iπσ(x) log2 2− 1

6
log3 2 +

1

3
π2 log 2 .

F.2 Weight four

B(1)
4 (x) = −1

6
iπσ(x)B(1)

1

(
1

x

)3

− 1

24
B(1)

1

(
1

x

)4

+
1

6
π2B(1)

1

(
1

x

)2

− B(1)
4

(
1

x

)
+
π4

45
,

B(2)
4 (x) = − 1

24
B(1)

1

(
1

x

)4

− 1

12
π2B(1)

1

(
1

x

)2

− B(2)
4

(
1

x

)
− 7π4

360
,

B(3)
4 (x) = − 1

24
B(1)

1

(
1

x

)4

+
1

6
B(2)

1

(
1

x

)
B(1)

1

(
1

x

)3

− 1

4
B(2)

1

(
1

x

)2

B(1)
1

(
1

x

)2

− 1

12
π2B(1)

1

(
1

x

)2

+
1

6
B(2)

1

(
1

x

)3

B(1)
1

(
1

x

)
+

1

6
π2B(2)

1

(
1

x

)
B(1)

1

(
1

x

)
− 1

24
B(2)

1

(
1

x

)4

− 1

12
π2B(2)

1

(
1

x

)2

− B(5)
4

(
1

x

)
− 7π4

360
,

B(4)
4 (x) = B(6)

4

(
1

x

)
,

B(5)
4 (x) =

1

6
iπσ(x)B(2)

1

(
1

x

)3

− 1

24
B(2)

1

(
1

x

)4

+
1

6
π2B(2)

1

(
1

x

)2

− B(3)
4

(
1

x

)
+
π4

45
,

B(6)
4 (x) = B(4)

4

(
1

x

)
,

B(7)
4 (x) = −1

2
iπσ(x) log2 2B(1)

1

(
1

x

)
+

1

2
iπσ(x) log2 2B(3)

1

(
1

x

)
− 1

2
iπσ(x) log 2B(1)

1

(
1

x

)2

+ iπσ(x) log 2B(3)
1

(
1

x

)
B(1)

1

(
1

x

)
− 1

2
iπσ(x) log 2B(3)

1

(
1

x

)2

− 1

6
log3 2B(1)

1

(
1

x

)
+

1

6
log3 2B(3)

1

(
1

x

)
− 1

4
log2 2B(1)

1

(
1

x

)2

+
1

2
log2 2B(3)

1

(
1

x

)
B(1)

1

(
1

x

)
− 1

4
log2 2B(3)

1

(
1

x

)2

− 1

6
log 2B(1)

1

(
1

x

)3

+
1

2
log 2B(3)

1

(
1

x

)
B(1)

1

(
1

x

)2

(F.2)

– 62 –

J
H
E
P
1
0
(
2
0
1
2
)
0
7
5

− 1

2
log 2B(3)

1

(
1

x

)2

B(1)
1

(
1

x

)
+

1

3
π2 log 2B(1)

1

(
1

x

)
+

1

6
log 2B(3)

1

(
1

x

)3

− 1

3
π2 log 2B(3)

1

(
1

x

)
− 1

6
iπσ(x)B(1)

1

(
1

x

)3

+
1

2
iπσ(x)B(3)

1

(
1

x

)
B(1)

1

(
1

x

)2

− 1

2
iπσ(x)B(3)

1

(
1

x

)2

B(1)
1

(
1

x

)
+

1

6
iπσ(x)B(3)

1

(
1

x

)3

− 1

24
B(1)

1

(
1

x

)4

+
1

6
B(3)

1

(
1

x

)
B(1)

1

(
1

x

)3

− 1

4
B(3)

1

(
1

x

)2

B(1)
1

(
1

x

)2

+
1

6
π2B(1)

1

(
1

x

)2

+
1

6
B(3)

1

(
1

x

)3

B(1)
1

(
1

x

)
− 1

3
π2B(3)

1

(
1

x

)
B(1)

1

(
1

x

)
− 1

24
B(3)

1

(
1

x

)4

+
1

6
π2B(3)

1

(
1

x

)2

− B(11)
4

(
1

x

)
− 1

6
iπσ(x) log3 2− 1

24
log4 2 +

1

6
π2 log2 2 +

π4

45
,

B(8)
4 (x) = −1

6
log3 2B(1)

1

(
1

x

)
+

1

6
log3 2B(2)

1

(
1

x

)
− 1

4
log2 2B(1)

1

(
1

x

)2

+
1

2
log2 2B(2)

1

(
1

x

)
B(1)

1

(
1

x

)
− 1

4
log2 2B(2)

1

(
1

x

)2

− 1

6
log 2B(1)

1

(
1

x

)3

+
1

2
log 2B(2)

1

(
1

x

)
B(1)

1

(
1

x

)2

− 1

2
log 2B(2)

1

(
1

x

)2

B(1)
1

(
1

x

)
− 1

6
π2 log 2B(1)

1

(
1

x

)
+

1

6
log 2B(2)

1

(
1

x

)3

+
1

6
π2 log 2B(2)

1

(
1

x

)
− 1

24
B(1)

1

(
1

x

)4

+
1

6
B(2)

1

(
1

x

)
B(1)

1

(
1

x

)3

− 1

4
B(2)

1

(
1

x

)2

B(1)
1

(
1

x

)2

− 1

12
π2B(1)

1

(
1

x

)2

+
1

6
B(2)

1

(
1

x

)3

B(1)
1

(
1

x

)
+

1

6
π2B(2)

1

(
1

x

)
B(1)

1

(
1

x

)
− 1

24
B(2)

1

(
1

x

)4

− 1

12
π2B(2)

1

(
1

x

)2

− B(12)
4

(
1

x

)
− 1

24
log4 2

− 1

12
π2 log2 2− 7π4

360
,

B(9)
4 (x) = B(10)

4

(
1

x

)
,

B(10)
4 (x) = B(9)

4

(
1

x

)
,

B(11)
4 (x) = −1

2
iπσ(x) log2 2B(3)

1

(
1

x

)
+

1

2
iπσ(x) log 2B(3)

1

(
1

x

)2

+
1

6
log3 2B(3)

1

(
1

x

)
− 1

4
log2 2B(3)

1

(
1

x

)2

+
1

6
log 2B(3)

1

(
1

x

)3

− 1

3
π2 log 2B(3)

1

(
1

x

)
− 1

6
iπσ(x)B(3)

1

(
1

x

)3

− 1

24
B(3)

1

(
1

x

)4

+
1

6
π2B(3)

1

(
1

x

)2

− B(7)
4

(
1

x

)
+

1

6
iπσ(x) log3 2− 1

24
log4 2 +

1

6
π2 log2 2 +

π4

45
,

– 63 –

J
H
E
P
1
0
(
2
0
1
2
)
0
7
5

B(12)
4 (x) =

1

2
iπσ(x) log2 2B(2)

1

(
1

x

)
− 1

2
iπσ(x) log 2B(2)

1

(
1

x

)2

+
1

6
log3 2B(2)

1

(
1

x

)
− 1

4
log2 2B(2)

1

(
1

x

)2

+
1

6
log 2B(2)

1

(
1

x

)3

− 1

3
π2 log 2B(2)

1

(
1

x

)
+

1

6
iπσ(x)B(2)

1

(
1

x

)3

− 1

24
B(2)

1

(
1

x

)4

+
1

6
π2B(2)

1

(
1

x

)2

− B(8)
4

(
1

x

)
− 1

6
iπσ(x) log3 2− 1

24
log4 2 +

1

6
π2 log2 2 +

π4

45
,

B(13)
4 (x) = −2

3
B(1)

1

(
1

x

)4

+
4

3
B(2)

1

(
1

x

)
B(1)

1

(
1

x

)3

+
4

3
B(3)

1

(
1

x

)
B(1)

1

(
1

x

)3

− B(2)
1

(
1

x

)2

B(1)
1

(
1

x

)2

− B(3)
1

(
1

x

)2

B(1)
1

(
1

x

)2

− 2B(2)
1

(
1

x

)
B(3)

1

(
1

x

)
B(1)

1

(
1

x

)2

− 1

3
π2B(1)

1

(
1

x

)2

+
1

3
B(2)

1

(
1

x

)3

B(1)
1

(
1

x

)
+

1

3
B(3)

1

(
1

x

)3

B(1)
1

(
1

x

)
+ B(2)

1

(
1

x

)
B(3)

1

(
1

x

)2

B(1)
1

(
1

x

)
+

1

3
π2B(2)

1

(
1

x

)
B(1)

1

(
1

x

)
+ B(2)

1

(
1

x

)2

B(3)
1

(
1

x

)
B(1)

1

(
1

x

)
+

1

3
π2B(3)

1

(
1

x

)
B(1)

1

(
1

x

)
− 1

24
B(2)

1

(
1

x

)4

− 1

24
B(3)

1

(
1

x

)4

− 1

6
B(2)

1

(
1

x

)
B(3)

1

(
1

x

)3

− 1

12
π2B(2)

1

(
1

x

)2

− 1

4
B(2)

1

(
1

x

)2

B(3)
1

(
1

x

)2

− 1

12
π2B(3)

1

(
1

x

)2

− 1

6
B(2)

1

(
1

x

)3

B(3)
1

(
1

x

)
− 1

6
π2B(2)

1

(
1

x

)
B(3)

1

(
1

x

)
− B(14)

4

(
1

x

)
− 7π4

360
,

B(14)
4 (x) =

1

6
iπσ(x)B(2)

1

(
1

x

)3

+
1

2
iπσ(x)B(3)

1

(
1

x

)
B(2)

1

(
1

x

)2

+
1

2
iπσ(x)B(3)

1

(
1

x

)2

B(2)
1

(
1

x

)
+

1

6
iπσ(x)B(3)

1

(
1

x

)3

− 1

24
B(2)

1

(
1

x

)4

− 1

6
B(3)

1

(
1

x

)
B(2)

1

(
1

x

)3

− 1

4
B(3)

1

(
1

x

)2

B(2)
1

(
1

x

)2

+
1

6
π2B(2)

1

(
1

x

)2

− 1

6
B(3)

1

(
1

x

)3

B(2)
1

(
1

x

)
+

1

3
π2B(3)

1

(
1

x

)
B(2)

1

(
1

x

)
− 1

24
B(3)

1

(
1

x

)4

+
1

6
π2B(3)

1

(
1

x

)2

− B(13)
4

(
1

x

)
+
π4

45
,

– 64 –

J
H
E
P
1
0
(
2
0
1
2
)
0
7
5

B(15)
4 (x) = 4iπσ(x) log2 2B(1)

1

(
1

x

)
− 8iπσ(x) log2 2B(3)

1

(
1

x

)
+ 2iπσ(x) log 2B(1)

1

(
1

x

)2

− 8iπσ(x) log 2B(3)
1

(
1

x

)
B(1)

1

(
1

x

)
+ 8iπσ(x) log 2B(3)

1

(
1

x

)2

+
1

3
iπσ(x)B(1)

1

(
1

x

)3

− 2iπσ(x)B(3)
1

(
1

x

)
B(1)

1

(
1

x

)2

+ 4iπσ(x)B(3)
1

(
1

x

)2

B(1)
1

(
1

x

)
− 8

3
iπσ(x)B(3)

1

(
1

x

)3

+ B(15)
4

(
1

x

)
+

8

3
iπσ(x) log3 2 ,

B(16)
4 (x) =

1

12
iπ3σ(x)B(1)

1

(
1

x

)
− 3

2
ζ3B(1)

1

(
1

x

)
+

1

24
B(1)

1

(
1

x

)4

+
1

2
B(1)

2

(
1

x

)
B(1)

1

(
1

x

)2

+
1

12
π2B(1)

1

(
1

x

)2

− 2B(1)
3

(
1

x

)
B(1)

1

(
1

x

)
+

1

6
π2B(1)

2

(
1

x

)
+ 3B(1)

4

(
1

x

)
+ B(2)

4

(
1

x

)
+ B(16)

4

(
1

x

)
− 37π4

720
,

B(17)
4 (x) = −19

24
B(3)

1

(
1

x

)4

+
7

6
B(1)

1

(
1

x

)
B(3)

1

(
1

x

)3

+
5

2
log 2B(3)

1

(
1

x

)3

− 9

4
log2 2B(3)

1

(
1

x

)2

− B(1)
1

(
1

x

)
B(2)

1

(
1

x

)
B(3)

1

(
1

x

)2

− 1

2
B(1)

2

(
1

x

)
B(3)

1

(
1

x

)2

+
1

2
B(2)

2

(
1

x

)
B(3)

1

(
1

x

)2

− B(3)
2

(
1

x

)
B(3)

1

(
1

x

)2

− B(1)
1

(
1

x

)
log 2B(3)

1

(
1

x

)2

− B(2)
1

(
1

x

)
log 2B(3)

1

(
1

x

)2

+
19

24
π2B(3)

1

(
1

x

)2

− 1

3
B(2)

1

(
1

x

)3

B(3)
1

(
1

x

)
+

5

6
log3 2B(3)

1

(
1

x

)
+ B(1)

1

(
1

x

)
B(2)

1

(
1

x

)2

B(3)
1

(
1

x

)
+

3

2
B(1)

1

(
1

x

)
log2 2B(3)

1

(
1

x

)
− 1

4
π2B(1)

1

(
1

x

)
B(3)

1

(
1

x

)
− 1

6
π2B(2)

1

(
1

x

)
B(3)

1

(
1

x

)
+ B(1)

1

(
1

x

)
B(3)

2

(
1

x

)
B(3)

1

(
1

x

)
+ 2B(1)

3

(
1

x

)
B(3)

1

(
1

x

)
− 2B(5)

3

(
1

x

)
B(3)

1

(
1

x

)
+ 2B(7)

3

(
1

x

)
B(3)

1

(
1

x

)
+ 2B(8)

3

(
1

x

)
B(3)

1

(
1

x

)
+ B(2)

1

(
1

x

)2

log 2B(3)
1

(
1

x

)
− B(1)

1

(
1

x

)
B(2)

1

(
1

x

)
log 2B(3)

1

(
1

x

)
− 2

3
π2 log 2B(3)

1

(
1

x

)
+

1

2
iπ log2 2σ(x)B(3)

1

(
1

x

)
− 1

12
iπ3σ(x)B(3)

1

(
1

x

)
+ 3ζ3B(3)

1

(
1

x

)

– 65 –

J
H
E
P
1
0
(
2
0
1
2
)
0
7
5

+
1

8
log4 2− 1

3
B(1)

1

(
1

x

)
log3 2 +

1

2
B(2)

2

(
1

x

)2

+
1

12
π2 log2 2

+
1

6
π2B(3)

2

(
1

x

)
+ 2B(1)

1

(
1

x

)
B(5)

3

(
1

x

)
− 3

2
B(1)

4

(
1

x

)
− 1

2
B(2)

4

(
1

x

)
− 2B(4)

4

(
1

x

)
− 2B(6)

4

(
1

x

)
− 3B(7)

4

(
1

x

)
+ 3B(11)

4

(
1

x

)
− 3

4
B(15)

4

(
1

x

)
− B(16)

4

(
1

x

)
− B(17)

4

(
1

x

)
+

1

6
π2B(1)

1

(
1

x

)
log 2− 1

6
π2B(2)

1

(
1

x

)
log 2

− 1

2
iπ log3 2σ(x) +

1

12
iπ3 log 2σ(x)− 7

4
B(1)

1

(
1

x

)
ζ3 + 6Li4

(
1

2

)
− π4

160
,

B(18)
4 (x) =

35

96
B(2)

1

(
1

x

)4

− 5

12
B(1)

1

(
1

x

)
B(2)

1

(
1

x

)3

− 1

24
B(3)

1

(
1

x

)
B(2)

1

(
1

x

)3

− 1

2
log 2B(2)

1

(
1

x

)3

− 1

6
iπσ(x)B(2)

1

(
1

x

)3

− 1

16
B(3)

1

(
1

x

)2

B(2)
1

(
1

x

)2

+
1

4
log2 2B(2)

1

(
1

x

)2

+
1

4
B(1)

1

(
1

x

)
B(3)

1

(
1

x

)
B(2)

1

(
1

x

)2

+
1

2
B(1)

2

(
1

x

)
B(2)

1

(
1

x

)2

− 1

2
B(2)

2

(
1

x

)
B(2)

1

(
1

x

)2

+ B(3)
2

(
1

x

)
B(2)

1

(
1

x

)2

+
1

48
π2B(2)

1

(
1

x

)2

− 1

24
B(3)

1

(
1

x

)3

B(2)
1

(
1

x

)
− 1

6
log3 2B(2)

1

(
1

x

)
+

1

4
B(1)

1

(
1

x

)
B(3)

1

(
1

x

)2

B(2)
1

(
1

x

)
+

1

2
B(1)

1

(
1

x

)
log2 2B(2)

1

(
1

x

)
− 1

12
π2B(1)

1

(
1

x

)
B(2)

1

(
1

x

)
− 1

24
π2B(3)

1

(
1

x

)
B(2)

1

(
1

x

)
− B(1)

1

(
1

x

)
B(3)

2

(
1

x

)
B(2)

1

(
1

x

)
− 2B(6)

3

(
1

x

)
B(2)

1

(
1

x

)
− 2B(8)

3

(
1

x

)
B(2)

1

(
1

x

)
− iπB(3)

2

(
1

x

)
σ(x)B(2)

1

(
1

x

)
+

7

2
ζ3B(2)

1

(
1

x

)
+

55

96
B(3)

1

(
1

x

)4

+
1

8
log4 2− 7

12
B(1)

1

(
1

x

)
B(3)

1

(
1

x

)3

− 1

3
B(1)

1

(
1

x

)
log3 2− B(3)

1

(
1

x

)
log3 2− 29

48
π2B(3)

1

(
1

x

)2

+
1

2
B(1)

2

(
1

x

)2

+
3

2
B(3)

1

(
1

x

)2

log2 2− 1

12
π2 log2 2− B(1)

2

(
1

x

)
B(2)

2

(
1

x

)
− 1

6
π2B(3)

2

(
1

x

)
− 2B(3)

1

(
1

x

)
B(1)

3

(
1

x

)
+ 2B(1)

1

(
1

x

)
B(6)

3

(
1

x

)
+

3

2
B(1)

4

(
1

x

)
+

1

2
B(2)

4

(
1

x

)
− 2B(3)

4

(
1

x

)
+ 4B(4)

4

(
1

x

)
+ 2B(5)

4

(
1

x

)
+ 4B(6)

4

(
1

x

)
+ 6B(7)

4

(
1

x

)
+ 3B(8)

4

(
1

x

)
− 6B(11)

4

(
1

x

)
− 3B(12)

4

(
1

x

)
+

1

4
B(13)

4

(
1

x

)
− 1

4
B(14)

4

(
1

x

)

– 66 –

J
H
E
P
1
0
(
2
0
1
2
)
0
7
5

+
3

4
B(15)

4

(
1

x

)
+ B(16)

4

(
1

x

)
− B(18)

4

(
1

x

)
− B(3)

1

(
1

x

)3

log 2

+
1

6
π2B(1)

1

(
1

x

)
log 2 +

1

2
π2B(3)

1

(
1

x

)
log 2 +

1

6
iπ log3 2σ(x) + 2iπB(6)

3

(
1

x

)
σ(x)

+
1

12
iπ3 log 2σ(x)− 7

4
iπζ3σ(x)− 7

4
B(1)

1

(
1

x

)
ζ3 −

3

2
B(3)

1

(
1

x

)
ζ3

− 6Li4

(
1

2

)
− 37π4

1440
.

G Expression of HPL’s in terms of the spanning set

In this appendix we present the results for expressing all HPL’s up to weight four in terms

of the spanning set {B(j)
i }. We restrict ourselves to giving the expression for a minimal set

of HPL’s out of which all other cases can be obtained via shuffle relations.11

G.1 Results for weight two

H(−1, 1;x) = log 2 log(1− x)− log(1− x) log(1 + x)− 1

2
log2 2− Li2

(
1− x

2

)
+
π2

12
,

H(0,−1;x) = −Li2(−x) ,

H(0, 1;x) = Li2(x) .

G.2 Results for weight three

H(−1, 1,−1;x) = −Li2

(
1− x

2

)
log(1 + x)− 3

2
log2 2 log(1 + x)

+ log 2 log2(1 + x)− log(1− x) log2(1 + x) + log 2 log(1− x) log(1 + x)

+
1

4
π2 log(1 + x) +

1

3
log3 2− 1

6
π2 log 2− 2Li3

(
1 + x

2

)
+

7ζ3

4
,

H(−1, 1, 1;x) = Li2

(
1− x

2

)
log(1− x)− 1

2
log 2 log2(1− x) +

1

2
log2(1− x) log(1 + x)

+
1

6
log3 2− 1

12
π2 log 2− Li3

(
1− x

2

)
+

7ζ3

8
,

H(0,−1,−1;x) = −Li2(−x) log(1 + x) +
1

6
log3(1 + x)− 1

2
log x log2(1 + x)−π

2

6
log(1 + x)

− Li3

(
1

1 + x

)
+ ζ3 ,

H(0,−1, 1;x) = Li2(−x) log(1−x)− 1

6
log3(1−x)− 1

2
log2 2 log(1−x) +

1

2
log 2 log2(1−x)

+
1

2
log2(1− x) log x− π2

12
log(1− x) +

1

6
log3 2− π2

12
log 2− Li3

(
1− x

2

)
+ Li3(1− x)− Li3(−x) + Li3(x) + Li3

(
2x

x− 1

)
− 1

8
ζ3 ,

11A set of text files containing the expressions for all HPL’s up to weight four (for x ∈ [0, 1]) in Mathe-

matica is included in the arXiv distribution.

– 67 –

J
H
E
P
1
0
(
2
0
1
2
)
0
7
5

H(0, 0,−1;x) = −Li3(−x) ,

H(0, 0, 1;x) = Li3(x) ,

H(0, 1,−1;x) = Li2(x) log(1 + x) +
1

6
log3(1−x)− 1

2
log2 2 log(1 + x)− 1

2
log 2 log2(1−x)

− 1

2
log(1−x) log2(1 + x)− 1

2
log2(1−x) log x+ log 2 log(1−x) log(1 + x)

+
π2

6
log(1− x) + log(1− x) log x log(1 + x) +

π2

12
log(1 + x) +

1

6
log3 2

− π2

12
log 2 + Li3(−x)− Li3(x)− Li3

(
2x

x− 1

)
+ Li3

(
1

1 + x

)
− Li3

(
1− x
1 + x

)
− Li3

(
1 + x

2

)
+

7

8
ζ3 ,

H(0, 1, 1;x) = −Li2(x) log(1−x)− 1

2
log x log2(1−x) +

π2

6
log(1−x)−Li3(1−x) + ζ3 .

G.3 Results for weight four

H(−1, 1,−1,−1;x) = −1

2
Li2

(
1− x

2

)
log2(1 + x)− 2Li3

(
1 + x

2

)
log(1 + x)

− 7

8
ζ3 log(1 + x)− 1

6
log3 2 log(1 + x) +

1

2
log 2 log3(1 + x)

− 1

2
log(1− x) log3(1 + x)− 1

2
log2 2 log2(1 + x)

+
1

2
log 2 log(1− x) log2(1 + x) +

π2

12
log2(1 + x) +

π2

12
log 2 log(1 + x)

+ 3Li4

(
1 + x

2

)
− 3Li4

(
1

2

)
,

H(−1, 1,−1, 1;x) =
1

2
Li2

(
1− x

2

)
log2 2− Li2

(
1− x

2

)
log 2 log(1− x)

+ Li2

(
1− x

2

)
log(1− x) log(1 + x) + 2Li3

(
1 + x

2

)
log(1− x)

− 2ζ3 log(1− x) +
1

4
ζ3 log(1 + x) +

1

12
log4(1 + x)− 7

6
log3 2 log(1− x)

+
1

3
log3 2 log(1 + x)− 1

3
log(1− x) log3(1 + x) + log2 2 log2(1− x)

− 1

2
log2 2 log2(1 + x) +

3

2
log2 2 log(1− x) log(1 + x)

− 2 log 2 log2(1−x) log(1+x)+log2(1−x) log2(1+x)+
π2

6
log2(1+x)

+
5

12
π2 log 2 log(1−x)− π

2

6
log 2 log(1+x)− 5

12
π2 log(1−x) log(1+x)

+
1

8
log4 2− π

2

24
log2 2+

1

2
Li2

(
1−x

2

)2

− π
2

12
Li2

(
1−x

2

)
+2Li4

(
1−x

2

)
+ 2Li4

(
x− 1

x+ 1

)
− 2Li4

(
1 + x

2

)
+

11

480
π4 ,

– 68 –

J
H
E
P
1
0
(
2
0
1
2
)
0
7
5

H(0,−1,−1,−1;x) = −1

2
Li2(−x) log2(1 + x)− Li3

(
1

1 + x

)
log(1 + x) +

1

8
log4(1 + x)

− 1

3
log x log3(1 + x)− π2

12
log2(1 + x)− Li4

(
1

1 + x

)
+
π4

90
,

H(0,−1,−1, 1;x) = Li2,2(−1, x) + Li2,2

(
1

2
,

2x

x+ 1

)
+

1

2
Li2

(
1− x

2

)
log2(1 + x)

− 1

2
Li2(−x) log2(1 + x) +

1

2
Li2(x) log2(1 + x) +

1

2
Li2(−x) log2 2

+ Li2(−x) log(1− x) log(1 + x)− 2Li3(x) log(1 + x)

− 2Li3

(
2x

x− 1

)
log(1 + x)− 2Li3

(
1− x
1 + x

)
log(1 + x)

− Li2(−x) log 2 log(1− x) + Li3

(
1

1 + x

)
log(1− x)− 5

4
ζ3 log(1 + x)

− 7

8
ζ3 log(1− x) +

5

8
log4(1 + x)− 3

2
log 2 log3(1 + x)

− 2

3
log(1− x) log3(1 + x)− log x log3(1 + x)− 1

2
log3 2 log(1 + x)

+
1

3
log3(1−x) log(1+x)+log2 2 log2(1+x)+

3

2
log 2 log(1−x) log2(1+x)

+ 2 log(1− x) log x log2(1 + x)− 5

12
π2 log2(1 + x)

− log 2 log2(1− x) log(1 + x)− log2(1− x) log x log(1 + x)

+
π2

4
log 2 log(1 + x) +

5

12
π2 log(1− x) log(1 + x)− 1

4
Li4
(
1− x2

)
− 1

2
Li2(−x)2 + Li2

(
1− x

2

)
Li2(−x)− π2

12
Li2(−x) + Li4(1− x)

+ Li4(−x)+Li4(x)+
1

2
Li4

(
4x

(x+1)2

)
− 1

2
Li4

(
1−x
1+x

)
+

1

2
Li4

(
x−1

x+1

)
+ 2Li4

(
x

x+ 1

)
− 2Li4

(
2x

x+ 1

)
+ 3Li4

(
1 + x

2

)
− 3Li4

(
1

2

)
+

π4

480
,

H(0,−1, 1,−1;x) = −Li2,2(−1, x)− Li2,2

(
1

2
,

2x

x+ 1

)
− 1

2
Li2

(
1− x

2

)
log2(1 + x)

+
1

2
Li2(−x) log2(1 + x)− 1

2
Li2(x) log2(1 + x)− 1

2
Li2(−x) log2 2

− Li3

(
1− x

2

)
log(1 + x) + Li3(1− x) log(1 + x)− Li3(−x) log(1 + x)

+ 3Li3(x) log(1 + x) + 3Li3

(
2x

x− 1

)
log(1 + x)

+ 2Li3

(
1− x
1 + x

)
log(1 + x) + Li2(−x) log 2 log(1− x) +

17

8
ζ3 log(1 + x)

− 19

24
log4(1 + x) + 2 log 2 log3(1 + x) +

1

2
log(1− x) log3(1 + x)

+
7

6
log x log3(1 + x) +

7

6
log3 2 log(1 + x)− 1

2
log3(1− x) log(1 + x)

− 7

4
log2 2 log2(1 + x)− 3

2
log 2 log(1− x) log2(1 + x)

− 2 log(1− x) log x log2(1 + x) +
17

24
π2 log2(1 + x)

+
3

2
log 2 log2(1− x) log(1 + x)− 1

2
log2 2 log(1− x) log(1 + x)

– 69 –

J
H
E
P
1
0
(
2
0
1
2
)
0
7
5

+
3

2
log2(1− x) log x log(1 + x)− 7

12
π2 log 2 log(1 + x)

− 5

12
π2 log(1− x) log(1 + x) +

1

2
Li2(−x)2 − Li2

(
1− x

2

)
Li2(−x)

+
π2

12
Li2(−x)− 1

2
Li4(−x)− 3

2
Li4(x)− 3

4
Li4

(
4x

(x+ 1)2

)
− Li4

(
1

1 + x

)
− 2Li4

(
x

x+ 1

)
+ 3Li4

(
2x

x+ 1

)
− 6Li4

(
1 + x

2

)
+ 6Li4

(
1

2

)
+
π4

90
,

H(0,−1, 1, 1;x) = −1

2
Li2(−x) log2(1− x) + Li3

(
1− x

2

)
log(1− x)− Li3(1− x) log(1− x)

+ Li3(−x) log(1− x)− Li3(x) log(1− x)− Li3

(
2x

x− 1

)
log(1− x)

+
7

4
ζ3 log(1− x) +

19

96
log4(1− x) +

23

96
log4(1 + x)− 1

3
log 2 log3(1− x)

− 7

12
log x log3(1−x)− 1

24
log(1+x) log3(1−x)− 1

24
log3(1+x) log(1−x)

− 1

3
log 2 log3(1 + x)− 1

4
log x log3(1 + x)− 1

3
log3 2 log(1 + x)

+
1

4
log2 2log2(1−x)− 1

16
log2(1+x)log2(1−x)+

1

4
log x log(1+x) log2(1−x)

+
3

16
π2 log2(1− x) +

1

4
log x log2(1 + x) log(1− x) +

1

2
log2 2 log2(1 + x)

− 13

48
π2 log2(1 + x)− π2

24
log(1 + x) log(1− x) +

π2

6
log 2 log(1 + x)

+
1

4
Li4
(
1− x2

)
− 1

4
Li4

(
x2

x2 − 1

)
− Li4

(
1− x

2

)
− Li4(1− x)

− 1

2
Li4(−x) +

1

2
Li4(x) + 2Li4

(
x

x− 1

)
− Li4

(
2x

x− 1

)
+

1

4
Li4

(
4x

(x+ 1)2

)
+ 2Li4

(
1

1 + x

)
+ 2Li4

(
x

x+ 1

)
− 2Li4

(
2x

x+ 1

)
+ 2Li4

(
1 + x

2

)
− Li4

(
1

2

)
− π4

72
,

H(0, 0,−1,−1;x) = −Li3(−x) log(1 + x) + ζ3 log(1 + x) +
1

12
log4(1 + x)− 1

6
log x log3(1 + x)

− π2

12
log2(1 + x) + Li4(−x) + Li4

(
1

1 + x

)
+ Li4

(
x

x+ 1

)
− π4

90
,

H(0, 0,−1, 1;x) = Li3(−x) log(1− x) +
3

4
ζ3 log(1− x) +

1

32
log4(1− x) +

23

96
log4(1 + x)

− 1

12
log x log3(1− x)− 1

24
log(1 + x) log3(1− x)− 1

24
log3(1 + x) log(1− x)

− 1

3
log 2 log3(1 + x)− 1

4
log x log3(1 + x)− 1

3
log3 2 log(1 + x)

− 1

16
log2(1 + x) log2(1− x) +

1

4
log x log(1 + x) log2(1− x) +

π2

16
log2(1− x)

+
1

4
log x log2(1 + x) log(1− x) +

1

2
log2 2 log2(1 + x)− 13

48
π2 log2(1 + x)

− π2

24
log(1 + x) log(1− x) +

π2

6
log 2 log(1 + x) +

1

4
Li4
(
1− x2

)

– 70 –

J
H
E
P
1
0
(
2
0
1
2
)
0
7
5

− 1

4
Li4

(
x2

x2 − 1

)
− Li4(1− x)− 3

2
Li4(−x) +

1

2
Li4(x) + Li4

(
x

x− 1

)
+

1

4
Li4

(
4x

(x+ 1)2

)
+ 2Li4

(
1

1 + x

)
+ 2Li4

(
x

x+ 1

)
− 2Li4

(
2x

x+ 1

)
+ 2Li4

(
1 + x

2

)
− 2Li4

(
1

2

)
− π4

72
,

H(0, 0, 0,−1;x) = −Li4(−x) ,

H(0, 0, 0, 1;x) = Li4(x) ,

H(0, 0, 1,−1;x) = Li3(x) log(1 + x) +
3

4
ζ3 log(1 + x)− 1

6
log4(1 + x) +

1

3
log 2 log3(1 + x)

+
1

6
log x log3(1 + x) +

1

3
log3 2 log(1 + x)− 1

2
log2 2 log2(1 + x) +

π2

6
log2(1 + x)

− π2

6
log 2 log(1 + x) +

1

2
Li4(−x)− 3

2
Li4(x)− 1

4
Li4

(
4x

(x+ 1)2

)
− Li4

(
1

1 + x

)
− Li4

(
x

x+ 1

)
+ 2Li4

(
2x

x+ 1

)
− 2Li4

(
1 + x

2

)
+ 2Li4

(
1

2

)
+
π4

90
,

H(0, 1,−1,−1;x) =
1

2
Li2(x) log2(1 + x) + Li3(−x) log(1 + x)− Li3(x) log(1 + x)

− Li3

(
2x

x− 1

)
log(1 + x) + Li3

(
1

1 + x

)
log(1 + x)− Li3

(
1− x
1 + x

)
log(1 + x)

− Li3

(
1 + x

2

)
log(1 + x)− 3

4
ζ3 log(1 + x) +

1

6
log4(1 + x)− 1

2
log 2 log3(1 + x)

− 1

2
log(1− x) log3(1 + x)− 1

6
log x log3(1 + x)− 1

3
log3 2 log(1 + x)

+
1

6
log3(1− x) log(1 + x) +

1

4
log2 2 log2(1 + x) + log 2 log(1− x) log2(1 + x)

+ log(1− x) log x log2(1 + x)− π2

8
log2(1 + x)− 1

2
log 2 log2(1− x) log(1 + x)

− 1

2
log2(1− x) log x log(1 + x) +

π2

6
log 2 log(1 + x) +

π2

6
log(1− x) log(1 + x)

− 1

2
Li4(−x) +

1

2
Li4(x) +

1

4
Li4

(
4x

(x+ 1)2

)
+ Li4

(
1

1 + x

)
− Li4

(
2x

x+ 1

)
+ 3Li4

(
1 + x

2

)
− 3Li4

(
1

2

)
− π4

90
,

H(0, 1,−1, 1;x) = −47

96
log4(1− x) + log 2 log3(1− x) +

11

12
log x log3(1− x)

+
1

24
log(1 + x) log3(1− x)− 1

4
log2 2 log2(1− x) +

9

16
log2(1 + x) log2(1− x)

− log 2 log(1 + x) log2(1− x)− 5

4
log x log(1 + x) log2(1− x)

− 1

2
Li2

(
1− x

2

)
log2(1− x) +

1

2
Li2(−x) log2(1− x)− 1

2
Li2(x) log2(1− x)

− 17

48
π2 log2(1− x)− 1

6
log3 2 log(1− x) +

1

24
log3(1 + x) log(1− x)

− 1

4
log x log2(1 + x) log(1− x) +

π2

12
log 2 log(1− x)

+
1

2
log2 2 log(1 + x) log(1− x)− π2

24
log(1 + x) log(1− x)

+ log 2 Li2(x) log(1− x)− log(1 + x)Li2(x) log(1− x)− Li3(−x) log(1− x)

– 71 –

J
H
E
P
1
0
(
2
0
1
2
)
0
7
5

+ Li3(x) log(1− x) + 3Li3

(
2x

x− 1

)
log(1− x)− Li3

(
1

1 + x

)
log(1− x)

+ Li3

(
1− x
1 + x

)
log(1− x) + Li3

(
1 + x

2

)
log(1− x)− 29

8
ζ3 log(1− x)

− 55

96
log4(1 + x) + log 2 log3(1 + x) +

7

12
log x log3(1 + x)− 3

2
log2 2 log2(1 + x)

+
29

48
π2 log2(1 + x)− Li2(x)2

2
− Li2,2(−1, x) + Li2,2

(
1

2
,

2x

x− 1

)
+ log3 2 log(1 + x)− π2

2
log 2 log(1 + x)− 1

2
log2 2 Li2(x)− Li2

(
1− x

2

)
Li2(x)

+ Li2(−x)Li2(x) +
π2

12
Li2(x) + 2 log(1 + x)Li3(x) + 3Li4(1− x)

− 1

2
Li4(−x)− 3

2
Li4(x)− 2Li4

(
x

x− 1

)
+ 3Li4

(
2x

x− 1

)
− 3

4
Li4

(
4x

(x+ 1)2

)
− 4Li4

(
1

1 + x

)
− 4Li4

(
x

x+ 1

)
+ 6Li4

(
2x

x+ 1

)
− 6Li4

(
1 + x

2

)
− 1

4
Li4
(
1− x2

)
+

1

4
Li4

(
x2

x2 − 1

)
+

3

2
log(1 + x)ζ3

+ 6Li4

(
1

2

)
+
π4

72
,

H(0, 1, 0,−1;x) = −Li2,2(−1, x) ,

H(0, 1, 0, 1;x) = 2Li3(x) log(1− x)− 2ζ3 log(1− x)− 1

12
log4(1− x) +

1

3
log x log3(1− x)

− π2

6
log2(1− x) +

Li2(x)2

2
+ 2Li4(1− x)− 2Li4(x)− 2Li4

(
x

x− 1

)
− π4

45
,

H(0, 1, 1,−1;x) = Li2,2(−1, x)− Li2,2

(
1

2
,

2x

x− 1

)
+

1

2
Li2

(
1− x

2

)
log2(1− x)

− 1

2
Li2(−x) log2(1− x) +

1

2
Li2(x) log2(1− x) +

1

2
Li2(x) log2 2

− Li2(x) log 2 log(1− x)− 2Li3

(
2x

x− 1

)
log(1− x)− Li3(1− x) log(1 + x)

− 2Li3(x) log(1 + x) +
7

4
ζ3 log(1− x)− 5

8
ζ3 log(1 + x) +

7

24
log4(1− x)

+
3

8
log4(1 + x)− 2

3
log 2 log3(1− x)− 1

3
log x log3(1− x)− 1

6
log3 2 log(1− x)

− 2

3
log 2 log3(1 + x)− 1

3
log x log3(1 + x)− 2

3
log3 2 log(1 + x)

+
1

2
log2 2 log2(1− x) +

π2

8
log2(1− x) + log2 2 log2(1 + x)− 3

8
π2 log2(1 + x)

+
π2

12
log 2 log(1− x) +

π2

3
log 2 log(1 + x) +

1

4
Li4
(
1− x2

)
+

1

2
Li2(x)2

+ Li2

(
1− x

2

)
Li2(x)− Li2(−x)Li2(x)− π2

12
Li2(x) + Li4

(
1− x

2

)
− 2Li4(1− x) + Li4(−x) + Li4(x)− 2Li4

(
2x

x− 1

)
+

1

2
Li4

(
4x

(x+ 1)2

)
+ 3Li4

(
1

1 + x

)
− 1

2
Li4

(
1− x
1 + x

)
+

1

2
Li4

(
x− 1

x+ 1

)
+ 2Li4

(
x

x+ 1

)
− 4Li4

(
2x

x+ 1

)
+ 4Li4

(
1 + x

2

)
− 5Li4

(
1

2

)
− π4

288
,

– 72 –

J
H
E
P
1
0
(
2
0
1
2
)
0
7
5

H(0, 1, 1, 1;x) =
1

2
Li2(x) log2(1− x) + Li3(1− x) log(1− x) +

1

3
log x log3(1− x)

− π2

12
log2(1− x)− Li4(1− x) +

π4

90
,

References

[1] A.B. Goncharov, Multiple polylogarithms, cyclotomy and modular complexes, Math. Res.

Lett. 5 (1998) 497 [arXiv:1105.2076].

[2] A.B. Goncharov, Multiple polylogarithms and mixed Tate motives, math/0103059.

[3] S. Bloch, Higher regulators, algebraic K- theory and zeta functions of elliptic curves, Volume

11 of CRM Monograph Series, AMS, Providence, RI, U.S.A. (2000).

[4] A. Beilinson, Polylogarithms and cyclotomic elements, MIT preprint (1989).

[5] D. Zagier, Polylogarithms, Dedekind zeta functions and the algebraic K-theory of fields, in

G. van der Geer, F. Oort, J. Steenbrink eds., Arithmetic Algebraic Geometry, Prog. Math.

89 Birkhäuser (1991), pg. 391–430.

[6] A. Beilinson and P. Deligne, Interprétation motivique de la conjecture de Zagier reliant

polylogarithmes et régulateurs, Proc. Symp. Pure Math. 55 (1994) 97.

[7] A.B. Goncharov, Geometry of configurations, polylogarithms and motivic cohomology, Adv.

Math. 144 (1995) 197.

[8] A.B. Goncharov, Galois symmetries of fundamental groupoids and noncommutative

geometry, Duke Math. J. 128 (2005) 209 [math/0208144].

[9] J.L. Dupont and C.H. Sah, Scissors Congruences II, J. Pure Appl. Algebra 25 (1982) 159.

[10] J.L. Cathelineau, Quelques aspects du troisième problème de Hilbert, Gaz. Math. 52 (1992)

45.

[11] A.B. Goncharov, Volumes of hyperbolic manifolds and mixed Tate motives,

J. Amer. Math. Soc. 12 (1999) 569 [alg-geom/9601021].

[12] J. Böhm, Inhaltsmessung in constanter Krümmung, Arch. Math. 11 (1960) 298.

[13] W.D. Neumann and D. Zagier, Volumes of hyperbolic three-manifolds, Topology 24 (1985)

307.

[14] D. Zagier, Hyperbolic manifolds and special values of Dedekind zeta-functions, Invent. Math.

83 (1986) 285.

[15] R. Kellerhals, Volumes in hyperbolic 5-space, Geom. Funct. Anal. 5 (1995) 640.

[16] W.D. Neumann and J. Yang, Bloch invariants of hyperbolic 3-manifolds, Duke Math. J. 96

(1999) 29. math/9712224.

[17] A.M. Gabrielov, I.M. Gelfand and M.V. Losik, Combinatorial computation of characteristic

classes, Funct. Anal. Appl.+ 9 (1975) 5.

[18] D. Zagier, The dilogarithm function in Geometry and Number Theory, in P.E. Cartier, B.

Julia and P. Moussa, P. Vanhove eds., Frontiers in number theory, physics, and geometry II,

Springer (2007), pg. 3–65

[19] S. Bloch and I. Kriz, Mixed Tate Motives, Ann. Math. 140 (1994) 557.

[20] H. Gangl and S. Mueller-Stach, Polylogarithmic identities in cubical higher Chow groups, in

Algebraic K-Theory. Proceedings of Symposia in Pure Mathematics 67, AMS, Providence,

RI, U.S.A (1999) 25.

– 73 –

http://arxiv.org/abs/1105.2076
http://arxiv.org/abs/math/0103059
http://arxiv.org/abs/math/0208144
http://arxiv.org/abs/alg-geom/9601021
http://dx.doi.org/10.1007/BF01902056
http://arxiv.org/abs/math/9712224

J
H
E
P
1
0
(
2
0
1
2
)
0
7
5

[21] H. Gangl, A.B. Goncharov and A. Levin, Multiple polylogarithms, polygons, trees and

algebraic cycles, in proceedings of Summer Institute in Algebraic Geometry, Seattle, U.S.A.

(2005) [Proc. Symp. Pure Math. 80 (2009) 547] [math/0508066].

[22] K.T. Chen, Iterated path integrals, Bull. Amer. Math. Soc. 83 (1977) 831.

[23] R. Hain, Classical polylogarithms, in U. Jannsen, S. Kleiman and J.-P. Serre eds., Motives,

Proc. Symp. Pure Math. 55 (1994) 3 [alg-geom/9202022].

[24] Z. Wojtkowiak, Mixed Hodge structures and iterated integrals I, in F. Bogomolov and L.

Katzarkov eds. Motives, Polylogarithms and Hodge Theory (Part I: Motives and

Polylogarithms), Int. Press Lect. Ser. 3 (2002) 121.

[25] E. Remiddi and J. Vermaseren, Harmonic polylogarithms, Int. J. Mod. Phys. A 15 (2000)

725 [hep-ph/9905237] [INSPIRE].

[26] T. Gehrmann and E. Remiddi, Two loop master integrals for γ∗ → 3 jets: The Planar

topologies, Nucl. Phys. B 601 (2001) 248 [hep-ph/0008287] [INSPIRE].

[27] J. Ablinger, J. Blumlein and C. Schneider, Harmonic Sums and Polylogarithms Generated

by Cyclotomic Polynomials, J. Math. Phys. 52 (2011) 102301 [arXiv:1105.6063] [INSPIRE].

[28] J. Vermaseren, A. Vogt and S. Moch, The Third-order QCD corrections to deep-inelastic

scattering by photon exchange, Nucl. Phys. B 724 (2005) 3 [hep-ph/0504242] [INSPIRE].

[29] S. Moch, J. Vermaseren and A. Vogt, The Longitudinal structure function at the third order,

Phys. Lett. B 606 (2005) 123 [hep-ph/0411112] [INSPIRE].

[30] A. Vogt, S. Moch and J. Vermaseren, The Three-loop splitting functions in QCD: The

Singlet case, Nucl. Phys. B 691 (2004) 129 [hep-ph/0404111] [INSPIRE].

[31] S. Moch, J. Vermaseren and A. Vogt, The Three loop splitting functions in QCD: The

Nonsinglet case, Nucl. Phys. B 688 (2004) 101 [hep-ph/0403192] [INSPIRE].

[32] R. Bonciani, P. Mastrolia and E. Remiddi, Master integrals for the two loop QCD virtual

corrections to the forward backward asymmetry, Nucl. Phys. B 690 (2004) 138

[hep-ph/0311145] [INSPIRE].

[33] W. Bernreuther, R. Bonciani, T. Gehrmann, R. Heinesch, T. Leineweber, P. Mastrolia and

E. Remiddi, Two-loop QCD corrections to the heavy quark form-factors: The Vector

contributions, Nucl. Phys. B 706 (2005) 245 [hep-ph/0406046] [INSPIRE].

[34] W. Bernreuther, R. Bonciani, T. Gehrmann, R. Heinesch, T. Leineweber, P. Mastrolia and

E. Remiddi, Two-loop QCD corrections to the heavy quark form-factors: Axial vector

contributions, Nucl. Phys. B 712 (2005) 229 [hep-ph/0412259] [INSPIRE].

[35] W. Bernreuther, R. Bonciani, T. Gehrmann, R. Heinesch, T. Leineweber, E. Remiddi,

Two-loop QCD corrections to the heavy quark form-factors: Anomaly contributions, Nucl.

Phys. B 723 (2005) 91 [hep-ph/0504190] [INSPIRE].

[36] P. Mastrolia and E. Remiddi, Two loop form-factors in QED, Nucl. Phys. B 664 (2003) 341

[hep-ph/0302162] [INSPIRE].

[37] R. Bonciani, A. Ferroglia, P. Mastrolia, E. Remiddi and J. van der Bij, Two-loop N(F) = 1

QED Bhabha scattering: Soft emission and numerical evaluation of the differential

cross-section, Nucl. Phys. B 716 (2005) 280 [hep-ph/0411321] [INSPIRE].

[38] R. Bonciani, A. Ferroglia, P. Mastrolia, E. Remiddi and J. van der Bij, Two-loop N(F) = 1

QED Bhabha scattering differential cross section, Nucl. Phys. B 701 (2004) 121

[hep-ph/0405275] [INSPIRE].

– 74 –

http://arxiv.org/abs/math/0508066
http://arxiv.org/abs/alg-geom/9202022
http://dx.doi.org/10.1142/S0217751X00000367
http://dx.doi.org/10.1142/S0217751X00000367
http://arxiv.org/abs/hep-ph/9905237
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9905237
http://dx.doi.org/10.1016/S0550-3213(01)00057-8
http://arxiv.org/abs/hep-ph/0008287
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0008287
http://dx.doi.org/10.1063/1.3629472
http://arxiv.org/abs/1105.6063
http://inspirehep.net/search?p=find+EPRINT+arXiv:1105.6063
http://dx.doi.org/10.1016/j.nuclphysb.2005.06.020
http://arxiv.org/abs/hep-ph/0504242
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0504242
http://dx.doi.org/10.1016/j.physletb.2004.11.063
http://arxiv.org/abs/hep-ph/0411112
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0411112
http://dx.doi.org/10.1016/j.nuclphysb.2004.04.024
http://arxiv.org/abs/hep-ph/0404111
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0404111
http://dx.doi.org/10.1016/j.nuclphysb.2004.03.030
http://arxiv.org/abs/hep-ph/0403192
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0403192
http://dx.doi.org/10.1016/j.nuclphysb.2004.04.011
http://arxiv.org/abs/hep-ph/0311145
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0311145
http://dx.doi.org/10.1016/j.nuclphysb.2004.10.059
http://arxiv.org/abs/hep-ph/0406046
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0406046
http://dx.doi.org/10.1016/j.nuclphysb.2005.01.035
http://arxiv.org/abs/hep-ph/0412259
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0412259
http://dx.doi.org/10.1016/j.nuclphysb.2005.06.025
http://dx.doi.org/10.1016/j.nuclphysb.2005.06.025
http://arxiv.org/abs/hep-ph/0504190
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0504190
http://dx.doi.org/10.1016/S0550-3213(03)00405-X
http://arxiv.org/abs/hep-ph/0302162
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0302162
http://dx.doi.org/10.1016/j.nuclphysb.2005.03.010
http://arxiv.org/abs/hep-ph/0411321
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0411321
http://dx.doi.org/10.1016/j.nuclphysb.2004.09.015
http://arxiv.org/abs/hep-ph/0405275
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0405275

J
H
E
P
1
0
(
2
0
1
2
)
0
7
5

[39] M. Czakon, J. Gluza and T. Riemann, Master integrals for massive two-loop bhabha

scattering in QED, Phys. Rev. D 71 (2005) 073009 [hep-ph/0412164] [INSPIRE].

[40] Z. Bern, M. Czakon, L.J. Dixon, D.A. Kosower and V.A. Smirnov, The Four-Loop Planar

Amplitude and Cusp Anomalous Dimension in Maximally Supersymmetric Yang-Mills

Theory, Phys. Rev. D 75 (2007) 085010 [hep-th/0610248] [INSPIRE].

[41] G. Heinrich and V.A. Smirnov, Analytical evaluation of dimensionally regularized massive

on-shell double boxes, Phys. Lett. B 598 (2004) 55 [hep-ph/0406053] [INSPIRE].

[42] V.A. Smirnov, Analytical result for dimensionally regularized massive on-shell planar double

box, Phys. Lett. B 524 (2002) 129 [hep-ph/0111160] [INSPIRE].

[43] L. Bork, D. Kazakov and G. Vartanov, On form factors in N = 4 SYM, JHEP 02 (2011)

063 [arXiv:1011.2440] [INSPIRE].

[44] J.M. Henn, S.G. Naculich, H.J. Schnitzer and M. Spradlin, More loops and legs in

Higgs-regulated N = 4 SYM amplitudes, JHEP 08 (2010) 002 [arXiv:1004.5381] [INSPIRE].

[45] U. Aglietti, R. Bonciani, G. Degrassi and A. Vicini, Analytic Results for Virtual QCD

Corrections to Higgs Production and Decay, JHEP 01 (2007) 021 [hep-ph/0611266]

[INSPIRE].

[46] U. Aglietti, R. Bonciani, G. Degrassi and A. Vicini, Master integrals for the two-loop light

fermion contributions to g g → H and H → γ γ, Phys. Lett. B 600 (2004) 57

[hep-ph/0407162] [INSPIRE].

[47] U. Aglietti, R. Bonciani, G. Degrassi and A. Vicini, Two loop light fermion contribution to

Higgs production and decays, Phys. Lett. B 595 (2004) 432 [hep-ph/0404071] [INSPIRE].

[48] T. Gehrmann and E. Remiddi, Two loop master integrals for γ∗ → 3 jets: The Nonplanar

topologies, Nucl. Phys. B 601 (2001) 287 [hep-ph/0101124] [INSPIRE].

[49] C. Anastasiou, S. Beerli, S. Bucherer, A. Daleo and Z. Kunszt, Two-loop amplitudes and

master integrals for the production of a Higgs boson via a massive quark and a scalar-quark

loop, JHEP 01 (2007) 082 [hep-ph/0611236] [INSPIRE].

[50] S. Moch, P. Uwer and S. Weinzierl, Two loop amplitudes with nested sums: Fermionic

contributions to e+ e− → q q̄ g, Phys. Rev. D 66 (2002) 114001 [hep-ph/0207043] [INSPIRE].

[51] S. Moch, P. Uwer and S. Weinzierl, Two loop amplitudes for e+ e− → q q̄ g: The n(f)

contribution, Acta Phys. Polon. B 33 (2002) 2921 [hep-ph/0207167] [INSPIRE].

[52] U. Aglietti, V. Del Duca, C. Duhr, G. Somogyi and Z. Trócsányi, Analytic integration of

real-virtual counterterms in NNLO jet cross sections. I., JHEP 09 (2008) 107

[arXiv:0807.0514] [INSPIRE].

[53] V. Del Duca, C. Duhr, E. Nigel Glover and V.A. Smirnov, The One-loop pentagon to higher

orders in epsilon, JHEP 01 (2010) 042 [arXiv:0905.0097] [INSPIRE].

[54] T. Gehrmann and E. Remiddi, Numerical evaluation of harmonic polylogarithms, Comput.

Phys. Commun. 141 (2001) 296 [hep-ph/0107173] [INSPIRE].

[55] D. Mâıtre, HPL, a mathematica implementation of the harmonic polylogarithms, Comput.

Phys. Commun. 174 (2006) 222 [hep-ph/0507152] [INSPIRE].

[56] D. Mâıtre, Extension of HPL to complex arguments, Comput. Phys. Commun. 183 (2012)

846 [hep-ph/0703052] [INSPIRE].

[57] J. Vollinga and S. Weinzierl, Numerical evaluation of multiple polylogarithms, Comput.

Phys. Commun. 167 (2005) 177 [hep-ph/0410259] [INSPIRE].

– 75 –

http://dx.doi.org/10.1103/PhysRevD.71.073009
http://arxiv.org/abs/hep-ph/0412164
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0412164
http://dx.doi.org/10.1103/PhysRevD.75.085010
http://arxiv.org/abs/hep-th/0610248
http://inspirehep.net/search?p=find+EPRINT+hep-th/0610248
http://dx.doi.org/10.1016/j.physletb.2004.07.058
http://arxiv.org/abs/hep-ph/0406053
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0406053
http://dx.doi.org/10.1016/S0370-2693(01)01382-X
http://arxiv.org/abs/hep-ph/0111160
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0111160
http://dx.doi.org/10.1007/JHEP02(2011)063
http://dx.doi.org/10.1007/JHEP02(2011)063
http://arxiv.org/abs/1011.2440
http://inspirehep.net/search?p=find+EPRINT+arXiv:1011.2440
http://dx.doi.org/10.1007/JHEP08(2010)002
http://arxiv.org/abs/1004.5381
http://inspirehep.net/search?p=find+EPRINT+arXiv:1004.5381
http://dx.doi.org/10.1088/1126-6708/2007/01/021
http://arxiv.org/abs/hep-ph/0611266
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0611266
http://dx.doi.org/10.1016/j.physletb.2004.09.001
http://arxiv.org/abs/hep-ph/0407162
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0407162
http://dx.doi.org/10.1016/j.physletb.2004.06.063
http://arxiv.org/abs/hep-ph/0404071
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0404071
http://dx.doi.org/10.1016/S0550-3213(01)00074-8
http://arxiv.org/abs/hep-ph/0101124
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0101124
http://dx.doi.org/10.1088/1126-6708/2007/01/082
http://arxiv.org/abs/hep-ph/0611236
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0611236
http://dx.doi.org/10.1103/PhysRevD.66.114001
http://arxiv.org/abs/hep-ph/0207043
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0207043
http://arxiv.org/abs/hep-ph/0207167
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0207167
http://dx.doi.org/10.1088/1126-6708/2008/09/107
http://arxiv.org/abs/0807.0514
http://inspirehep.net/search?p=find+EPRINT+arXiv:0807.0514
http://dx.doi.org/10.1007/JHEP01(2010)042
http://arxiv.org/abs/0905.0097
http://inspirehep.net/search?p=find+EPRINT+arXiv:0905.0097
http://dx.doi.org/10.1016/S0010-4655(01)00411-8
http://dx.doi.org/10.1016/S0010-4655(01)00411-8
http://arxiv.org/abs/hep-ph/0107173
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0107173
http://dx.doi.org/10.1016/j.cpc.2005.10.008
http://dx.doi.org/10.1016/j.cpc.2005.10.008
http://arxiv.org/abs/hep-ph/0507152
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0507152
http://dx.doi.org/10.1016/j.cpc.2011.11.015
http://dx.doi.org/10.1016/j.cpc.2011.11.015
http://arxiv.org/abs/hep-ph/0703052
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0703052
http://dx.doi.org/10.1016/j.cpc.2004.12.009
http://dx.doi.org/10.1016/j.cpc.2004.12.009
http://arxiv.org/abs/hep-ph/0410259
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0410259

J
H
E
P
1
0
(
2
0
1
2
)
0
7
5

[58] A.I. Davydychev and M.Y. Kalmykov, New results for the ε-expansion of certain one, two

and three loop Feynman diagrams, Nucl. Phys. B 605 (2001) 266 [hep-th/0012189]

[INSPIRE].

[59] A.I. Davydychev and M.Y. Kalmykov, Massive Feynman diagrams and inverse binomial

sums, Nucl. Phys. B 699 (2004) 3 [hep-th/0303162] [INSPIRE].

[60] D. Zagier, Special Values and Functional Equations of Polylogarithms, in L. Lewin ed.,

Structural Properties of Polylogarithms, AMS, Providence, RI, U.S.A. (1991), appendix A.

[61] H. Gangl, Functional equations of higher logarithms, Selecta Math. 9 (2003) 361

[math/0207222].

[62] A.B. Goncharov, A simple construction of Grassmannian polylogarithms, arXiv:0908.2238.

[63] A.B. Goncharov, M. Spradlin, C. Vergu and A. Volovich, Classical Polylogarithms for

Amplitudes and Wilson Loops, Phys. Rev. Lett. 105 (2010) 151605 [arXiv:1006.5703]

[INSPIRE].

[64] V. Del Duca, C. Duhr and V.A. Smirnov, An Analytic Result for the Two-Loop Hexagon

Wilson Loop in N = 4 SYM, JHEP 03 (2010) 099 [arXiv:0911.5332] [INSPIRE].

[65] V. Del Duca, C. Duhr and V.A. Smirnov, The Two-Loop Hexagon Wilson Loop in N = 4

SYM, JHEP 05 (2010) 084 [arXiv:1003.1702] [INSPIRE].

[66] S. Caron-Huot, Superconformal symmetry and two-loop amplitudes in planar N = 4 super

Yang-Mills, JHEP 12 (2011) 066 [arXiv:1105.5606] [INSPIRE].

[67] L.J. Dixon, J.M. Drummond and J.M. Henn, Bootstrapping the three-loop hexagon, JHEP

11 (2011) 023 [arXiv:1108.4461] [INSPIRE].

[68] P. Heslop and V.V. Khoze, Wilson Loops @ 3-Loops in Special Kinematics, JHEP 11 (2011)

152 [arXiv:1109.0058] [INSPIRE].

[69] L.F. Alday, D. Gaiotto, J. Maldacena, A. Sever and P. Vieira, An Operator Product

Expansion for Polygonal null Wilson Loops, JHEP 04 (2011) 088 [arXiv:1006.2788]

[INSPIRE].

[70] D. Gaiotto, J. Maldacena, A. Sever and P. Vieira, Pulling the straps of polygons, JHEP 12

(2011) 011 [arXiv:1102.0062] [INSPIRE].

[71] A.I. Davydychev and R. Delbourgo, A Geometrical angle on Feynman integrals, J. Math.

Phys. 39 (1998) 4299 [hep-th/9709216] [INSPIRE].

[72] M. Spradlin and A. Volovich, Symbols of One-Loop Integrals From Mixed Tate Motives,

JHEP 11 (2011) 084 [arXiv:1105.2024] [INSPIRE].

[73] L.J. Dixon, J.M. Drummond and J.M. Henn, The one-loop six-dimensional hexagon integral

and its relation to MHV amplitudes in N = 4 SYM, JHEP 06 (2011) 100

[arXiv:1104.2787] [INSPIRE].

[74] V. Del Duca, C. Duhr and V.A. Smirnov, The massless hexagon integral in D = 6

dimensions, Phys. Lett. B 703 (2011) 363 [arXiv:1104.2781] [INSPIRE].

[75] V. Del Duca, C. Duhr and V.A. Smirnov, The One-Loop One-Mass Hexagon Integral in

D = 6 Dimensions, JHEP 07 (2011) 064 [arXiv:1105.1333] [INSPIRE].

[76] V. Del Duca, L.J. Dixon, J.M. Drummond, C. Duhr, J.M. Henn and V. A. Smirnov, The

one-loop six-dimensional hexagon integral with three massive corners, Phys. Rev. D 84

(2011) 045017 [arXiv:1105.2011] [INSPIRE].

– 76 –

http://dx.doi.org/10.1016/S0550-3213(01)00095-5
http://arxiv.org/abs/hep-th/0012189
http://inspirehep.net/search?p=find+EPRINT+hep-th/0012189
http://dx.doi.org/10.1016/j.nuclphysb.2004.08.020
http://arxiv.org/abs/hep-th/0303162
http://inspirehep.net/search?p=find+EPRINT+hep-th/0303162
http://arxiv.org/abs/math/0207222
http://arxiv.org/abs/0908.2238
http://dx.doi.org/10.1103/PhysRevLett.105.151605
http://arxiv.org/abs/1006.5703
http://inspirehep.net/search?p=find+EPRINT+arXiv:1006.5703
http://dx.doi.org/10.1007/JHEP03(2010)099
http://arxiv.org/abs/0911.5332
http://inspirehep.net/search?p=find+EPRINT+arXiv:0911.5332
http://dx.doi.org/10.1007/JHEP05(2010)084
http://arxiv.org/abs/1003.1702
http://inspirehep.net/search?p=find+EPRINT+arXiv:1003.1702
http://dx.doi.org/10.1007/JHEP12(2011)066
http://arxiv.org/abs/1105.5606
http://inspirehep.net/search?p=find+EPRINT+arXiv:1105.5606
http://dx.doi.org/10.1007/JHEP11(2011)023
http://dx.doi.org/10.1007/JHEP11(2011)023
http://arxiv.org/abs/1108.4461
http://inspirehep.net/search?p=find+EPRINT+arXiv:1108.4461
http://dx.doi.org/10.1007/JHEP11(2011)152
http://dx.doi.org/10.1007/JHEP11(2011)152
http://arxiv.org/abs/1109.0058
http://inspirehep.net/search?p=find+EPRINT+arXiv:1109.0058
http://dx.doi.org/10.1007/JHEP04(2011)088
http://arxiv.org/abs/1006.2788
http://inspirehep.net/search?p=find+EPRINT+arXiv:1006.2788
http://dx.doi.org/10.1007/JHEP12(2011)011
http://dx.doi.org/10.1007/JHEP12(2011)011
http://arxiv.org/abs/1102.0062
http://inspirehep.net/search?p=find+EPRINT+arXiv:1102.0062
http://dx.doi.org/10.1063/1.532513
http://dx.doi.org/10.1063/1.532513
http://arxiv.org/abs/hep-th/9709216
http://inspirehep.net/search?p=find+EPRINT+hep-th/9709216
http://dx.doi.org/10.1007/JHEP11(2011)084
http://arxiv.org/abs/1105.2024
http://inspirehep.net/search?p=find+EPRINT+arXiv:1105.2024
http://dx.doi.org/10.1007/JHEP06(2011)100
http://arxiv.org/abs/1104.2787
http://inspirehep.net/search?p=find+EPRINT+arXiv:1104.2787
http://dx.doi.org/10.1016/j.physletb.2011.07.079
http://arxiv.org/abs/1104.2781
http://inspirehep.net/search?p=find+EPRINT+arXiv:1104.2781
http://dx.doi.org/10.1007/JHEP07(2011)064
http://arxiv.org/abs/1105.1333
http://inspirehep.net/search?p=find+EPRINT+arXiv:1105.1333
http://dx.doi.org/10.1103/PhysRevD.84.045017
http://dx.doi.org/10.1103/PhysRevD.84.045017
http://arxiv.org/abs/1105.2011
http://inspirehep.net/search?p=find+EPRINT+arXiv:1105.2011

J
H
E
P
1
0
(
2
0
1
2
)
0
7
5

[77] S. Buehler and C. Duhr, CHAPLIN - Complex Harmonic Polylogarithms in Fortran,

arXiv:1106.5739 [INSPIRE].

[78] L.F. Alday, Some analytic results for two-loop scattering amplitudes, JHEP 07 (2011) 080

[arXiv:1009.1110] [INSPIRE].

[79] J.A. Lappo-Danilevskij, Mémoires sur la théorie des systémes des équations différentielles

linéaires. Vol. II, Travaux Inst. Physico-Math. Stekloff 7 (1935) 5.

[80] E.E. Kummer, Uber die Transcendenten, welche aus wiederholten Integrationen rationaler

Formeln entstehen, J. Reine Angew. Math. 21 (1840) 74.

[81] R. Ree, Lie elements and an algebra associated with shuffles, The Annals of Mathematics 68

(1958) 210.

[82] J.M. Borwein, D.M. Bradley, D.J. Broadhurst and P. Lisonek, Special values of multiple

polylogarithms, Trans. Am. Math. Soc. 353 (2001) 907 [math/9910045] [INSPIRE].

[83] N. Nielsen, Der Eulersche Dilogarithmus und seine Verallgemeinerungen, Nova Acta

Leopoldina 90 (1909) 123.

[84] L. Lewin, Polylogarithms and associated functions, North-Holland, New York (1981).

[85] S. Bloch, H. Esnault and D. Kreimer, On Motives associated to graph polynomials,

Commun. Math. Phys. 267 (2006) 181 [math/0510011] [INSPIRE].

[86] S. Bloch and D. Kreimer, Mixed Hodge Structures and Renormalization in Physics,

Commun. Num. Theor. Phys. 2 (2008) 637 [arXiv:0804.4399] [INSPIRE].

[87] D. Broadhurst, P. Deligne, email correspondence (1997).

[88] D.J. Broadhurst, Massive three - loop Feynman diagrams reducible to SC∗ primitives of

algebras of the sixth root of unity, Eur. Phys. J. C 8 (1999) 311 [hep-th/9803091]

[INSPIRE].

[89] P. Belkale and P. Brosnan, Matroids, motives and conjecture of Kontsevich, Duke Math. J.

116 (2003) 147 [math/0012198].

[90] F. Brown, The Massless higher-loop two-point function, Commun. Math. Phys. 287 (2009)

925 [arXiv:0804.1660] [INSPIRE].

[91] A. Connes and M. Marcolli, Noncommutative geometry, quantum fields and motives, AMS,

Colloquium Publications (2008).

[92] F.C.S. Brown, Multiple zeta values and periods of moduli spaces M0,n, Ann. Sci. Ecole.

Norm. S. 42 (2009) 371 [math/0606419].

[93] A.B. Goncharov, The dihedral Lie algebras and Galois symmetries of

π
(1)
1

(
P1 − ({0,∞} ∪ µN)

)
, Duke Math. J. 110 (2001) 397 [math/0009121].

[94] S. Bloch, Algebraic cycles and the Lie algebra of mixed Tate motives, J. Amer. Math. Soc. 4

(1991) 771.

[95] G. Griffing, Dual Lie Elements and a Derivation for the Cofree Coassociative Coalgebra, P.

Am. Math. Soc. 123 (1995) 3269

[96] N. Bourbaki, Groupes et algèbres de Lie, Hermann, Paris (1972), chapters 2 and 3.

[97] J.R. Rhodes, On the kernel of the symbol map for multiple polylogarithms, Ph.D. Thesis,

University of Durham (2012).

– 77 –

http://arxiv.org/abs/1106.5739
http://inspirehep.net/search?p=find+EPRINT+arXiv:1106.5739
http://dx.doi.org/10.1007/JHEP07(2011)080
http://arxiv.org/abs/1009.1110
http://inspirehep.net/search?p=find+EPRINT+arXiv:1009.1110
http://dx.doi.org/10.1090/S0002-9947-00-02616-7
http://arxiv.org/abs/math/9910045
http://inspirehep.net/search?p=find+EPRINT+math/9910045
http://dx.doi.org/10.1007/s00220-006-0040-2
http://arxiv.org/abs/math/0510011
http://inspirehep.net/search?p=find+EPRINT+math/0510011
http://arxiv.org/abs/0804.4399
http://inspirehep.net/search?p=find+EPRINT+arXiv:0804.4399
http://dx.doi.org/10.1007/s100529900935
http://arxiv.org/abs/hep-th/9803091
http://inspirehep.net/search?p=find+EPRINT+hep-th/9803091
http://arxiv.org/abs/math/0012198
http://dx.doi.org/10.1007/s00220-009-0740-5
http://dx.doi.org/10.1007/s00220-009-0740-5
http://arxiv.org/abs/0804.1660
http://inspirehep.net/search?p=find+EPRINT+arXiv:0804.1660
http://arxiv.org/abs/math/0606419
http://arxiv.org/abs/math/0009121

	Introduction
	Short review of multiple polylogarithms
	Symbols and polygons
	An example in a nutshell
	Rules of symbol calculus
	Relationship to the symbol of ref. [63].

	A simple example
	Integrating symbols: an algorithmic approach
	Choosing the types of functions
	Finding the arguments
	Integrating the symbol (1)
	A set of projectors
	Integrating the symbol (2)
	Elements in the kernel of the symbol map

	Application: a spanning set for harmonic polylogarithms
	Example

	Conclusion
	Review on shuffle algebras
	Selected examples of symbols
	The symbol of a generic multiple polylogarithm of weight one
	The symbol of a generic multiple polylogarithm of weight two
	The symbol of a generic multiple polylogarithm of weight three
	The symbol of a generic multiple polylogarithm of weight four

	Proof of Proposition 4
	Some considerations on the implementation of the algorithm
	Analytic continuation of the spanning set of functions for harmonic polylogarithms
	Analytic representation inside the unit disc
	Analytic representation outside the unit disc: inversion relations

	Inversion formulas for the spanning set
	Weight three
	Weight four

	Expression of HPL's in terms of the spanning set
	Results for weight two
	Results for weight three
	Results for weight four

