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Abstract

We give a number of S3-symmetric functional equations for poly-
logarithms up to weight 7. This allows to obtain the first proven ladder
relations, à la Lewin, of weight 6 and 7.

1 Motivation

Polylogarithms appear in many contexts within mathematical physics, like
in dimensional regularization expansions or when determining analytic solu-
tions of various Feynman integrals in quantum field theory; e.g. the dilog-
arithm appeared already in the famous paper by t’Hooft and Veltman [21],
and Ussyukina and Davydychev [29], eq. (30), encountered all m-logarithms
(n ≤ m ≤ 2n) in a closed expression for the “n-box” diagram (for a more
recent update cf. [28]), as well as in conformal field theory (the diloga-
rithm plays a crucial role in a conjecture of Nahm [27] characterizing ra-
tional CFTs) or when considering expansions of hypergeometric functions
(cf. e.g. [22]). Even more closely related to our results below, (multiple)
polylogarithms and their special values have occurred, among many others,
in various ways in work of Broadhurst and Kreimer (e.g. [6]), occasionally
even in connection with ladder relations (cf. [5]) as defined below. Recently,
when calculating the two-loop hexagon Wilson loop in N = 4 supersymmet-
ric Yang-Mills theory, Del Duca, Duhr and Smirnov [10] were led to a long
expression in polylogarithms that has been subsequently enormously sim-
plified by Goncharov, Spradlin, Vergu and Volovich [20] using Goncharov’s
notion of a symbol attached to a (multiple) polylogarithm (the first combina-
torial description being given, under the name

⊗m-invariant, in [19], §4.4).
Subsequent papers, especially in particle physics, by many more authors
(e.g. [12], [13], [17], [11], [7], [8]) have studied similar expressions in various
contexts. While the symbols somehow aim to circumvent having to apply
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functional equations, it seems still conceivable that in these contexts insight
into functional equations for the polylogarithms involved might be useful to
reduce the ensuing—typically very complicated—expressions considerably.

Functional equations of polylogarithms play also a pivotal role in a more
abstract context when trying to define an explicit version of the (odd index)
algebraic K-groups K2m−1(F ) of a number field F . The latter can conjec-
turally be written as a subquotient of the free abelian group on F (pioneered
by Bloch [3] in the dilogarithm case and generalized by Zagier [31] and by
Goncharov [18] for higher m), and the group of relations in that description
is expected to encode all the functional equations of the m-logarithm.

In 1840, Kummer [23] gave non-trivial functional equations for polylog-
arithms Lim(z) =

∑
n≥1 z

n/nm up to weight m = 5, where results had pre-
viously been known only up to m = 3. He mentioned “peculiar difficulties”
(“eigenthümliche Schwierigkeiten”) that arise when trying to extend the re-
sults to m > 5. In fact, Wechsung proved [30] that the type of functional
equation that Kummer had found does not extend to m > 5.

In the eighties, Lewin and his coauthors ([1], [26]) tried several ap-
proaches to conquer what he called the “trans-Kummer region” m > 5
(cf. e.g. [1], p.11), and they indeed found new functional equations, but all
results were ultimately confined to the same range m ≤ 5. On the way,
Lewin discovered interesting special relations of the form

∑
j njLim(αj) = 0

(nj ∈ Q), for certain algebraic numbers α. He realized that such relations,
which he dubbed “ladders”, were consequences of a certain intrinsic property
of such an α, viz. the property that it satisfies many different “cyclotomic
relations” (loc.cit.), which are equations of the form

∏
r(1 − αr)νr = ±αN

where r, νr and N are integers. This insight enabled him to conjecture cer-
tain ladders even up to weight m = 9 (he used the terminology order in
place of the now more common notion of weight). By cleverly specializing
and combining old and new functional equations, he was able to prove quite
a number of his conjectured ladders, but was again confined to weights ≤ 5.

The first functional equations for m = 6 and m = 7 were constructed in
[14] and [16], and no examples of higher weight are known. In this note we
describe a collection of functional equations for polylogarithms up to this
weight that have a very specific symmetry: the arguments (in one variable
t) involve only the three factors t, 1− t and 1− t(1− t) (with roots 0, 1 and
the primitive sixth roots of unity, respectively), and each given equation is
invariant under the action of the symmetric group S3.

As a by-product, the equations for weight 6 and 7 allow, after special-
ization, to prove the first ladders in that range.
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2 Zagier’s criterion for functional equations of poly-
logarithms

In his seminal papers [31] and [32], Zagier described a criterion for functional
equations for polylogarithms. More precisely, he first gave a single-valued
function Lm(z) = <m

(∑m−1
k=0

2kBk
k! logk |z|Lim−k(z)

)
(denoted by Pm(z) in

[31]) attached to the (multivalued) function Lim(z), where <m denotes the
real part for m odd and the imaginary part for m even, and the Bk de-
note the Bernoulli numbers. This function now satisfies “clean” functional
equations, i.e. without invoking products of lower weight polylogarithms as
occur typically—and in abundance—for Lim-equations (cf. e.g. almost any
functional equation in [24]). Furthermore, one can give a very useful char-
acterization for them which we describe in the following subsection.

2.1 Higher Bloch conditions

For a field F , let βFm be the map

βFm : Z[F ] −→
⊗

m−2F× ⊗
∧

2 F× ,

defined as βFm([0]) = βFm([1]) = 0, and on generators [x] (x 6= 0, 1) as follows:

βFm([x]) = x⊗ · · · ⊗ x⊗
(
x ∧ (1− x)

)
.

For m = 2, this map was related to the dilogarithm in Bloch’s seminal paper
[3].

We say that a combination ξ ∈ Z[F ] satisfies the m-th higher Bloch
condition simply if it lies in kerβFm. This fits very well with the above one-
valued function Lm(z):

Theorem 1 (Zagier, [31]) Let F be a subfield of C(t) then for ξ ∈ Z[F ] we
have

ξ ∈ kerβFm =⇒ Lm(σ(ξ)) = constant ,

for any embedding σ : F ↪→ C(t).

Here we extend the definition of Lm as well as of σ to all of Z[F ] by
linearity, i.e.

Lm ◦ σ
(∑

i

ni[xi]
)

=
∑
i

niLm
(
σ(xi)

)
.

In this way, the problem of finding functional equations with given ar-
guments xi is reduced to a problem in linear algebra and the hard part is to
find a suitable list of potentially good arguments.
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2.2 A rich collection of arguments

A particularly good collection of arguments for functional equations (in one
variable t) turns out to be given by

{±ta1(1− t)a2
(
1− t(1− t)

)a3 | ai ∈ Z} .

It is convenient to introduce new variables

u1(t) =
−t

1− t(1− t))
, u2(t) =

−(1− t)
1− t(1− t)

, u3(t) =
t(1− t)

1− t(1− t)

and then to rewrite the above expressions as

{±u1(t)α1u2(t)α2u3(t)α3 | ai ∈ Z} ,

for suitable αi, since then a further S3–symmetry becomes apparent. The
two involutory automorphisms induced by t 7→ 1

t and t 7→ 1− t, respectively,
generate this S3–action on the set of those arguments by simply permuting
the exponents. Any of the arguments can hence be encoded by a triple of
exponents, together with a sign. There are many functional equations for
m ≤ 7, in the exponent range |αi| ≤ 6, which carry the above symmetry.
All the ones that were found have arguments chosen from the following list
A which represents 32 S3-orbits in Z[Q(t)]:

A =
{

(−, 2,−2, 3), (+, 0, 5, 0), (−, 6,−1,−1), (+, 3, 0, 0),
(+, 0,−3, 3), (−,−3, 6,−3), (−,−3, 3, 3), (+, 0,−5, 5),
(+, 4,−1, 0), (+,−3, 4, 4), (+, 3, 0,−2), (−,−1, 2,−1),
(+, 0, 1, 1), (−, 2, 0,−2), (+, 1, 0,−1), (−, 1, 0,−1),
(+,−2,−2, 3), (−,−1, 3,−1), (+,−4,−1, 4), (−,−2,−2, 5),
(−, 2,−1, 1), (−,−2,−1, 3), (−, 2, 0,−1), (+, 2, 0,−1),
(−,−2, 2, 2), (+, 2,−1,−1), (−, 2,−1,−2), (−, 0, 1, 0),
(+, 0, 1, 0), (−,−1, 1, 1), (+, 1,−1,−1), (−, 1, 1, 0)

}
.

The factors of 1−x where x runs through those arguments can be found
in the S3-orbits of the following list (where T = 1− t(1− t))

{
t, T, 1 + t, 1 + t(1− t), 1 +

1
T
, 1 +

t

T
, 1 +

1− t
tT

, 1 +
t(1− t)2

T 2
, 1− t2(1− t)

T 2

}
.
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2.3 The functional equations

Due to the symmetry just explained we focus on S3-invariant functional
equations and introduce the shorthand

[
(±, α1, α2, α3)

]
:=
∑
σ∈S3

[
±

3∏
i=1

ui(t)ασ(i)

]
.

Using this notation, the functional equations can be given in concise form,
with coefficients taken from the tables below. We first state the results for
combinations satisfying the higher Bloch conditions.

Theorem 2 For m ∈ N, let κm = ker
(
β

Q(t)
m

)S3 be the space of S3–invariant
elements in the kernel of the map βQ(t)

m . Then we have the following bounds
on the ranks of κm for m = 4, 5, 6, 7.

m 4 5 6 7
rank κm ≥ 11 ≥ 9 ≥ 4 ≥ 2

The corresponding elements are given by∑
a∈A

c
(m)
j (a) [a] ,

with the coefficients c(m)
j =

{
c
(m)
j (a)

}
a∈A as in Tables 1–3 below.

The proof that the given elements are indeed in the kernel of βFm is a
tedious and mechanical task, which is best left to a computer. One de-
termines all the factors occurring in a factorization of x and 1 − x, where
x runs through all the corresponding arguments in an equation and then
checks that all the terms in the ensuing image under βFm do cancel. Using
the S3-symmetry involved, one can cut down on the actual calculations, but
they are still too cumbersome to give in detail.

Corollary 3 There are at least 2 (resp., 4, 9, 11) linearly independent S3-
symmetric functional equations for L7 (resp., L6, L5, L4) with arguments
encoded (up to permutation) by A.

We remark that the two functional equations for L7 do not seem to follow
individually from the 2-variable equation for L7 given in [16], but the linear
combination of the two which cancels the constant terms is a specialization
of that equation.
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Example. We spell out some equations corresponding to the columns
of Table 1. The last one, c(4)

11 , gives

2
[
(+, 2,−1,−1)

]
+ 6

[
(−, 0, 1, 0)

]
+ 3

[
(+, 1,−1,−1)

]
∈ kerβF4

for F = Q(t). This is equivalent to the 9-term equation for L4 cited in [32],
§7. The second-to-last column gives another element in that kernel,[

(−,−2, 2, 2)
]

+ 4
[
(−, 2,−1,−2)

]
− 6

[
(−, 0, 1, 0)

]
− 12

[
(+, 0, 1, 0)

]
− 2

[
(+, 1,−1,−1)

]
.

Explicitly, but with less apparent symmetry, this can be written as

2
(
L4

(
− t4

T 2

)
+ L4

(
− (1− t)4

T 2

)
+ L4

(
− 1
T 2

))
+4
(
L4

(
− (1− t)T

t3

)
+ L4

(
− tT

(1− t)3
)

+ L4

(T
t3

)
+ L4

( T

(1− t)3
)

+ L4((1− t)T ) + L4(tT )
)

−12
(
L4

(
− t(1− t)

T

)
+ L4

( t
T

)
+ L4

(1− t
T

))
−24

(
L4

( t(1− t)
T

)
+ L4

(
− t

T

)
+ L4

(
− 1− t

T

))
−4
(
L4

(T
t2

)
+ L4

( T

(1− t)2
)

+ L4(T )
)

= 0 ,

where T = 1− t(1− t) as before.

The constant of Theorem 1 is zero for each c
(m)
j for even m, while for

m = 5 or 7 the constants can be obtained by specialising t to 1, say, and
turn out to be of the form λ(c(m)

j )ζ(m) with λ(c(m)
j ) ∈ Q and ζ(m) =

Lm(1) denoting the corresponding Riemann zeta value. The corresponding
values of λ (= 0, 0, 0, 0, 1662, 378, 4230,−126 and 414 for m = 5 and −25461

4
and −54495

4 for m = 7, respectively) are given in the last lines of Tables
2 and 3, respectively. Note that certain a ∈ A, indicated by a gray font
in Tables 1 and 3, occur with non-trivial coefficient only for odd m as the
inversion relation annihilates the sum over the corresponding orbit for even
m. Moreover, in order to display how the order of the columns has been
chosen we indicate the first non-zero value in each column of Tables 1 and 2
in bold face.
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2.4 The tables

2.4.1 Functional equations for m = 4

a c
(4)
1 c

(4)
2 c

(4)
3 c

(4)
4 c

(4)
5 c

(4)
6 c

(4)
7 c

(4)
8 c

(4)
9 c

(4)
10 c

(4)
11

(−, 2,−2, 3) 2 0 0 0 0 0 0 0 0 0 0
(+, 0, 5, 0) 0 1 0 0 0 0 0 0 0 0 0
(−, 6,−1,−1) 0 0 1 0 0 0 0 0 0 0 0
(+, 3, 0, 0) 0 0 0 3 0 0 0 0 0 0 0
(+, 0,−3, 3) 0 0 0 0 0 0 0 0 0 0 0
(−,−3, 6,−3) 0 0 0 0 3 0 0 0 0 0 0
(−,−3, 3, 3) 0 0 0 0 0 3 0 0 0 0 0
(+, 0,−5, 5) 0 0 0 0 0 0 0 0 0 0 0
(+, 4,−1, 0) 0 0 0 0 0 0 2 0 0 0 0
(+,−3, 4, 4) 0 0 1 1 −1 −1 0 0 0 0 0
(+, 3, 0,−2) 0 −10 0 0 0 0 −6 0 0 0 0
(−,−1, 2,−1) 0 0 0 0 −81 0 0 0 0 0 0
(+, 0, 1, 1) 0 −30 0 0 0 0 −6 0 0 0 0
(−, 2, 0,−2) 0 0 0 0 0 0 0 0 0 0 0
(+, 1, 0,−1) 0 0 0 0 0 0 0 0 0 0 0
(−, 1, 0,−1) 0 0 0 0 0 0 0 0 0 0 0
(+,−2,−2, 3) 0 0 7 6 −15 3 0 0 0 0 0
(−,−1, 3,−1) 0 0 −14 −8 −10 −1 0 0 0 0 0
(+,−4,−1, 4) 0 0 0 0 0 0 0 1 0 0 0
(−,−2,−2, 5) 0 0 0 0 0 0 0 0 1 0 0
(−, 2,−1, 1) −6 0 −42 −30 30 30 −6 −1 2 0 0
(−,−2,−1, 3) 2 0 0 6 −6 −6 −2 −3 −6 0 0
(−, 2, 0,−1) 6 0 −28 20 −20 −20 −12 6 −6 0 0
(+, 2, 0,−1) −12 0 −14 −30 30 30 6 3 −12 0 0
(−,−2, 2, 2) 0 0 0 0 0 0 0 0 0 1 0
(+, 2,−1,−1) 0 0 0 0 0 0 0 0 0 0 2
(−, 2,−1,−2) 6 0 0 0 0 0 0 −4 0 4 0
(−, 0, 1, 0) 6 −120 42 78 30 −132 −42 −9 −6 −6 6
(+, 0, 1, 0) −48 −125 0 −81 0 0 0 −3 0 −12 0
(−,−1, 1, 1) 0 0 0 0 0 −81 0 0 0 0 0
(+, 1,−1,−1) 15 −15 −21 36 45 18 −27 −2 −1 −2 3
(−, 1, 1, 0) 0 0 −21 −24 15 6 0 0 0 0 0

Table 1 Generators for ker
(
β

Q(t)
4

)S3
in Thm 1
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2.4.2 Functional equations for m = 5

a c
(5)
1 c

(5)
2 c

(5)
3 c

(5)
4 c

(5)
5 c

(5)
6 c

(5)
7 c

(5)
8 c

(5)
9

(−, 2,−2, 3) 18 0 0 0 0 0 0 0 0
(+, 0, 5, 0) 0 3 0 0 0 0 0 0 0
(−, 6,−1,−1) 0 0 3 0 0 0 0 0 0
(+, 3, 0, 0) 0 0 0 3 0 0 0 0 0
(+, 0,−3, 3) 0 0 0 0 10 0 0 0 0
(−,−3, 6,−3) 0 0 0 0 0 3 0 0 0
(−,−3, 3, 3) 0 0 −63 −12 0 15 0 0 0
(+, 0,−5, 5) 0 0 0 0 0 0 3 0 0
(+, 4,−1, 0) 0 −18 0 0 0 0 6 0 0
(+,−3, 4, 4) 0 0 15 3 0 −3 0 0 0
(+, 3, 0,−2) 0 12 0 0 0 0 −54 0 0
(−,−1, 2,−1) 0 0 0 0 0 −243 0 0 0
(+, 0, 1, 1) 0 −144 0 0 0 0 −27 0 0
(−, 2, 0,−2) 0 0 0 0 0 0 0 90 0
(+, 1, 0,−1) 0 0 0 0 −810 0 −1875 0 0
(−, 1, 0,−1) 0 0 0 0 0 0 0 0 180
(+,−2,−2, 3) 0 0 105 18 0 −45 0 0 0
(−,−1, 3,−1) 0 0 −105 −12 0 −15 0 0 0
(+,−4,−1, 4) −8 −10 −56 −14 6 14 20 −8 2
(−,−2,−2, 5) 5 4 35 8 3 −8 7 −4 1
(−, 2,−1, 1) −80 80 −1190 −224 6 224 −10 −8 2
(−,−2,−1, 3) 0 0 0 0 −54 0 −150 72 −18
(−, 2, 0,−1) 180 360 1050 336 −54 −336 −270 72 −18
(+, 2, 0,−1) −360 −180 −2310 −504 −54 504 −90 72 −18
(−,−2, 2, 2) −40 −20 −112 −28 12 28 40 −1 4
(+, 2,−1,−1) 0 0 0 0 −108 −162 −150 −96 −6
(−, 2,−1,−2) 190 200 1120 280 −120 −280 −400 40 −40
(−, 0, 1, 0) 540 −540 9450 1980 −108 −2142 −720 −36 −36
(+, 0, 1, 0) −360 −1425 2520 387 −270 −630 −900 0 −90
(−,−1, 1, 1) 0 0 5103 972 0 −1215 0 0 0
(+, 1,−1,−1) −544 −560 1085 32 39 −194 370 8 13
(−, 1, 1, 0) 0 0 −315 −72 0 45 0 0 0

λ 0 0 0 0 1662 378 4230 −126 414

Table 2 Generators and constant λ = λ(c(5)
j ) for ker

(
β

Q(t)
5

)S3
in Thm 1
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a c
(6)
1 c

(6)
2 c

(6)
3 c

(6)
4 c

(7)
1 c

(7)
2

(−, 2,−2, 3) 6 0 0 0 50 126
(+, 0, 5, 0) 0 3 0 0 −3 0
(−, 6,−1,−1) 0 0 3 0 0 3
(+, 3, 0, 0) 0 0 0 5 0 −35
(+, 0,−3, 3) 0 0 0 0 0 140
(−,−3, 6,−3) 0 0 21 4 0 7
(−,−3, 3, 3) 0 0 −84 −20 0 28
(+, 0,−5, 5) 0 0 0 0 4 0
(+, 4,−1, 0) 0 −30 0 0 50 0
(+,−3, 4, 4) 0 0 12 3 0 −3
(+, 3, 0,−2) 0 60 0 0 −300 0
(−,−1, 2,−1) 0 0 −5103 −972 0 −5103
(+, 0, 1, 1) 0 −360 0 0 900 0
(−, 2, 0,−2) 0 0 0 0 −2750 −4410
(+, 1, 0,−1) 0 0 0 0 −62500 −102060
(−, 1, 0,−1) 0 0 0 0 −68000 −112140
(+,−2,−2, 3) 0 0 −420 −90 0 −210
(−,−1, 3,−1) 0 0 −420 −60 0 −420
(+,−4,−1, 4) 8 50 224 70 50 70
(−,−2,−2, 5) 5 20 140 40 25 35
(−, 2,−1, 1) −40 200 −2380 −560 −1000 −140
(−,−2,−1, 3) −120 −600 −3402 −1008 −1000 −1386
(−, 2, 0,−1) 180 1800 4200 1680 −4500 −7140
(+, 2, 0,−1) −360 −900 −9240 −2520 −4500 −6720
(−,−2, 2, 2) −20 −50 −224 −70 −125 −343
(+, 2,−1,−1) 20 600 0 360 3000 −420
(−, 2,−1,−2) −190 −1000 −4480 −1400 −250 490
(−, 0, 1, 0) 540 −2700 37800 9900 27000 −22680
(+, 0, 1, 0) −360 −7125 10080 1935 26625 −22995
(−,−1, 1, 1) 0 0 20412 4860 0 −20412
(+, 1,−1,−1) 544 2800 −4340 −160 400 −20272
(−, 1, 1, 0) 0 0 −630 −180 0 630

λ 0 0 0 0 −25461
4

−54495
4

Table 3 Generators for ker
(
β

Q(t)
7

)S3
and ker

(
β

Q(t)
6

)S3
in Thm 1
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2.5 Specializing to Ladders

A polylogarithmic ladder is a (finite) linear combination
∑

i niLim(αi) for
some algebraic number α, some positive integerm, and integers ni, which can
be written as a rational linear combination of logj(α) products of logarithms.
Lewin gave examples up to weightm = 9 (cf. [1], [25], Chapters 1–6). Cohen,
Lewin and Zagier were able to push the set-up in Zagier’s polylogarithm
conjecture [31] to produce an example of a ladder up to weight m = 16
(cf. [9]), but they had missed a relation which was eventually detected by
Bailey and Broadhurst, allowing the latter to “climb” one weight higher to
the current ladder record m = 17 (cf. [2], where they also give ladders for
other Salem numbers up to weight 13). The algebraic number α involved
in this ladder is a very distinguished one: it is the so-called Lehmer number
(the unique root of x10 +x9−x7−x6−x5−x4−x3 +x+ 1 of absolute value
> 1) which conjecturally has the smallest Mahler measure among algebraic
numbers.

The originally quite surprising occurrence of such ladders seems now well
understood in the context of Zagier’s polylogarithm conjecture (see, e.g., [31],
§7C and [32], §4).

New ladders of weight 6 and 7

From the functional equations above, we can deduce four linearly indepen-
dent ladders of weight 6 and two of weight 7. We give the latter here.

With the notation of [1], we let ω be a root of the equation

x3 + x2 = 1.

Zagier’s conjecture implies that there should be at least 4 linearly indepen-
dent ladders for weight 7 for ω (cf. [9], §3, and [32], §4).

By substituting −ω for t in the two independent functional equations
in one variable stated in Table 3 in terms of the coefficients c(7)

j =
{
c
(7)
j (a)

}
(j = 1, 2), we arrive at the first proven ladder relations for weight 7. We
have divided the coefficients by a suitable power of 2 for ease of reading.

Corollary 4 Let α and β denote the following two ladders

α = 35397
256 [1] + 1475

8 [ω]− 166525
1024 [ω2]− 3825

16 [ω3]− 55025
512 [ω4] + 127 [ω5]

+34575
512 [ω6]− 5225

256 [ω8] + 475
16 [ω9]− 4117

1024 [ω10]− 1375
512 [ω12]− 75

8 [ω14]

−29
16 [ω15]− 475

1024 [ω18]− 133
512 [ω20] + 25

256 [ω28] + 29
1024 [ω30]
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and

β = 194355
512 [1] + 6265

16 [ω]− 479395
1024 [ω2]− 2317

4 [ω3]− 146125
1024 [ω4] + 5005

16 [ω5]

+84455
512 [ω6]− 9 [ω7]− 6769

128 [ω8] + 497
16 [ω9]− 9835

1024 [ω10]− 5523
1024 [ω12]− 1551

128 [ω14]

−35
16 [ω15]− 497

1024 [ω18]− 245
1024 [ω20] + 65

512 [ω28] + 35
1024 [ω30] .

Then
L7(α) = L7(β) = 0 .

We note that from the 2-variable equation for the 7-logarithm in [16] we do
not obtain an independent ladder, but instead a linear combination of these
two, viz.

L7

(
−476217

512 [1]− 10675
16 [ω] + 307825

256 [ω2] + 19565
16 [ω3]− 39725

1024 [ω4]− 10801
16 [ω5]

−90125
256 [ω6] + 45 [ω7] + 31115

256 [ω8] + 105
2 [ω9] + 5089

256 [ω10] + 8365
1024 [ω12]− 645

128 [ω14]

−7
4 [ω15]− 105

128 [ω18]− 637
1024 [ω20] + 25

512 [ω28] + 7
256 [ω30]

)
= 0 .

This seems to suggest that the 2-variable equation just mentioned may not
specialize (at least not directly) to the individual 1-variable equations for L7

in Table 3.

We can corroborate here a certain “correlation” of exponents and coeffi-
cients which had already been observed by Lewin in connection with other
ladders: denoting by αk and βk the coefficient of [ωk] in the ladders α and
β given above, we find for k > 0 that

5 | αk ⇔ 5 6 | k , 7 | βk ⇔ 7 6 | k .

Acknowledgments: We are grateful to Don Zagier for invaluable advice
and to David Broadhurst and an unanonymous referee for useful comments.
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