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Julien PaupertDepartment of MathematicsUniversity of Utah155 South 1400 EastSalt Lake City, Utah 84112, USA.e-mail: paupert@math.utah.eduNovember 27, 2007AbstractWe consider symmetric complex hyperbolic triangle groups generated by three complex reec-tions with angle 2�=p. We restrict our attention to those groups where certain words are elliptic.Our goal is to �nd necessary conditions for such a group to be discrete. The main applicationwe have in mind is that such groups are candidates for non-arithmetic lattices in SU(2,1).1 IntroductionIn [11] Mostow constructed the �rst examples of non-arithmetic complex hyperbolic lattices. Theselattices were generated by three complex reections R1, R2 and R3 with the property that thereexists a complex hyperbolic isometry J of order 3 so that Rj+1 = JRjR�1 (here and throughoutthe paper the indices will be taken mod 3). In Mostow's examples the generators Rj have orderp = 3; 4 or 5. Subsequently Deligne{Mostow and Mostow constructed further non-arithmeticlattices as monodromy groups of certain hypergeometric functions, [3] and [12] (the lattices from[3] in dimension 2 were known to Picard who did not consider their arithmetic nature). Theselattices are (commensurable with) groups generated by complex reections Rj with other valuesof p; see Mostow [12] and Sauter [19]. Subsequently no new non-arithmetic lattices have beenconstructed.In [15] Parker considered the case p = 2. That is, he considered complex involutions I1, I2 andI3 with the property that there is a J of order 3 so that Ij+1 = JIjJ�1. In particular, he used atheorem of Conway and Jones [1] to classify all such groups where I1I2 and I1I2I3 are elliptic.Remarkably, when p > 3 �nding groups for which R1R2 and R1R2R3 are elliptic involves solvingthe same equation as in the case p = 2. In this paper we use the solutions to this equation foundusing [1] in [15] in the general case.We describe the con�guration space of all groups generated by a complex reection R1 of order pand a regular elliptic motion J of order 3. This con�guration space is parametrised by the conjugacyclass of the product R1J , which we represent geometrically in two di�erent manners. The �rst,following Goldman, Parker, is to consider the trace of R1J ; this determines the conjugacy class ofR1J when it is loxodromic, but there is a threefold indetermination when it is elliptic or parabolic.The second manner, following Paupert, is to use the geometric invariants of the conjugacy class,i.e. an angle pair for elliptic isometries and a pair (angle; length) for loxodromic isometries. Wewill use both parameter spaces in this paper, where we focus on the elliptic case.1



Our �rst result is the direct analogue of the main theorem of [15], and can be roughly statedas follows:Theorem 1.1 Let R1 be a complex reection of order p and J a regular elliptic of order 3 inPU(2; 1). Suppose that R1J and R1R2 = R1JR1J�1 are elliptic. If the group � = hR1; Ji isdiscrete then one of the following is true:� � is one of Mostow's lattices.� � is a subgroup of one of Mostow's lattices.� � is one of the sporadic groups described below.The sporadic groups correspond to the 18 exceptional solutions from [1], which do not dependon p (the groups do change with p of course). We determine for each p > 3 which of these pointslie inside our con�guration space. One must then analyse each of these groups to decide whetheror not it is discrete, if so whether or not it is a lattice and if so whether or not it is arithmetic.We illustrate ways to attack this problem by showing that certain solutions are arithmetic andcertain other solutions are non-discrete. We analyse in detail the situation for p = 3, which can besummarised as follows:Theorem 1.2 There are 16 sporadic groups for p = 3, with the following properties:� Four of them �x a point in H2
C
.� One stabilises a complex line.� One is contained in an arithmetic lattice.� The ten remaining groups are none of the above.The crucial question is then to determine whether or not the ten remaining groups are discrete. Wegive a negative answer for four of them, by �nding elliptic elements of in�nite order in the group.2 Parameters, traces and anglesIn this section we show how to use a single complex number � to parametrise symmetric complexhyperbolic triangle groups generated by three complex reections thorough angle  . This generalisesthe construction in [15] where involutions (that is  = �) were considered.We give an alternative description following Paupert [17] where the same space is parametrisedby a pair of angles. It is fairly easy to pass between then two parametrisations and we shall usewhichever one is best adapted to a particular problem.We then describe how the properties of the group (for example the type of R1R2 and R1R2R3)vary with � . Much of this section follows the relevant parts of [15] rather closely. Otherwise we willtry to keep this account as self contained as possible. However, we shall assume a certain amount ofbackground knowledge of complex hyperbolic geometry. For such background material on complexhyperbolic space see [6] and for material on complex hyperbolic triangle groups see [21] or [18].Moreover, many of the ideas we use may be traced back to Mostow's paper [11].2



2.1 Complex reections through angle  Let L1 be a complex line in complex hyperbolic 2-space H2
C and write R1 for the complex reectionthrough angle  and �xing L1. In our applications we shall only consider the case where  = 2�=pfor an integer p at least 2. Points of L1 are �xed by R1 and n1, the polar vector of L1, is sentby R1 to ei n1. Hence the matrix in U(2; 1) associated to R1 has determinant ei . Since we shallbe dealing with traces, we want to lift R1 to a matrix in SU(2; 1). Hence we multiply the U(2; 1)matrix by e�i =3, and take R1 to be the map given by:R1(z) = e�i =3 z+ (e2i =3 � e�i =3) hz;n1ihn1;n1i n1: (1)We remark that we can add arbitrary multiples of 2� to the angle  . Equivalently, since SU(2; 1)is a triple cover of PU(2; 1) we could have multiplied R1 by any power of e2�i=3. Thus in the casewhere R1 has order 2, the in the analogous formula (1) in [15], the angle  was chosen to be 3�and so e�i =3 and e2i =3 become �1 and +1 respectively. Equivalently, to obtain this we multiply(1) with  = � by e�2�i=3.2.2 TracesWe de�ne � = tr(R1J) to be the parameter in our space. We now show how to express � in termsof the polar vectors and Hermitian form. We go on to �nd the trace of R1R2 in the same way.Our �rst lemma and its corollary generalise Lemma 2.4 and Corollary 2.5 of [15] and are provenin a similar manner.Lemma 2.1 Let A be any element of SU(2; 1). Thentr(R1A) = e�i =3tr (A) + (e2i =3 � e�i =3)hA(n1);n1ihn1;n1i :Corollary 2.2 Let R1 be a complex involution �xing a complex line L1 with polar vector n1. LetJ 2 SU(2; 1) be a regular elliptic map of order 3. Then� := tr(R1J) = (e2i =3 � e�i =3)hJ(n1);n1ihn1;n1i = 2 sin( =2)iei =6 hJ(n1);n1ihn1;n1i : (2)The following theorem is just a restatement of Theorem 6.2.4 of [6]Proposition 2.3 Let � be given by (2). Then R1J is regular elliptic if and only if � lies in theinterior of the deltoid � = �z 2 C : jzj4 � 8Re (z3) + 18jzj2 � 27 � 0	: (3)The curve given by the equality in Proposition 2.3 is a deltoid. Groups for which R1J is regularelliptic correspond to points in the interior of this deltoid. Points on the deltoid correspond topoints where R1J has repeated eigenvalues, and so is either a complex reection or is parabolic.Since R1R2R3 = (R1J)3 we can determine the type of R1R2R3 from R1J . (Note that it may bethat R1J is regular elliptic and that R1R2R3 is a complex reection.)We now consider R1R2, and hence by symmetry R2R3 and R3R1 as well. This generalisesLemma 2.7 of [15] and its proof is analogous. 3



Proposition 2.4 Let L1 be a complex line in H2
C

with polar vector n1. Let J 2 SU(2; 1) be aregular elliptic map of order 3 and write L2 = J(L1). Let R1 and R2 = JR1J�1 denote thecomplex reections through with angle  �xing L1 and L2 respectively. Thentr(R1R2) = ei =3�2� j� j2�+ e�2i =3:where � is given by (2).Corollary 2.5 If j� j > 2 then R1R2 is loxodromic. If j� j = 2 cos(�) then R1R2 has eigenvaluese�2i =3, �ei =3+2i� and �ei =3�2i�.Proof: Each point on L1 is an e�i =3 eigenvector for R1 and each point on L2 is an e�i =3eigenvector for R2. Therefore if z 2 C2;1 lies on the intersection of L1 and L2 we haveR1R2(z) = e�i =3R1(z) = e�2i =3z:Hence z is an e�2i =3 eigenvector for R1R2.If j� j > 2 then R1R2 has an eigenvector whose modulus is greater than one. Hence R1R2 isloxodromic.So we assume that j� j = 2 cos(�). Since R1R2 has an eigenvalue e�2i =3 and determinant 1, wesee that its other eigenvalues must be �ei =3+2i� and �ei =3�2i� as claimed. 22.3 AnglesConjugacy classes of elliptic isometries in PU(2; 1) are characterised by an unordered angle pairf�1; �2g with �i 2 R=2�Z. These angles can be de�ned by noting that an elliptic isometry g belongsto a maximal compact subgroup of PU(2; 1), which is a group conjugate to U(2). Then all elementsof U(2) which are conjugate to g have the same eigenvalues of norm 1, which we de�ne to be ei�1and ei�2 . In concrete terms, a matrix A 2 U(2; 1) whose associated isometry g 2 PU(2; 1) is ellipticis semisimple with eigenvalues of norm 1, say ei�1 , ei�2 and ei�3 . One of these is of negative type inthe sense that the associated eigenspace intersects the negative cone in C3 of the ambient Hermitianform (of signature (2; 1)). Supposing for instance that ei�3 is of negative type, the angle pair of gis then f�1 ��3; �2 ��3g. It is thus in general not su�cient to know the eigenvalues of an ellipticmatrix to obtain the angle pair of the corresponding isometry; one must determine which of themis of negative type.This can also be seen in terms of the trace of matrix representatives in SU(2; 1). Recall from[6] that elliptic isometries have matrix representatives in SU(2; 1) whose trace lies in the deltoid �given in (3). Multiplication of A, and hence of its trace, by a cube root of unity corresponds to thesame complex hyperbolic isometry in PU(2; 1). Up to this ambigiuty, the map from angle pairs totraces is given by f�1; �2g 7�! e2i�1=3�i�2=3 + e2i�2=3�i�1=3 + e�i�1=3�i�2=3:This map is three-to-one, except at the exceptional central point f4�=3; 2�=3g which is the onlypreimage of 0. The three preimages in this case correspond to the fact that one of the three eigenval-ues corresponds to negative eigenvectors and the other two to positive ones. There are three possiblechoices and the trace is the same for each of them. Conversely, given a trace � = ei�+ei�+e�i��i�the three preimages of this trace are the three angle pairsf2� + �; �+ 2�g; f�� �; ��� 2�g; f� � �; �2�� �g:In order to get these into the parameter space where 0 � �1 � 2� and 0 � �2 � �1 one may haveto add an integer multiple of 2� to either or both angles and one may have to change their order.The reader can refer to [16], pp. 29{30, for more details on angle pairs and their relation to traces.4



2.4 The trace parameter spaceSuppose we are given a symmetrical con�guration of three complex lines L1, L2 and L3 with polarvectors n1, n2 and n3. Because they are symmetrical J(nj) = nj+1 where j = 1; 2; 3 taken mod3. Because J preserves the Hermitian form hnj ;nji is the same positive real number for each j.We normalise nj so that this number is 2 sin( =2). Likewise hnj+1;nji = hJ(nj);nji is the samecomplex number for each j which we de�ne to be �. Using Corollary 2.2 we see thathJ(nj);nji = �hnj ;njie2i =3 � e�i =3 = �ie�i =6�:That ishn1;n1i = hn2;n2i = hn3;n3i = 2 sin( =2); hn2;n1i = hn3;n2i = hn1;n3i = �ie�i =6�: (4)All of this works for any Hermitian form of signature (2; 1). We now make a choice of vectors n1,n2 and n3. This determines a Hermitian form. We choosen1 = 2410035 ; n2 = 2401035 ; n3 = 2400135 :Together with (2), this means that, with this choice, the Hermitian form must be hz;wi = w�H�zwhere H� = 242 sin( =2) �ie�i =6� iei =6�iei =6� 2 sin( =2) �ie�i =6��ie�i =6� iei =6� 2 sin( =2)35 : (5)We can immediately write down J and, using (1), the reections Rj . They areJ = 240 0 11 0 00 1 035 ; (6)R1 = 24e2i =3 � �ei =3 �0 e�i =3 00 0 e�i =3 35 ; (7)R2 = 24 e�i =3 0 0�ei =3 � e2i =3 �0 0 e�i =335 ; (8)R3 = 24e�i =3 0 00 e�i =3 0� �ei =3 � e2i =335 : (9)From this it is clear that the groups � = hR1; Ji and � = hR1; R2; R3i are completely determinedup to conjugacy by the parameter � . However, not all values of � correspond to complex hyperbolictriangle groups. It may be that the Hermitian matrix H� does not have signature (2; 1). We nowdetermine this by �nding the eigenvalues of H� . In this lemma and throughout the paper we write! = e2�i=3 = (�1 + ip3)=2.In what follows we will be interested in the case where R1J is elliptic. In this case its eigenvaluesare unit modulus complex numbers whose product is 1. We write then as ei�, ei� and e�i��i� .This means that � = ei� + ei� + e�i��i�. 5



Lemma 2.6 Let H� be given by (5) where � = ei� + ei� + e�i��i�. Then the eigenvalues of H�are: �8 sin(�=2 +  =6 + 2k�=3) sin(�=2 +  =6 + 2k�=3) sin(��=2 � �=2 +  =6 + 2k�=3)for k = 0; 1; 2.Proof: We could solve the characteristic polynomial of H� . However, it is easier to observethat eigenvectors for H� are 2411135 ; 241!!35 ; 241!!35 :We can immediately write down the eigenvalues as:�k = 2 sin( =2) � ie�i =6�2k�i=3� + iei =6+2k�i=3�for k = 0; 1; 2. Subsitituting for � gives�k = 2 sin( =2) + 2 sin(��� � �  =6 � 2k�=3)+2 sin(��  =6 � 2k�=3) + 2 sin(� �  =6 � 2k�=3):Using elementary trigonometry (and �2k�=3 = 4k�=3� 2k�), we see that�k = �8 sin(�=2 +  =6 + 2k�=3) sin(�=2 +  =6 + 2k�=3) sin(��=2 � �=2 +  =6 + 2k�=3): 2Corollary 2.7 When � = ei� + ei� + e�i��i� the matrix H� has signature (2; 1) if and only if8 sin(3�=2 +  =2) sin(3�=2 +  =2) sin��3(�+ �)=2 +  =2� < 0: (10)Proof: It is easy to check (for example by adding them) that all three eigenvalues cannotbe negative. Thus H� has signature (2; 1) if and only if its determinant is negative. Using thetrigonometric identity sin(3�) = �4 sin(�) sin(� + 2�=3) sin(� + 4�=3) we see that the product ofthe three eigenvalues is.8 sin(3�=2 +  =2) sin(3�=2 +  =2) sin��3(�+ �)=2 +  =2�:Hence H� has signature (2; 1) if and only if this expression is negative. 2The locus where each eigenvalue is zero corresponds to a line in C. They divide C into sevencomponents which fall into three types:� The central triangle. Here all three eigenvalues are positive and H� is positive de�nite.� Three in�nite components that each share a common edge with the central triangle. Heretwo eigenvalues are positive and one negative. Hence H� has signature (2; 1). This is ourparameter space.� Three in�nite components that each only abut the central triangle in a point. Here oneeigenvalue is positive and two are negative. These correspond to groups of complex hyperbolicisometries generated by three complex involutions that each �x a point.Therefore the parameter space we are interested in, that is those values of � satisfying (10), hasthree components related by multiplication by powers of ! = e2�i=3. This corresponds to thatfact that J 2 SU(2; 1) is only de�ned up to multiplication by a cube root of unity. Hence � isonly de�ned up to a cube root of unity. If we factor out by this equivalence, our parameter spacebecomes one of these components. 6



2.5 ArithmeticWhen we are discussing the discreteness of hR1; R2; R3i below, we shall analyse whether or not thegroup is arithmetic. In order to do so one must �nd a suitable ring containing the matrix entries(after possibly conjugating).Proposition 2.8 The maps R1, R2 and R3 may be conjugated within SU(2; 1) and scaled so thattheir matrix entries lie in the ring Z[�; � ; ei ; e�i ].Proof: Conjugating the matrices R1, R2 and R3 given above by C = diag(e�i =3; 1; ei =3)these matrices become CR1C�1 = e�i =3 24ei � ��0 1 00 0 1 35 ;CR2C�1 = e�i =3 24 1 0 0�ei � ei �0 0 135 ;CR3C�1 = e�i =3 24 1 0 00 1 0ei � �ei � ei 35 :Hence the group generated by ei =3CRjC�1 for j = 1; 2; 3 consists of matrices whose entries lie inthe ring Z[�; � ; ei ; e�i ]. 2It is very important to keep track of what happens to H� when performing this conjugation.The matrices above preserve the Hermitian form given by (any real multiple of) CH�C�1. So wemay take the Hermitian form to be given by:2 sin( =2)CH�C�1 = 242� ei � e�i (e�i � 1)� (1� e�i )�(ei � 1)� 2� ei � e�i (e�i � 1)�(1� ei )� (ei � 1)� 2� ei � e�i 35 : (11)Hence the entries of 2 sin( =2)CH�C�1 also lie in the ring Z[�; � ; ei ; e�i ].2.6 The angle parameter spaceIn [17], Paupert characterised which angle pairs can arise for the product AB (when it is elliptic),as A and B each vary inside a �xed elliptic conjugacy class (i.e. each have a �xed angle pair). Inthe present case, the R1 (the �rst generator) has angles f0; 2�=pg, and J (the second generator)has angles f4�=3; 2�=3g. The allowable region in the surface T2=S2 is then a convex quadrilateral(degenerating to a triangle for p = 3) with the following properties, which we quote from [17]. Thetwo \totally reducible vertices" V1 and V2 (points representing an Abelian group) have respectivecoordinates f4�=3; 2�=3 + 2�=pg and f4�=3 + 2�=p; 2�=3g. These two vertices are joined by a linesegment of slope �1 corresponding to the reducible groups which �x a point inside H2
C
. Each ofthese vertices is also the endpoint of a line segment corresponding to the reducible groups whichstabilise a complex line. The �rst of these segments starts upward at V1 with slope 2, bounces o�the diagonal and goes on (with slope 1=2) until it reaches the boundary of the square. The secondsegment starts upward at V2 with slope 1=2 and goes o� to the boundary. The last side of thequadrilateral is the resulting portion of the boundary segment f2�g � [0; 2�]; in all correspondinggroups the product R1J is parabolic as was proven in [17]. The polygons for p = 3; : : : ; ; 10 are7



illustrated in Figure 2. In what follows we shall assume that R1R2 is elliptic. From Corollary 2.5,we see that this implies j� j � 2. This condition does not have a striaghtforward interpretation inthe angle coordinates. In Figure 2 we have drawn the curve corresponding to j� j = 2.3 When R1R2R3 is elliptic and R1R2 is non-loxodromicWe restrict our attention to those groups for which R1R2R3 is elliptic of �nite order and R1R2is either elliptic of �nite order or else parabolic. These are groups for which � lies inside or onthe deltoid and inside or on the circle. Since they have �nite order, the eigenvalues of R1R2R3and R1R2 are all roots of unity. This fact leads to a linear equation in certain cosines of rationalmultiples of �. We �nd all solutions to this equation using a theorem of Conway and Jones [1]. Wethen go on �nd which of these solutions lie in parameter space.3.1 The eigenvalue equationWe now investigate when both R1R2 and R1R2R3 are elliptic of �nite order. In fact our proof willbe valid when R1R2 is parabolic as well. We know that, R1J (and hence R1R2R3) is elliptic of�nite order if and only if � = tr(R1J) = ei� + ei� + e�i��i�; (12)where � and � are rational multiples of �. Likewise for R1R2. In fact we know slightly more.Since the intersection of L1 and L2 is an e�i =3-eigenvector for each of R1 and R2 it must be ae�2i =3-eigenvector for R1R2. From Proposition 2.4 we know thattr(R1R2) = ei =3�2� j� j2�+ e�2i =3:Hence the other two eigenvalues of R1R2 are �ei =3+2i� and �ei =3�2i� . (We have taken minussigns in order to make our angles agree with [15].) Thusj� j2 � 2 = 2 cos(2�); (13)where � is a rational multiple of �.We solve equations (12) and (13) by eliminating � . That is, we seek �, �, � rational multiplesof � so that 2 cos(2�) + 2 = j� j2 = 3 + 2 cos(�� �) + 2 cos(�+ 2�) + 2 cos(�2� � �):Rearranging, this becomes12 = cos(2�)� cos(�� �)� cos(�+ 2�)� cos(�2� � �): (14)In [15] Parker used a theorem of Conway and Jones [1] to solve (14). Up to complex conjugating8



� (so changing the sign of � and �) and multiplying by a power of !, the only solutions are:2� �� � �+ 2� 2�+ � � � �+ �(i) 2�=3 � � �=2 � 2� � �=2 � � �=3 �=6 � � �=6(ii) � �=3� � �=3 + � 2�=3 �=3� �=3 2�=3 �=3 + �=3(iii) �=3 �=4 �=2 3�=4 �=3 �=12 5�=12(iv) �=5 3�=10 2�=5 7�=10 �=3 �=30 11�=30(v) 3�=5 �=10 4�=5 9�=10 �=3 7�=30 17�=30(vi) �=2 2�=7 4�=7 6�=7 8�=21 2�=21 10�=21(vii) �=2 �=15 11�=15 4�=5 13�=45 2�=9 23�=45(viii) �=2 2�=5 7�=15 13�=15 19�=45 �=45 4�=9(ix) �=7 �=21 4�=7 13�=21 2�=9 11�=63 25�=63(x) 5�=7 5�=21 19�=21 8�=7 29�=63 2�=9 43�=63(xi) 3�=7 2�=7 11�=21 17�=21 23�=63 5�=63 4�=9We then write down � = tr(R1J) = ei� + ei� + e�i��i� and tr (R1R2R3) = e3i� + e3i� + e�3i��3i�using this table. As indicated earlier, the parameters �!j for j = 1; 2 correspond to the same groupas � .Proposition 3.1 (Proposition 3.2 of [15]) Suppose that R1R2 and R1R2R3 are both elliptic of�nite order (or possibly R1R2 is parabolic). Up to complex conjugating � and multiplying by apower of !, then one of the following is true:(i) � = �e�i�=3 =: m(�) for some angle �;(ii) � = e2i�=3 + e�i�=3 = ei�=6 2 cos(�=2) =: s(�), for some angle �;(iii) � = ei�=3 + e�i�=6 2 cos(�=4) =: �(�=6; �=4);(iv) � = ei�=3 + e�i�=6 2 cos(�=5) =: �(�=6; �=5);(v) � = ei�=3 + e�i�=6 2 cos(2�=5) =: �(�=6; 2�=5);(vi) � = e2�i=7 + e4�i=7 + e8�i=7 =: �(2�=7);(vii) � = e2�i=9 + e�i�=9 2 cos(2�=5) =: �(�=9; 2�=5);(viii) � = e2�i=9 + e��i=9 2 cos(4�=5) =: �(�=9; 4�=5);(ix) � = e2�i=9 + e�i�=9 2 cos(2�=7) =: �(�=9; 2�=7);(x) � = e2�i=9 + e�i�=9 2 cos(4�=7) =: �(�=9; 4�=7);(xi) � = e2�i=9 + e�i�=9 2 cos(6�=7) =: �(�=9; 6�=7).Before proceeding we explain the notation. The possible solutions � either lie on one of twocurves or are on a �nite list of points. The points on the curve from part (i) (for p > 3) correspondto Mostow's groups �(p; t) (compare [11]). So we call this the Mostow curve and denote points onit by m(�). The points on the curve from part (ii) correspond to subgroups of Mostow's groups,by the results of section 5.1. These results generalise the isomorphisms discovered by Sauter in[19], so we call this the Sauter curve and denote points on it by s(�). The remaining parts (iii) to(xi) consist of �nitely many isolated points which we call sporadic. All the points except for thosein part (vi) depend on two angles and so we write them as �(�; �) = e2i� + e�i�2 cos(�). Note9



that complex conjugation sends �(�; �) to �(��; �) and multiplication by e2�i=3 sends �(�; �) to�(�� 2�=3; �).We use these various values of � = tr(R1J) to parametrise groups in SU(2; 1); note that whilethe values of � in the above list do not depend on  (the angle of rotation of the reection R1), thecorresponding groups do vary with  . We will denote by �( ; �) the subgroup of SU(2; 1) generatedby R1 and J , where the rotation angle of R1 is  and the trace of R1J is � . Note that there shouldbe no confusion with Mostow's notation �(p; t), where p is an integer and t is real. Explicitly, by asimple computation using Mostow's generator R1 (appropriately normalised in SU(2; 1)), Mostow'sgroup �(p; t) is our �(2�=p; ei�(3=2+1=p�t=3�2=(3p))).3.2 The points in angle parametersWe now list the corresponding points in the angle parameter space. This involves considering thedi�erences of the eigenvalues and making sure we have a pair f�1; �2g with 4�=3 6 �1 6 2� and2�=3 6 �2 6 �1.For the groups of Mostow and Sauter type the corresponding points in the angle space arepiecewise linear curves. We now write these down.Lemma 3.2 (i) The point � = m(�) = �e�i�=3 corresponds to the angle pair f2� � �=2; �g if�=2 2 [0; �] and f2� + �=2; � + �=2g if �=2 2 [��; 0].(ii) The point � = s(�) = e2i�=3 + e�i�=3 corresponds to the angle pair f5�=3 + �; 4�=3g if� 2 [��=3; �=3] and f7�=3 � �; 5�=3 � �g if � 2 [�=3; �].For the sporadic groups, in each case for � the angle pair is f2� + � � �; 2� � 2�� �g and for� it is either f2� � � � 2�; 2� � 2� � �g or f2� + � � �; � + 2�g. These angles may be read o�from the table just before Proposition 3.1.� f�1; �2g(iii) e�i=3 + e��i=62 cos(�=4) f7�=4; 5�=4ge��i=3 + e�i=62 cos(�=4) f3�=2; 5�=4g(iv) e�i=3 + e��i=62 cos(�=5) f17�=10; 13�=10ge��i=3 + e�i=62 cos(�=5) f8�=5; 13�=10g(v) e�i=3 + e��i=62 cos(2�=5) f19�=10; 11�=10ge��i=3 + e�i=62 cos(2�=5) f19�=10; 4�=5g(vi) e2�i=7 + e4�i=7 + e8�i=7 f12�=7; 8�=7ge�2�i=7 + e�4�i=7 + e�8�i=7 f10�=7; 8�=7g(vii) e2�i=9 + e��i=92 cos(2�=5) f29�=15; 18�=15ge�2�i=9 + e�i=92 cos(2�=5) f29�=15; 11�=15g(viii) e2�i=9 + e��i=92 cos(4�=5) f8�=5; 17�=15ge�2�i=9 + e�i=92 cos(4�=5) f23�=15; 17�=15g(ix) e2�i=9 + e��i=92 cos(2�=7) f41�=21; 29�=21ge�2�i=9 + e�i=92 cos(2�=7) f10�=7; 29�=21g(x) e2�i=9 + e��i=92 cos(4�=7) f37�=21; 6�=7ge�2�i=9 + e�i=92 cos(4�=7) f37�=21; 19�=21g(xi) e2�i=9 + e��i=92 cos(6�=7) f12�=7; 25�=21ge�2�i=9 + e�i=92 cos(2�=7) f31�=21; 25�=21g10



Figure 1: The points together with the trace parameter spaces for p = 3; : : : ; 10.
6

5

6

3

5

2

0

30 1 4

1

4

2Figure 2: The points together with the angle parameter spaces for p = 3; : : : ; 10.11



3.3 Points in parameter spaceIn this section we consider the values of � from Proposition 3.1 or the corresponding angle pairsand we determine which of them is in the parameter space. In each case, we are only interested inthe case where  = 2�=p for some integer p > 2. In each case we know the eigenvalues ei�, ei� ande�i��i� of R1J and we can use the criterion (10) of Corollary 2.7 to determine for which values ofp the form H� has signature (2; 1). Alternatively, we could use the angle pairs and check the linearconditions given in Section 2.6. We have plotted the points and parameter spaces for p = 3; : : : ; 10in the � -plane in Figure 1 and we have plotted the same thing in the angle parameter space inFigure 2.Proposition 3.3 Let R1 have angle  2 (0; 2�).(i) Suppose that � = m(�) = �e�i�=3. Then H� has signature (2; 1) if and only ifsin( + �=2) cos( =2 � �=2) > 0:(ii) Suppose that � = s(�) = e2i�=3 + e�i�=3. Then H� has signature (2; 1) if and only ifsin( =2 + �) > 0.Proof: We insert the values of � and � found above into Corollary 2.7 and simplify.In (i) we have � = � � �=3 and � = �=6. This leads to8 sin(3�=2 � �=2 +  =2) sin(�=4 +  =2) sin(�3�=2 + �=2 +  =2) < 0:In (ii) we have � = �=3 � �=3 and � = 2�=3. This leads to8 sin(�+  =2) sin(��=2 + �=2 +  =2) sin(��=2 � �=2 +  =2) < 0Simplifying, this is equivalent tosin( =2 + �)�cos( � �) + 1� > 0:We can ignore the possibility cos( � �) = �1 as this only occurs when � = e2i =3 � e�i =3, inwhich case H� has a repeated eigenvalue of 0. (By inspection this does not occur in the intervalwhere H� has signature (2; 1)). 212



For the sporadic groups we simply work by inspection. The results are given in the followingtable: � � ��� � (2; 1) Degenerate (3; 0)(iii) �=3 �=12 �5�=12 p � 3 p = 2��=3 5�=12 ��=12 3 � p � 7 p = 2; 8 p � 9(iv) �=3 �=30 �11�=30 p � 3 p = 2��=3 11�=30 ��=30 3 � p � 19 p = 2; 20 p � 21(v) �=3 7�=30 �17�=30 p � 3 p = 2��=3 17�=30 �7�=30 3 � p � 6 p = 2 p � 7(vi) 2�=7 4�=7 �6�=7 4 � p � 6 p = 7 p = 2; 3; p � 8�2�=7 �4�=7 6�=7 p � 3 p = 2(vii) 2�=9 13�=45 �23�=45 p � 2�2�=9 23�=45 13�=45 p = 2; 4 p = 3 p � 5(viii) 2�=9 31�=45 �41�=45 p � 3 p = 2�2�=9 41�=45 �31�=45 4 � p � 29 p = 3; 30 p = 2; p � 31(ix) 2�=9 11�=63 �25�=63 p � 2�2�=9 25�=63 �11�=63 p = 2 p = 3 p � 4(x) 2�=9 29�=63 �43�=36 4 � p � 41 p = 42 p = 2; 3; p � 43�2�=9 43�=63 �29�=63 p � 4 p = 3 p = 2(xi) 2�=9 47�=63 �61�=63 p � 3 p = 2�2�=9 61�=63 �47�=63 4 � p � 8 p = 3 p = 2; p � 94 Non-discreteness resultsThere are two simple ways to see that a subgroup of PU(2; 1) is not discrete: �nding an ellipticelement of in�nite order in the group, or �nding a subgroup which stabilises a complex line, actingnon-discretely on it. Of course, these elementary facts can only be useful if one �nds the appropriateelement (word) or subgroup. We will present in this section some results of this nature.4.1 Traces for certain wordsWe compute the traces of certain short words in our generators R1 and J (or R1, R2, R3). Thesewords seem relevant to us for experimental and/or historical reasons (see [11] and [21] for instance).These traces can be computed in a straightforward manner from the generators, or by using theformulae from [18].W tr(W )R1J �J�1R1 �ei =3�R1R2J�1 = (R1J)2 �2 � 2�JR2R1 = (J�1R1)2 e2i =3�2 + 2e�i =3�R1R2 e�2i =3 + ei =3�2� j� j2�R1R2R3R�12 e�2i =3 + ei =3�2� j�2 � � j2�R1R�12 R3R2 e�2i =3 + ei =3�2� j�2 + ei � j2�R1R�12 1 + 2 cos( ) + j� j2R1R2R�13 R�12 1 + 2 cos( ) + j�2 � � j2R1R�12 R�13 R2 1 + 2 cos( ) + j�2 + ei � j2R1R2R3 = (R1J)3 3� 3j� j2 + �3R1R2R1R�12 R�11 R�12 3 + �j� j2 � 1��j� j4 + 6j� j2 + 2� 2 cos( )�13



We use this to prove non-discreteness results, some valid for any value of p like the following,and some depending on the value of p (see last section for p = 3).Lemma 4.1 Let R1, R2 and R3 be given by (7), (8) and (9). If j�2 � � j > 2 then R1R2R3R�12 isloxodromic. If j�2 � � j � 2 then R1R2R3R�12 is elliptic with eigenvalues e�2i =3, �ei =3+2i�0 and�ei =3�2i�0 where j�2 � � j = 2 cos �0.Proof: A short computation shows that the trace of R1R2R3R�12 istr(R1R2R3R�12 ) = ei =3�2� j�2 � � j2�+ e�2i =3:Since all points of L1 (the mirror of R1) and of R2(L3) (the mirror of R2R3R�12 ) are e�i =3 eigen-vectors for R1 and R2R3R�12 respectively, we see that their intersection is an e�2i =3 eigenvectorfor R1R2R3R�12 . If this point is outside H2
C
then R1R2R3R�12 is loxodromic. On the other hand, ifthis point is inside complex hyperbolic space then R1R2R3R�12 is elliptic with eigenvalues e�2i =3,�ei =3+2i�0 and �ei =3�2i�0 where j�2 � � j = 2 cos �0. 2We now list j�2 � � j2 for the values of � given in Proposition 3.1. It is clear that complexconjugating � or multiplying by a cube root of unity does not a�ect this quantity. We also give thevalue of �0 or indicate that R1R2R3R�12 is loxodromic.� j� j2 2� j�2 � � j2 2�0(i) �e�i�=3 1 2�=3 2 + 2 cos(�) �(ii) e2i�=3 + e�i�=3 2 + 2 cos(�) � 2 + 2 cos(�) �(iii) ei�=3 + e�i�=62 cos(�=4) 3 �=3 2 �=2(iv) ei�=3 + e�i�=62 cos(�=5) 2 + 2 cos(�=5) �=5 3 �=3(v) ei�=3 + e�i�=62 cos(2�=5) 2 + 2 cos(3�=5) 3�=5 3 �=3(vi) e2�i=7 + e4�i=7 + e8�i=7 2 �=2 1 2�=3(vii) e2i�=9 + e�i�=92 cos(2�=5) 2 �=2 2 + 2 cos(2�=5) 2�=5(viii) e2i�=9 + e�i�=92 cos(4�=5) 2 �=2 2 + 2 cos(4�=5) 4�=5(ix) e2i�=9 + e�i�=92 cos(2�=7) 2 + 2 cos(�=7) �=7 3 + 2 cos(2�=7) loxodromic(x) e2i�=9 + e�i�=92 cos(4�=7) 2 + 2 cos(5�=7) 5�=7 3 + 2 cos(4�=7) irrational(xi) e2i�=9 + e�i�=92 cos(6�=7) 2 + 2 cos(3�=7) 3�=7 3 + 2 cos(6�=7) irrationalIn case (ix) j�2 � � j2 > 4 and so R1R2R3R�12 is loxodromic.In the last two cases j�2�� j2 is less than 4. Therefore, using Lemma 4.1 we see that R1R2R3R�12is elliptic and we �nd the angle �0 satisfying 2 + 2 cos(2�0) = j�2 � � j2 = 3 + 2 cos(4�=7) and3 + 2 cos(6�=7), respectively. Using the theorem of Conway and Jones (Theorem 7 of [1]), we seethat �0 is not a rational multiple if � and hence R1R2R3R�12 is elliptic of in�nite order. Therefore,for these values of � , the group hR1; Ji is not discrete. This proves:Corollary 4.2 Suppose that � = e2�i=9+e��i=92 cos(4�=7) or � = e2�i=9+e��i=92 cos(6�=7). ThenR1R2R3R�12 is elliptic of in�nite order.Hence when examining possible candidates for discrete groups it su�ces to consider the valuesof � given in parts (i) to (ix) of Proposition 3.1.14



4.2 Triangle subgroupsWe will systematically analyse triangle subgroups in order to �nd conditions for discreteness. Bytriangle subgroups we mean subgroups which �x a point in CP 2; depending on the position of thatpoint, the subgroup will stabilise a complex line (if the point is outside of H2
C
), �x a point in H2

Cor on its boundary. The two-generator group in question then acts as a hyperbolic, spherical, orEuclidean triangle group respectively, and the angles of the triangle action are obtained from theeigenvalues of the generators, see Proposition 4.4 below.We use the lists which answer the classical question of plane geometry: given three angles �, �and , when is the group generated by the reections in the sides of an (�; �; ) triangle discrete?In the case of a spherical triangle, the list is due to Schwarz ([20]), see table 4.2 below; forhyperbolic triangles, it is essentially due to Knapp ([8]), see Proposition 4.3 below. In the Euclideancase there are the three obvious triangles (�=3; �=3; �=3), (�=2; �=4; �=4) and (�=2; �=3; �=6), andonly one other, namely (2�=3; �=6; �=6) (see [2]).We start by listing the Schwarz triangles, i.e. the spherical triangles answering the abovequestion. The possible triangles are arranged as in [2]: colunar triangles appear together on oneline, in increasing order of size. Schwarz triangles(�=2; �=2; p�=q)(�=2; �=3; �=3); (�=2; 2�=3; �=3); (�=2; 2�=3; 2�=3)(2�=3; �=3; �=3); (2�=3; 2�=3; 2�=3)(�=2; �=3; �=4); (�=2; 2�=3; �=4); (�=2; �=3; 3�=4); (�=2; 2�=3; 3�=4)(2�=3; �=4; �=4); (�=3; 3�=4; �=4); (2�=3; 3�=4; 3�=4)(�=2; �=3; �=5); (�=2; 2�=3; �=5); (�=2; �=3; 4�=5); (�=2; 2�=3; 4�=5)(2�=5; �=3; �=3); (3�=5; 2�=3; �=3); (2�=5; 2�=3; 2�=3)(2�=3; �=5; �=5); (�=3; 4�=5; �=5); (2�=3; 4�=5; 4�=5)(�=2; 2�=5; �=5); (�=2; 3�=5; �=5); (�=2; 2�=5; 4�=5); (�=2; 3�=5; 4�=5)(3�=5; �=3; �=5); (2�=5; 2�=3; �=5); (2�=5; �=3; 4�=5); (3�=5; 2�=3; 4�=5)(2�=5; 2�=5; 2�=5); (3�=5; 3�=5; 2�=5)(2�=3; �=3; �=5); (�=3; �=3; 4�=5); (2�=3; 2�=3; 4�=5)(4�=5; �=5; �=5); (4�=5; 4�=5; 4�=5)(�=2; 2�=5; �=3); (�=2; 3�=5; �=3); (�=2; 2�=5; 2�=3); (�=2; 3�=5; 2�=3)(3�=5; 2�=5; �=3); (2�=5; 2�=5; 2�=3); (3�=5; 3�=5; 2�=3)Proposition 4.3 (Lemma 2.1 of Klimenko and Sakuma [7]) Suppose that the group gener-ated by reections in the sides of a hyperbolic triangle is discrete. Then the angles of the triangleappear on the following list:(i) �=p, �=q, �=r where 1=p+ 1=q + 1=r < 1;(ii) �=p, �=p, 2�=r where r is odd and 1=p+ 1=r < 1=2;15



(iii) �=p, �=2, 2�=p where p � 7 is odd;(iv) �=p, �=3, 3�=p where p � 7 is not divisible by 3;(v) �=p, �=p, 4�=p where p � 7 is odd;(vi) 2�=p, 2�=p, 2�=p where p � 7 is odd;(vii) �=7, �=3, 2�=7.The case when two of the angles are �=p and �=q was proved by Knapp in Theorem 2.3 of [8].This list is the same as that above without case (vi). Knapp's theorem was rediscovered by Mostowand appears as Theorem 3.7 of [13] except that Mostow missed case (vii).Given a group generated by reections in the sides of a triangle (hyperbolic, Euclidean orspherical) we can consider the index 2 group of holomorphic motions. The product of a pair ofreections in sides that make an angle � is an elliptic rotation through 2�. If we represent this mapas a matrix in SU(2) or SU(1; 1) the eigenvalues are �e�i�. This group of holomorphic motions isgenerated by A and B where A, B, AB are elliptic rotations corresponding to products of pairs ofreections.Proposition 4.4 For j = 1; 2 suppose that Bj is a complex reection in SU(2; 1) with eigenvaluese2i j=3, e�i j=3, e�i j=3 and mirror Lj. Then L1 \ L2 corresponds to an e�i 1=3�i 2=3 eigenvectorof B1B2. Suppose that B1B2 is elliptic and its other eigenvalues are �ei 1=6+i 2=6�i 3=2. Then onthe orthogonal complement of L1 \ L2 the group hB1; B2i acts as the holomorphic subgroup of a( 1=2;  2=2;  3=2) triangle group.Proof: We conjugate so that L1\L2 corresponds to the vector (1; 0; 0)T . Then B1 and B2 areblock diagonal matrices in S�U(1)�U(1; 1)� or S�U(1)�U(2)�. Scaling, we may suppose that theylie in U(1) � SU(1; 1) or U(1) � SU(2). Then the action on the orthogonal complement of L1 \ L2is given by the 2 � 2 unimodular matrices in the lower right hand block. These block matriceshave eigenvalues �e�i 1=2, �e�i 2=2, �e�i 3=2 for B1, B2, B1B2 (up to maybe scaling by �1). Theresult follows from the remarks above. 2For example, consider R1 and R2. Their eigenvalues are e2i =3, e�i =3, e�i =3. Scaling, wesee that the eigenvalues of �e�i =6R1 and �e�i =6R2 are �ei =2, �e�i =2, and �e�i =2. Theeigenvalues of R1R2 are �ei =3+2i�, �ei =3�2i�, and e�2i =3, so that the eigenvalues of e�i =3R1R2are �e2i�, �e�2i�, and e�i = (�e�i =2)(�e�i =2). Therefore hR1; R2i acts on the orthognalcomplement of L1 \ L2 as the holomorphic subgroup of a ( =2;  =2; 2�) triangle group.Similarly, R1 and R2R3R�12 have a common eigenvector L1\R2(L3). When R1R2R3R�12 is ellip-tic the group hR1; R2R3R�12 i acts on the orthogonal complement of L1\R2(L3) as a ( =2;  =2; 2�0)triangle group.We can apply the result of Klimenko and Sakuma, Proposition 4.3 (in fact we only need theearlier version of Knapp [8]) to eliminate some of the cases, using the values for 2� and 2�0 givenin Table 4.1. This gives the following:Proposition 4.5 Suppose that  = 2�=p.(i) If p > 3 and � or � = ei�=3 + e�i�=62 cos(2�=5) then hR1; R2i is not discrete.(ii) If p 6= 3; 5 and � or � = e2�i=9 + e��i=92 cos(4�=5) then hR1; R2R3R�12 i is not discrete.16



5 The two curves in parameter spaceIn this section we determine exactly which points on the two curves from Proposition 3.1 correspondto discrete groups.The �rst curve corresponds to Mostow's original groups from [11], where su�cient conditionsfor discreteness were found; these su�cient conditions were generalised in [12] (to a condition whichMostow calls � INT, which also contains the groups from [3]). A necessary condition, using trianglesubgroups, was then found in [13], leaving only nine groups in dimension 2 and one in dimension 3not covered by either of these criteria. Mostow proves in [13] that all but three of these are discrete;the last three cases were shown to be discrete by Sauter in [19]. See [13] or [19] for more details onthe history of this question.Determining which points of the second curve (or Sauter curve) correspond to discrete groupsuses the result that every such group is a subgroup of a group on the Mostow curve, see section 5.1below. It then remains to discard the possibility that a discrete group on the Sauter curve couldbe a subgroup (of in�nite index) of a non-discrete group on the Mostow curve (theorem 5.8). Thisis done by a careful analysis of triangle subgroups.5.1 Sauter groups are subgroups of Mostow groupsIn this section we prove that each group on the Sauter curve is isomorphic to a subgroup of a groupon the Mostow curve, but for a di�erent value of  , the rotation angle of R1:Proposition 5.1 �(�; e2i =3 + e�i =3) is isomorphic to a subgroup of �( ;�e�i�=3).Recall that �( ; �) denotes the group generated by R1 and J , where  is the rotation angle of R1and � is the trace of R1J .Proof: We begin by de�ning some elements of hR1; Ji, with  as rotation angle of R1. Thesede�nitions follow Sauter.A1 = R�12 R�11 J = J�1(J�1R�11 )2J = 24 �� ei =3� e�i =3e�i =3�1� j� j2� � 2 � � e�2i =3�0 e2i =3 0 35 ;A2 = JR�12 R�11 = (J�1R�11 )2 ; A3 = J�1R�12 R�11 J�1 = J(J�1R�11 )2J�1The result follows by noting that the subgroup hA1; Ji of hR1; Ji corresponds to the requiredparameters. Namely, if � = �e�i�=3 then A1 is a complex reection with angle � (as can be seenby its trace), and A1J�1 has trace e�i =3(2 � j� j2) + e2i =3 = e�i =3 + e2i =3. Note that we havereplaced J with J�1, which is conjugate to J (as in Sauter's isomorphisms). 2In fact we can say more:Lemma 5.2 hA1; A2; A3i is a normal subgroup of hR1; Ji.Proof: If j� j = 1 then RiRjRi = RjRiRj. Using this and R2 = JR1J�1, we �ndR1A1R�11 = R1R�12 R�11 JR�11 = R�12 R�11 R2R�12 J = A1;R1A2R�11 = R1JR�12 R�11 R�11 = R1R2J�1J�1R�12 R�11 J�1JR�12 R�11 = A�12 A3A2;R1A3R�11 = R1J�1R�12 R�11 J�1R�11 = JR�12 R�11 = A2:(compare the identities in Section 7 of [14]). Moreover, from the de�nition of A1; A2; A3 we have:JAiJ�1 = Ai+1 (taking the index i mod. 3). The lemma follows. 217



When � = �e�i�=3, Sauter considers the map R1 7�! A2, R2 7�! A1, R3 7�! A3. That is,he considers the group for which the trace of the generator is �2 � 2� = e2i�=3 + 2e�i�=3 and theparameter is e2i =3 + e�i =3. This is a point on the curve of the second type. In fact, as Sauter isonly interested in the case of Mostow groups, he only considers this map in the case when  = 2�=3,Theorem 6.1 of [19]. In this case e2i =3+ e�i =3 = ei�=9 which is an intersection point of the curvesof Mostow and Sauter types (see section 5.5).The special case of groups on the Mostow curve with � = 1 (or equivalently ! or !) wasconsidered by Livn�e in [9]. Such groups have signature (2; 1) when  < �=2. In [14] Parker showedthat Livn�e's groups contain subgroups that are triangle groups generated by involutions. This isanother special case of Proposition 5.1.Conversely, if R1, R2 and R3 have the form (7), (8), (9) then the mapQ = 24e�i�=3 0 00 0 ei =3+i�=30 �e�i =3 e2i�=3 + e�i�=335satis�es QR1Q�1 = R1; QR2Q�1 = R3; QR3Q�1 = R�13 R2R3:Therefore hR1; R2; R3i is a normal subgroup of hQ;R1; Ji.5.2 The Mostow curvesProposition 5.3 Suppose that  = 2�=p and � = �e�i�=3. Then the following subgroups ofhR1; Ji have a common �xed vector and on its orthogonal complement they act as (the holomorphicsubgroup of) a triangle group as follows:(i) hR1; R2i acts as a ( =2;  =2; 2�=3) triangle group;(ii) hR1; R2R3R�12 i acts as a ( =2;  =2; �) triangle group;(iii) hR1; R�12 R3R2i acts as a ( =2;  =2; � �  � �) triangle group;(iv) hA1; A2i = hR�12 R�11 J; JR�12 R�11 i acts as a (�=2; �=2;  ) triangle group;(v) hA1; A1A3A2i = hR�12 R�11 J; (R�12 R�11 )3i acts as a (�=2; �=2� =2��=2; �=2�3 =2) trianglegroup.Proof: (i) The eigenvalues of R1 and R2 are e2i =3, e�i =3, e�i =3, and those of R1R2 are�ei =3+2i�=3, �ei =3�2i�=3, e�2i =3. The result follows from Proposition 4.4.(ii) The eigenvalues of R1 and R2R3R�12 are e2i =3, e�i =3, e�i =3. The trace of R1R2R3R�11 ise�2i =3 � ei =32 cos(�). Therefore its eigenvalues are �ei =3+i�, �ei =3�i�, e�2i =3. The resultfollows from Proposition 4.4.(iii) This is similar to (ii) except thattr(R1R�12 R3R2) = e�2i =3 + ei =32 cos(�+  ) = e�2i =3 � ei =32 cos(� � ��  ):(iv) The eigenvalues ofA1 andA2 are e2i�=3, e�i�=3, e�i�=3. The trace ofA1A2 is e�2i�=3�ei�=32 cos( ).Hence its eigenvalues are e�2i�=3, �ei +i�=3 and �e�i +i�=3. The result is again similar.(v) Finally, the eigenvalues of A1 are e2i�=3, e�i�=3, e�i�=3 and those of A1A3A2 = (A1J�1)3 =(R�12 R�11 )3 are e2i , �e�i , �e�i . The eigenvalues of A3A2 = (A�11 )(A1A2A3) are e�2i�=3,�ei +i�=3, �e�i +i�=3. The result follows from Proposition 4.4. 2Combining Proposition 5.3 with Proposition 4.3 we obtain18



Corollary 5.4 Suppose that  = 2�=p and � = �e�i�=3. If hR1; Ji is discrete then either(i) � = 2�=q, � �  � � = � � 2�=p� 2�=q = 2�=r or(ii) � = 2 = 4�=q and � � 3 = � � 6�=p = 2�=r where p is odd.Suppose that p, q and r are integers (or posssibly1) in modulus at least 3 so that 1=p+1=q+1=r= 1=2 then up to permutation p, q and r take one of the values in this table:p 3 3 3 3 3 3 3 3 3 4 4 4 4 5 6q 3 4 5 6 7 8 9 10 12 4 5 6 8 5 6r �6 �12 �30 1 42 24 18 15 12 1 20 12 8 10 62p=(p� 6) �2 �2 �2 �2 �2 �2 �2 �2 �2 �4 �4 �4 �4 �10 12q=(q � 6) �2 �4 �10 1 14 8 6 5 4 �4 �10 1 8 �10 12r=(r � 6) 1 4=3 5=3 2 7=3 8=3 3 10=3 4 2 20=7 4 8 5 1The following theorem is a restatement of work of Mostow [13] and Sauter [19].Theorem 5.5 Suppose that  = 2�=p and � = �e�i�=3 wheremaxn�2 ;  � �	 < � < minn� +  ; 2� � 2 oThe group hR1; Ji corresponding to these parameters is discrete if and only if one of the followingis true:(i) p = 3; 4; 5; 6; 7; 8; 9; 10; 12; 18 or 1 and � = 2�=q, � �  � � = 2�=r for some integers q,r (possibly in�nity);(ii) p = 5; 7 or 9 and � = 4�=p;(iii) p = 5; 7 or 9 and � = � � 6�=p;(iv) p = 15; 24; 42; �30 or �12 and � = 2�=3;(v) p = 15; 24; 42; �30 or �12 and � = �=3� 2�=p.Theorem 6.1 of Sauter [19] shows that the group from (v) with  = 2�=p and � = 2�=3 forp = 15; 24; 42, �30 or �12 is isomorphic to the group from (i) with  = 2�=3 and � = 2�=p.This isomorphism is given by identifying A1 with R1 and J with J�1. Theorem 6.2 of Sauter [19]shows that the group from (ii) with  = 2�=p, � = 4�=p is isomorphic to the group from (i) with = 2�=p and � = �. This isomorphism is slightly more complicated and involves sending a squareroot of A1 to R1 and J to J�1. The groups from (ii) and (iii) are isomorphic as are the groupsfrom (iv) and (v) via the map that �xes R1 but sends J to J�1.5.3 The Sauter curvesProposition 5.6 Suppose that  = 2�=p and � = e2i�=3+ e�i�=3. Then the following subgroups ofhR1; Ji have a common �xed vector and on its orthogonal complement they act as (the holomorphicsubgroup of) a triangle group as follows:(i) hR1; R2i acts as a ( =2;  =2; �) triangle group;(ii) hR1; R2R3i acts as a ( =2; �=2 � �=2�  =2; �=2 � 3�=2) triangle group.19



Proof: When � = e2i�=3+e�i�=3 then R1R2R3 = (R1J)3 has one eigenvalue e2i� and a repeatedeigenvalue �e�i�. Also, R2R3 has tracetr(R2R3) = ei =3�2� j� j2�+ e�2i =3 = ei =32 cos(�) + e�2i =3:Hence R2R3 has eigenvalues e�2i =3, �ei =3+i� and ei =3�i�. Then n = L1 \ L123 is a com-mon eigenvector of R1 and R1R2R3, and hence of R2R3. The eigenvalues are e�i =3, �e�i� and�ei =3�i� respectively. Thus on the orthogonal complement of n the group hR1; R2R3i acts as a( =2; �=2 � �=2 �  =2; �=2 � 3�=2) triangle group. 2We again use Proposition 4.3 to eliminate all but �nitely many points.Corollary 5.7 Suppose that  = 2�=p and � = e2i�=3+e�i�=3. If hR1; Ji is discrete then � = 2�=qwhere either(i) � �  � � = � � 2�=p� 2�=q = 2�=r and � � 3� = � � 6�=q = 2�=s or(ii) p = 3 and �=3� � = �=3� 2�=q = 2�=s.Proof: Using  = 2�=p in hR1; R2i and Proposition 4.3, we see that either � = 2�=q or 4�=pand in the latter case p is odd.Assume that � = 2�=q. Then hR1; R2R3i acts as a (�=p; �=2� �=p� �=q; �=2� 3�=q) trianglegroup. From Proposition 4.3 we see that either �=2��=p��=q or �=2�3�=q has the form �=r. Theresult follows from the table above. Note that in (ii) we have 3�=s = �=2�3�=q = 3(�=2��=3��=q)and, when s is not divisible by 3 we are in case (iv) of Proposition 4.3.If � = 4�=p then hR1; R2R3i acts as a (�=p; �=2�3�=p; �=2�6�=p) triangle group. By inspectionwe see that the only possible values of p satisfying Proposition 4.3 are p = 6; 8; 9; 10; 12; 14; 18.Of these, only p = 9 is odd. We now eliminate this case.Suppose that  = 2�=9 and � = 4�=9. That is:R1 = 24e4�i=27 e2�i=272 cos(2�=9) �2 cos(2�=9)0 e�2�i=27 00 0 e�2�i=27 35 :We calculate(R1R2)6 = 24 e4�i=9�2 cos(2�=9) � 1� �e16�i=27�2 cos(4�=9) + 1� 0e8�i=27�2 cos(4�=9) + 1� �e4�i=92 cos(2�=9) 00 0 e�8�i=935 :The eigenvalues of (R1R2)6 are e16�i=9, e�8�i=9, e�8�i=9. Thus (R1R2)6 is a complex reection withangle 8�=3, that is 2�=3. Alsotr�(R1R2)6J� = �e16�i=27�2 cos(4�=9) + 1�:This trace does not appear on our list of possible values of � . Therefore hR1; Ji is not discrete.Indeed, we may calculate thattr�(R1R2)6(R2R3)6� = e8�i=9�2 cos(2�=9) � 1� 2 cos(4�=9)� + e�16�i=9:20



Now 2 cos(2�=9) � 1 � 2 cos(4�=9) lies in (�2; 2), but is not equal to twice the cosine of a ra-tional multiple of � (for example this follows from the theorem of Conway and Jones). Hence(R1R2)6(R2R3)6 is elliptic of in�nite order. 2We now consider the points we have not eliminated by Corollary 5.7. By inspection, we seethat each of these groups is a subgroup of one of the discrete groups from Theorem 5.5. Thereforewe have proven:Theorem 5.8 Suppose that  = 2�=p and � = e2i�=3 + e�i�=3 where ��=p < � < � � �=p. Thegroup hR1; Ji is discrete if and only if � = 2�=q where either(i) q = 3; 4; 5; 6; 7; 8; 9; 10; 12; 18 or 1 and � � 2�=p� 2�=q = 2�=r for some integer r;(ii) p = 3 and q = 15; 24; 42; �30 or �12.Note that (i) includes the case where p = 2 and r = �q (where q > 5), which is Proposition 4.5of [15], and the case where p = 3 and q = 3; 4; 5; 6; 7; 8; 9; 10; 12; 18 or 1.5.4 An example of a discrete group on the Sauter curveIn x5.4.1 of [16] Paupert considers the group with p = 3 and angle parameters (5�=3; 4�=3).Writing R1J as a unimodular matrix, these angle parameters translate to eigenvalues 1, ei�=3 ande�i�=3. (The �xed point of R1J corresponds to the ei�=3-eigenspace.) Hence the trace of R1J is� = 1 + ei�=3 + e�i�=3 = 2. This appears on the list of discrete groups. In this case:R1 = 24e4�i=9 2 �2e2�i=90 e�2�i=9 00 0 e�2�i=9 35 ;R2 = 24 e�2�i=9 0 0�2e2�i=9 e4�i=9 20 0 e�2�i=935 ;R3 = 24e�2�i=9 0 00 e�2�i=9 02 �2e2�i=9 e4�i=935 :We can easily check that an ei�=3-eigenvector of R1J is24 e5�i=91e�5�i=935which is negative.We now give another, more direct, way to see that this group is discrete. Using Proposition 2.8we see that hR1; R2; R3i may be conjugated in PU(2; 1) so that their matrix entries lie in Z
�e2�i=3�,the Eisenstein integers. Since this is a discrete subring of C the group is automatically discrete.5.5 The two curves are related for p = 3In section 5.1 we have seen that each group on the Sauter curve is a subgroup of a group on theMostow curve, but for a di�erent value of  (the angle of rotation of the generators). In the specialcase where  = 2�=3, we can apply this twice to see that each group on the Sauter curve is a21



subgroup of a group on the Mostow curve, for the same value of  . Moreover, Theorem 5.8 tellsus that the Sauter subgroup in question is discrete only if the larger Mostow group is discrete. Inother words, in terms of discrete groups, the two curves are the same; this is visible on Figure 4.The precise statement is the following:Proposition 5.9 �(2�=3; e2i�=3 + e�i�=3) is isomorphic to a subgroup of �(2�=3;�e�i�=3).Proof: We have seen in section 5.1 that �(�; e2i =3 + e�i =3) is isomorphic to a subgroup of�( ;�e�i�=3). Applying this with  = 2�=3, we obtain that �(�; e4i�=9 + e�2i�=9) is isomorphic toa subgroup of �(2�=3;�e�i�=3). Now the point is that e4i�=9 + e�2i�=9 = ei�=9 = �e�8i�=9, so thatthe former group (of Sauter type) is also of Mostow type, and we can therefore repeat the process.This tells us that �(8�=3; e2i�=3 + e�i�=3) is isomorphic to a subgroup of �(2�=3;�e�i�=3). Notethat 8�=3 = 2�=3 mod. 2�. 2In fact we can say more and identify the corresponding subgroups in terms of generators:h(R1R2)2; Ji is a subgroup of hA1; Ji, which is in turn a subgroup of hR1; Ji (see section 5.1), andthese various subgroups correspond to the values of the parameters described above.Indeed, when p = 3 and j� j = 1, we have tr((R1R2)2) = e16�i=9 + 2e�8�i=9. Therefore (R1R2)2is a complex reection with angle e24�i=9 = e2�i=3. We also have tr((R1R2)2J) = �2+2 cos(2�=3)� .When � = �e�i�=3 then this trace is e2i�=3 + e�i�=3 as required.6 Sporadic groups generated by complex reections of order 36.1 Which sporadic points are in the parameter space?This was determined earlier for all values of p (see Table 3.3). For p = 3, the situation is thefollowing:� H� has signature (2; 1) for the following sporadic values of � :ei�=3 + e�i�=62 cos(�=4); ei�=3 + e�i�=62 cos(�=5); ei�=3 + e�i�=62 cos(2�=5);e�i�=3 + ei�=62 cos(�=4); e�i�=3 + ei�=62 cos(�=5); e�i�=3 + ei�=62 cos(2�=5);e2�i=9 + e��i=92 cos(2�=5); e2�i=9 + e��i=92 cos(4�=5); e2�i=9 + e��i=92 cos(2�=7);e2�i=9 + e��i=92 cos(6�=7); e�2�i=7 + e�4�i=7 + e�8�i=7:� H� is degenerate (signature (2,0) or (1,1), see below) for � = e�2�i=9 + e�i=92 cos(�) where� = 2�=5; 4�=5; 2�=7; 4�=7 or 6�=7. The corresponding �ve points are on the boundary ofour parameter space.� H� is positive de�nite when � = e2�i=9 + e��i=92 cos(4�=7) and � = e2�i=7 + e4�i=7 + e8�i=7.The corresponding two points are outside of our parameter space.6.2 Reducible sporadic groupsThese correspond to � = e�2�i=9 + e�i=92 cos(�) where � = 2�=5; 4�=5; 2�=7; 4�=7 or 6�=7. Thesegroups have a common eigenvector (1; 1; 1)T ; as in Proposition 4.4 we analyse their action on theorthogonal complement of this vector. In this case, normalising R1 for convenience as �e�i�=9R1,the eigenvalues on this complement are �ei�=3 and �e�i�=3 for R1, �ei�=3 and �e�i�=3 for J , and�ei� and �e�i� for R1J . Therefore the group hR1; Ji acts as (the holomorphic subgroup of) a(�=3; �=3; �) triangle group. For � = 2�=5 or 4�=5, this is in fact a (�nite) (2; 3; 5) triangle group;22



Figure 3: The sporadic points together with the trace parameter space for p = 3.
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Figure 5: Schematic picture of triangle group action when � = e�2�i=9 + e�i=92 cos(�) for� = 2�=5 (2); 4�=5 (1); 2�=7 (3).for � = 2�=7, it is a discrete hyperbolic (2; 3; 7) triangle group. For � = 4�=7 or 6�=7, it is a non-discrete spherical triangle group; in fact we already know that these two groups are non-discretefrom Corollary 4.2, as R1R2R3R�12 is elliptic of in�nite order.In Figure 5 we draw a schematic picture of the triangle group action induced by the generatorsin the three discrete cases.6.3 Non-discrete irreducible sporadic groupsThe trace of R1R�12 is tr(R1R�12 ) = 2 cos( ) + j� j2 + 1:When  = 2�=3 we have tr(R1R�12 ) = j� j2 = 2 + 2 cos(2�)where 2� is given in the table just before Proposition 3.1. Evaluating in each case we can �ndwhether R1R�12 is loxodromic, parabolic or elliptic and, in the latter case, whether or not it has�nite order. This enables us to eliminate one pair of complex conjugate � (see also Proposition 4.5):Lemma 6.1 Suppose that  = 2�=3 and � = e�i=3 + e��i=62 cos(2�=5) or its complex conjugate.The R1R�12 is elliptic of in�nite order.Proof: We know thattr(R1R�12 ) = j� j2 = 1 + 4 cos2(2�=5) = 3 + 2 cos(4�=5):Since R1R�12 has real trace it must have eigenvalues ei�, e�i� and 1. Hence its trace is 1+2 cos(�).In other words, 2 cos(�) = 2� 2 cos(�=5):Using the theorem of Conway and Jones, Theorem 7 of [1], we see that � is not a rational multipleof �. This proves the result. 224



The proof of the following lemma is similar to the proof of Lemma 4.1, knowing that:tr(R1R�12 R3R2) = ei =3�2� ���2 � ei � ��2�+ e�2i =3:Lemma 6.2 Let R1, R2 and R3 be given by (7), (8) and (9). If j�2 + �ei j > 2 then R1R�12 R3R2is loxodromic. If j�2� � j � 2 then R1R�12 R3R2 is elliptic with eigenvalues e�2i =3, �ei =3+2i� and�ei =3�2i� where j�2 + �ei j = 2 cos�.Corollary 6.3 Suppose that  = 2�=3 and � = e2�i=9 + e��i=92 cos(4�=5). Then R1R�12 R3R2 iselliptic of in�nite order.Proof: When  = 2�=3 and � = e2�i=9 + e�i�=92 cos(4�=5) we see thatj�2 + �ei j2 = 6�p5:Hence j�2 + �ei j = 2 cos� where � is not a rational multiple of �. 26.4 Arithmeticity of sporadic groupsWe begin by applying Proposition 2.8 to show that when � = e�2�i=7 + e�4�i=7 + e�8�i=7 thegroup hR1; R2; R3i is contained in an arithmetic lattice. In particular, putting  = 2�=3 into theexpression in equation (11) for 2 sin(�=3)CH�C�1 where C = diag(e�2�i=9; 1; e2�i=9) we obtain:p3CH�C�1 = 24 3 �(3 + ip3)�=2 (3 + ip3)�=2�(3� ip3)�=2 3 �(3 + ip3)�=2(3� ip3)�=2 �(3� ip3)�=2 3 35 :Proposition 6.4 Let R1, R2 and R3 be complex reections with angle  = 2�=3 so that the grouphR1; R2; R3i has parameter � = e�2�i=7 + e�4�i=7 + e�8�i=7 = (�1 � ip7)=2. Then hR1; R2; R3i iscontained in an arithmetic lattice and hence is discrete.Proof: We have ei = (�1 + ip3)=2 and � = (�1 � ip7)=2. Both of these are algebraicintegers in the �eld Q
�p21; ip3�. In particular, using Proposition 2.8, we can ensure that thematrix entries of all elements of hR1; R2; R3i are algebraic integers in Q

�p21; ip3�. This �eld isa totally imaginary quadratic extension of the totally real number �eld Q
�p21�. The only non-trivial Galois conjugation in Q

�p21� sends p21 to �p21. This is compatible with g, the Galoisconjugation in Q
�p21; ip3� �xing (�1+ip3)=2 and sending � = (�1�ip7)=2 to � = (�1+ip7)=2.The matrix p3CH�C�1 has entries in the ring of integers of Q

�p21; ip3� and signature (2; 1). TheGalois conjugation g sends p3H� to p3CH�C�1. But we know that the point � lies outside ourparameter space and so corresponds to a group which has signature (3; 0). Therefore using standardarguments (for example [10] or Proposition 4.3 of [15]) we see that this group is arithmetic andhence discrete. 2There are ten more sporadic groups with signature (2; 1). The goal of the rest of this section isto show that none of them are contained in an arithmetic lattice.Proposition 6.5 Let R1, R2 and R3 be complex reections with angle  = 2�=3 so that the grouphR1; R2; R3i has parameter � 6= e�2�i=7 + e�4�i=7 + e�8�i=7 = (�1 � ip7)=2. Then hR1; R2; R3i isnot contained in an arithmetic lattice. 25



The method of proof will be very similar to the proof of Proposition 6.5 and we give an outline.In each case we conjugate (multiples of) H� and Rj so that their matrix entries are algebraicintegers in a number �eld E. In each case the number �eld E will be a purely imaginary quadraticextension of a totally real �eld F . The following lemma lists the values of � and the number �elds.It is easy to verify and we leave the details to the reader. Note that in parts (i) and (ii) we conjugateby C and in parts (iii) and (iv) we conjugate by C�1.Lemma 6.6 Suppose that R1, R2 and R3 are given by (7), (8) and (9) with  = 2�=3 and thatC = diag(e�2�i=9; 1; e2�i=9).(i) If � = �(�=6; �=4) or �(��=6; �=4) then the entries of p3CH�C�1 and e2�i=9CRjC�1, forj = 1; 2; 3, are algebraic integers in the number �eld Q(p6; ip3).(ii) If � = �(�=6; �=5), �(�=6; 2�=5), �(��=6; �=5) or �(��=6; 2�=5) then the entries of p3CH�C�1and e2�i=9CRjC�1, for j = 1; 2; 3, are algebraic integers in the number �eld Q
�p3;p5; i�.(iii) If � = �(�=9; 2�=5) or �(�=9; 4�=5) then the entries of p3C�1H�C and e2�i=9C�1RjC, forj = 1; 2; 3, are algebraic integers in the number �eld Q

�2 cos(2�=5); e2�i=3�.(iv) If � = �(�=9; 2�=7), �(�=9; 4�=7) or �(�=9; 6�=7) then the entries of p3C�1H�C ande2�i=9C�1RjC, for j = 1; 2; 3, are algebraic integers in Q
�2 cos(2�=7); e2�i=3�.We then examine all Galois conjugations in E that are compatible with non-trivial Galoisconjugations in F . For the number �elds in Lemma 6.6 the Galois conjugations permute the valuesof � given in each part.For example, in part (ii) of Lemma 6.6 E is Q

�p3;p5; i� and F is Q
�p3;p5�. The Galoisconjugation in F �xingp3 and changing the sign of p5 extends to a Galois conjugation g1 in E that�xes e2�i=3 and swaps �(�=6; �=5) and �(�=6; 2�=5) and swaps �(��=6; �=5) and �(��=6; 2�=5).Likewise, the Galois conjugation in F �xing p5 and changing the sign of p3 extends to a Galoisconjugation g2 in E that �xes e2�i=3 and swaps �(�=6; �=5) and �(��=6 + 2�=3; �=5) and swaps�(�=6; 2�=5) and �(��=6 + 2�=3; 2�=5). Note that �(� + 2�=3; �) is equivalent to �(�; �). Theremaining Galois conjugation in E is the product of g1 and g2.In each case all non-trivial Galois conjugations will send our value of � to one of the othersporadic values of � . Since we have analysed which of the points � lie in our parameter space weknow the signature of the corresponding Hermitian form H� . In each case there will be at least onenon-trivial Galois conjugation that sends H� to another form of signature (2; 1). This is su�cientto ensure that hR1; R2; R3i is non-arithmetic; compare Proposition 12.6.1 of [4]. This completesour sketch proof of Proposition 6.5.References[1] J.H. Conway & A.J. Jones; Trigonometric diophantine equations (On vanishing sums ofroots of unity). Acta Arithmetica 30 (1976), 229{240.[2] H.S.M. Coxeter; Regular Polytopes. Pitman Publishing Corporation, New York (1949).[3] P. Deligne & G.D. Mostow; Commensurability Among Lattices in PU(1; n). Annals ofMaths. Studies 132, Princeton University Press (1993).[4] P. Deligne & G.D. Mostow; Monodromy of hypergeometric functions and non-latticeintegral monodromy. Publ. Math. I.H.E.S. 63 (1986), 5{89.26
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