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Abstract. A complex hyperbolic triangle group is a group generated by three
involutions fixing complex lines in complex hyperbolic space. Our purpose in
this paper is to improve the result in [5] and to discuss discreteness of complex
hyperbolic triangle groups of type (n, n,∞; k).

1. INTRODUCTION

A complex hyperbolic triangle is a triple (C1, C2, C3) of complex lines in complex
hyperbolic 2-space H2

C
. We assume that Ck−1 and Ck either meet at the angle π/pk

for some integer pk ≥ 2 or else Ck−1 and Ck are asymptotic, in which case they make
an angle 0 and in this case we write pk = ∞, where the indices are taken mod 3.
Let Γ be a group of holomorphic isometries of H2

C
generated by involutions i1, i2, i3

fixing a complex lines C1, C2, C3, respectively. We call Γ a complex hyperbolic
triangle group of type (p1, p2, p3). For each such triple (p1, p2, p3) there is a one real
parameter family of complex hyperbolic triangle groups. It is interesting to ask
which values of this parameter correspond to discrete groups.

The study of complex hyperbolic triangle groups was begun in [3]. Since then
there have been many developments (see [8], [9], [10], [11], [12], [13] and [14]). In
a previous paper [5] we considered a complex hyperbolic triangle group of type
(n, n,∞) and gave intervals of non-discreteness for different values of n.

Our purpose here is to improve the result in [5] and to give examples of non-
discrete complex hyperbolic triangle groups of type (n, n,∞). Throughout this pa-
per, Γ denotes a complex hyperbolic triangle group of type (n, n,∞).

2. PRELIMINARIES

We recall some basic notions of complex hyperbolic geometry. The complex hy-
perbolic 2-space H2

C
is defined as the complex projectivization of the set of negative

vectors in C
2,1 with the Hermitian form < Z, W >= Z0W̄0 +Z1W̄1 −Z2W̄2, where

Z = (Z0, Z1, Z2) and W = (W0, W1, W2) in C
2,1. Let PU(2, 1) be the projectiviza-

tion of SU(2, 1). The group of holomorphic isometries of H2
C

is exactly PU(2, 1).
Just as in real hyperbolic geometry, nontrivial elements of PU(2, 1) fall into three
conjugacy classes depending on the number and the location of fixed points. Using
the discriminant function

ρ(z) = |z|4 − 8Re(z3) + 18|z|2 − 27,
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we can classify elements of PU(2, 1) by traces of the corresponding matrices in
SU(2, 1). In [2, Theorem 6.2.4] Goldman states that an element in SU(2, 1) is
regular elliptic if and only if ρ(τ(A)) < 0, where τ(A) is the trace of A.

The boundary ∂H2
C

is homeomorphic to S3 and one of representation we choose
for this is (C × R) ∪ {∞}, with points either ∞ or (z, r)H with z ∈ C and r ∈ R.
We call (z, r)H the H − coordinates. Let H denote this representation, that is,
(C × R) ∪ {∞}. We have the homeomorphism B taking S3 to H given by the
standard stereographic projection:

(z1, z2) 7→
(

z1

1 + z2
,−Im

(

1 − z2

1 + z2

))

H

,

(0,−1) 7→ ∞.

The Cygan metric δ is defined by

δ((z, r)H , (w, R)H) = ||z − w|2 + ir − iR + 2iIm(zw)| 12
for (z, r)H , (w, R)H in H − {∞}.

More details on this subject can be found in [2],[4] and [6].

3. COMPLEX HYPERBOLIC TRIANGLE GROUPS OF TYPE (n, n,∞)

In this section we show intervals of non-discreteness for different values of n.
By [14, Proposition 3.10.6], we can take three involutions ij in Cj such that

∂C1 = {(eiφ, 0)H | φ ∈ R}, ∂C2 = {(s, t)H | t ∈ R}, and ∂C3 = {(seiθ, t)H | t ∈ R},
where s = cos(π/n). Thus we see that a family of complex hyperbolic triangle groups
of type (n, n,∞) is parametrized (up to conjugacy) by cos θ.

For convenience we shall shorten compositions of involutions, for example i1i2i3i1
will be written as i1231. We have the forms of ij as follows:

i1 =





−1 0 0
0 1 0
0 0 −1



 ,

i2 =





1 −2s −2s
−2s 2s2 − 1 2s2

2s −2s2 −2s2 − 1



 and

i3 =





1 −2seiθ −2seiθ

−2se−iθ 2s2 − 1 2s2

2se−iθ −2s2 −2s2 − 1



 .

It follows that

i1i2i3 = i123 =





−1 2s(eiθ − 1) 2s(eiθ − 1)
2s(e−iθ − 1) 4s2(eiθ − 1) + 1 4s2(eiθ − 1)
2s(e−iθ − 1) 4s2(eiθ − 1) 4s2(eiθ − 1) − 1



 .

In [11] Schwartz considered ideal triangle groups, that is complex hyperbolic tri-
angle groups of type (∞,∞,∞) and proved that if the element i123 is regular elliptic,
then it is not of finite order, hence the corresponding complex hyperbolic triangle
group is not discrete. In [8] Parker explored groups of type (n, n, n) such that i123 is
regular elliptic and showed that in this case there are some discrete groups. In the
same manner as in the proof of Schwartz in [11, p.545], Wyss-Gallifent formulated
Schwartz’s statement for groups of type (n, n,∞) in [14, Lemma 3.4.0.19]. In [10]
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Pratoussevitch made a refinement of the proof of Wyss-Gallifent. Here we quote
the result due to Wyss-Gallifent and Pratoussevitch.

Theorem 1. Let Γ =< i1, i2, i3 > be a complex hyperbolic triangle group of type
(n, n,∞). If the product i123 of the three generators is regular elliptic, then Γ is
non-discrete.

Using this theorem, we work out some conditions on cos θ for Γ of type (n, n,∞)
to be non-discrete. A simple computation yields

τ = trace(i123) = 8s2(eiθ − 1) − 1

and

ρ(τ) = 256s2(1 − cos θ)
{

2 − 2s2 + 13s2(1 − cos θ) − 16s4(1 − cos θ)(1 + 4 cos θ)

+64s6(1 − cos θ)
}

,

where s = cos(π/n). Set X = 1 − cos θ and

ρ(X) = 256s2X
{

64s4X2 + (64s6 − 80s4 + 13s2)X + 2 − 2s2
}

.

Solving the equation ρ(X) = 0 for X , we see that if s ≥
√

7/8, then there are
two solutions an, bn except 0, which lie between 0 and 1. But otherwise, there are
no solutions except 0. Set αn = 1 − an and βn = 1 − bn. We observe that if
s <

√

7/8, then ρ(X) ≥ 0 for 0 ≤ X ≤ 2 and that if s ≥
√

7/8, then ρ(X) < 0 for

bn < X < an and otherwise ρ(X) ≥ 0. Since cos(π/9) >
√

7/8 > cos(π/8), we see
that if n < 9, then the product i123 is not regular elliptic and that if n ≥ 9, then it
is regular elliptic for cos θ ∈ (αn, βn). Note that αn and βn are increasing functions
of n. Denote by E123(n) the interval (αn, βn). It follows from Theorem 1 that if
n ≥ 9, then Γ is not discrete for cos θ ∈ E123(n).

Later we tabulate αn and βn together with another value γn, which is defined
after Theorem 2.

Remark 1. If s = 1, then ρ(τ) < 0 for θ with 61/64 (= 0.9531...) < cos θ < 1.

This yields that |A| > tan−1
√

125/3, where A is the Cartan angular invariant.
In [11] Schwartz showed that a group of type (∞,∞,∞) is discrete if and only if

|A| ≤ tan−1
√

125/3, which was conjectured by Goldman and Parker in [3].

Next we use a different way to find out some sufficient conditions on cos θ for
Γ to be non-discrete. Let g be an element of PU(2, 1). We define the translation
length tg(p) of g at p ∈ H by tg(p) = δ(g(p), p). In the case where a group contains a
parabolic element, we know several criteria for a group to be non-discrete (see [6]).
To state Theorem 2, we need the notion of isometric spheres. Let h = (amn)1≤m,n≤3

be an element of PU(2, 1) not fixing ∞. The isometric sphere of h is the sphere in

the Cygan metric with center h−1(∞) and radius Rh =
√

2
|a22−a23+a32−a33|

(see [3],

[4] and [6]).
Here we recall the complex hyperbolic version of Shimizu’s lemma due to Parker

[7].
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Theorem 2. Let G be a discrete subgroup of PU(2, 1) that contains the Heisenberg
translation g with the form

g =





1 τ τ
−τ 1 − (|τ |2 − it)/2 −(|τ |2 − it)/2
τ (|τ |2 − it)/2 1 + (|τ |2 − it)/2



 .

The transformation g fixes ∞ and maps the point with H-coordinates (ζ, v)H to
the point with H-coordinates (ζ + τ, v + t + 2Im(τ ζ̄))H . Let h be any element of G
not fixing ∞ and with isometric sphere of radius Rh. Then

R2
h ≤ tg(h

−1(∞))tg(h(∞)) + 4|τ |2.

To improve the result in [5], we take g = i23 and h = i1231 in Theorem 2. We
have

i23 =





1 2s(1 − eiθ) 2s(1 − eiθ)
−2s(1 − e−iθ) 1 + 4s2(eiθ − 1) 4s2(eiθ − 1)
2s(1 − e−iθ) −4s2(eiθ − 1) 1 − 4s2(eiθ − 1)



 and

i1231 =





1 −2s(1 − eiθ) 2s(1 − eiθ)
2s(1 − e−iθ) 1 + 4s2(eiθ − 1) −4s2(eiθ − 1)
2s(1 − e−iθ) 4s2(eiθ − 1) 1 − 4s2(eiθ − 1)



 .

It is seen that i23 is a Heisenberg translation with fixed point ∞ and that i1231
has isometric sphere of radius

Ri1231 =

√

1

8s2{2(1 cosθ)} 1

2

.

We have

ti23(i
−1
1231(∞))ti23 (i1231(∞)) = |8s2(1 − eiθ) + 2i sin θ|

= {128s4(1 − cos θ) − (32s2 − 4)(1 − cos2 θ)} 1

2 .

Theorem 2 implies that Γ is not discrete, if

(∗) 1

8s2{2(1 − cos θ)}1/2
>

{

128s4(1 − cos θ) − (32s2 − 4)(1 − cos2 θ)
}1/2

+32s2(1 − cos θ).

Set X = 1 − cos θ and

Y = Fs(X) =
{

128s4X − (32s2 − 4)X(2 − X)
}1/2

+ 32s2X − 1

8s2(2X)1/2
.

Considering the graph of the function Y = Fs(X), we observe that there is some
rn ∈ (0, 1) such that Fs(X) < 0 for 0 < X < rn and Fs(X) ≥ 0 for rn ≤ X ≤ 2.
Also we have rn+1 < rn. Put γn = 1 − rn. It follows that the above inequality (∗)
is true only for cos θ with γn < cos θ < 1, where γn is an increasing function of n.
Thus Γ is not discrete for cos θ ∈ (γn, 1). We denote the interval (γn, 1) by P (n).
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We show the beginning of the list of approximations of αn, βn and γn.

Table 1. Approximations of αn, βn and γn.

n αn βn γn

3 ——– ——— 0.8923
4 ——– ——— 0.9691
5 ——– ——— 0.9819
6 ——– ——— 0.9862
7 ——– ——— 0.9882
8 ——– ——— 0.9893
9 0.9312 0.9319 0.9900
10 0.9367 0.9423 0.9905
11 0.9403 0.9510 0.9908
12 0.9427 0.9580 0.9910
13 0.9445 0.9637 0.9913
14 0.9458 0.9684 0.9914
15 0.9469 0.9722 0.9915
16 0.9477 0.9754 0.9916
17 0.9484 0.9781 0.9917
18 0.9489 0.9804 0.9918
19 0.9494 0.9823 0.9918
20 0.9498 0.9840 0.9919
21 0.9501 0.9854 0.9919
22 0.9504 0.9867 0.9919
23 0.9506 0.9878 0.9920
24 0.9509 0.9887 0.9920
25 0.9510 0.9896 0.9920
26 0.9512 0.9904 0.9920
27 0.9814 0.9911 0.9920
28 0.9515 0.9917 0.9921
29 0.9516 0.9922 0.9921
30 0.9517 0.9927 0.9921
50 0.9527 0.9973 0.9922
200 0.9531 0.9998 0.9922

Remark 2. We observe that cos θ = 0.9922 satisfies the inequality

1

8{2(1 − cos θ)}1/2
>

{

128(1− cos θ) − 28(1 − cos2 θ)
}

1

2 + 32(1 − cos θ),

which is obtained by substituting 1 for s in the inequality (∗). Therefore βn > γn

for n ≥ 29, that is E123(n) ∩ P (n) 6= ∅.

Remark 3. In [15], Xie and Jiang discussed discreteness of groups containing
a regular elliptic element. We can apply their result to our case, but we could not
improve our results here.
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4. COMPLEX HYPERBOLIC TRIANGLE GROUPS OF TYPE

(n, n,∞; k)

Let Γ =< i1, i2, i3 > be a complex hyperbolic triangle group of type (n, n,∞).
If the trace of the element i1213 is equal to 1+2 cos 2π

k , where k is a positive integer
≥ 3, then Γ is said to be of type (n, n,∞; k). If trace(i1213) = 3, then Γ is said to
be of type (n, n,∞;∞).

In this section we show examples of non-discrete complex hyperbolic triangle
groups of type (n, n,∞; k). We have

trace(i1213) = 3 − 16s2 cos θ + 16s4

and

trace(i2123) = 20s2 − 16s2 cos θ − 1.

Denote the intervals consisting of the parameter cos θ for which i1213 and i2123 are
regular elliptic by E1213(n) and E2123(n), respectively. Then E1213(n) = (s2, 1) and
E2123(n) = (5

4 − 1
4s2 , 1). We see that s2 and 5

4 − 1
4s2 are increasing functions of n.

The following lemma shows the relations among αn, βn, γn, s2 and 5
4 − 1

4s2 .

Lemma 1.

(1) s2 ≤ 5
4 − 1

4s2 for n ≥ 3.

(2) s2 < αn < βn < 5
4 − 1

4s2 for 9 ≤ n ≤ 13.

(3) αn < s2 < βn < 5
4 − 1

4s2 for 14 ≤ n ≤ 28.

(4) αn < s2 < γn < βn for n ≥ 29.

Proof.
(1) is immediate.
Putting cos θ = s2 into ρ(trace(i123)) gives

256s2(1 − s2)2(2 + 13s2 − 16s4).

This is negative when

s2 >
13 + 3

√
33

32
.

We find that

cos2
π

13
<

13 + 3
√

33

32
< cos2

π

14
.

Thus s2 < αn < βn for 9 ≤ n ≤ 13. The inequality above together with Remark 1
yields that αn < s2 < βn for n ≥ 14.

Putting cos θ = 5
4 − 1

4s2 into ρ(trace(i123)), we have

16(1 − s2)2(64s4 − 96s2 + 37) > 0.

Therefore βn < 5
4 − 1

4s2 . Thus (2) and (3) are proved. By Remark 2, we have (4).

Let Γ be of type (n, n,∞; k), where n > 3. Considering trace(i1213), we have

8s4 + 1 − cos 2π
k

8s2
= cos θ < 1,
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which leads to

8s4 − 8s2 + 1 = 8 cos4
π

n
− 8 cos2

π

n
+ 1 = cos

4π

n
< cos

2π

k
.

Hence k ≥ [n
2 ] + 1 for n > 3. Thus we have only to consider the cases where

k ≥ [n
2 ] + 1.

To find non-discrete groups of type (n, n,∞; k), we ask which groups have their
parameters cos θ in E123(n) or P (n). We only treat special cases, because we can
do the remainder in the same manner.

First we find groups whose parameters lie in P (n). For n ≤ 12 there is no group
of type (n, n,∞; k) for which parameter is located in P (n). For n ≥ 13, we find some
groups of type (n, n,∞; k), which are not discrete by Theorem 2. As an example,
we consider the case where n = 21. From Table 1, it is seen that

γ21 = 0.9919 < cos2
π

21
+

1 − cos 2π
k

8 cos2 π
21

< 1

for 11 ≤ k ≤ 13, that is, the groups of types (21, 21,∞; 11), (21, 21,∞; 12) and
(21, 21,∞; 13) have their parameters in P (21). Therefore, these three groups are
not discrete.

Next consider groups whose parameters lie in E123(n). For n ≤ 8, E123(n) = ∅.
There is no group of type (9, 9,∞; k) whose parameter is in E123(9). For 10 ≤
n ≤ 13, there are a finite number of groups of type (n, n,∞; k) with parameters in
E123(n). As an example, we treat the case where n = 13. In this case E123(13) ⊂
E1213(13). It follows from Table 1 that

α13 = 0.9445 < cos2
π

13
+

1 − cos 2π
k

8 cos2 π
13

< 0.9637 = β13

for 12 ≤ k ≤ 38. Therefore, groups of type (13, 13,∞; k) for 12 ≤ k ≤ 38 are not
discrete. By Lemma 1, E123(n) ∩ E1213(n) 6= ∅ and αn < cos2 π

n < βn for n ≥ 14.
Hence there are infinitely many groups of type (n, n,∞; k) with their parameters
in E123(n), which are not discrete. We deal with the case where n = 17 as an
example. From Table 1,

cos2
π

17
+

1 − cos 2π
k

8 cos2 π
17

< 0.9781 = β17

for k ≥ 15. Therefore the groups of type (17, 17,∞; k) for k ≥ 15 are not discrete.
Finally we consider the element i2123. Assume that i2123 is a regular elliptic

element. Then trace(i2123) is written as

trace(i2123) = 20s2 − 16s2 cos θ − 1 = 1 + 2 cosφπ,

which yields that

cosφπ = 10s2 − 8s2 cos θ − 1,

where φ is a real number. Substituting

8s4 + 1 − cos 2π
k

8s2

for cos θ, we have

cosφπ = −8s4 + 10s2 − 2 + cos
2π

k
= − cos

4π

n
+ cos

2π

n
+ cos

2π

k
.
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By Lemma 1 and Table 1, E1213(n) ⊃ E2123(n) ⊃ P (n) and E2123(n)∩E123(n) = ∅
for n = 5, 7, 9, 11, 12 and 14. In each group of type (5, 5,∞; 3),(7, 7,∞; 4), (9, 9,∞; 5),
(11, 11,∞; 6), (12, 12,∞; 7) or (14, 14,∞; 8), i2123 is regular elliptic. It follows from
[1, Theorem 7] that for (n, k) = (5, 3), (7, 4), (9, 5), (11, 6), (12, 7) and (14, 8), there
are no rational numbers φ′s satisfying

cosφπ = − cos
4π

n
+ cos

2π

n
+ cos

2π

k
,

that is,

cos
π

5
+ cos

2π

5
− cosφπ =

1

2
,

cos
2π

7
+ cos

3π

7
− cosφπ = 0,

cos
2π

9
− cos

4π

9
+ cos

2π

5
− cosφπ = 0,

− cos
2π

11
+ cos

4π

11
+ cosφπ =

1

2
,

cos
π

6
+ cos

2π

7
− cosφπ =

1

2
,

cos
3π

7
− cos

π

4
+ cosφπ =

1

2
,

Therefore, i2123 is of infinite order in these cases. Hence the groups above are
not discrete.

Thus we have

Theorem 3. Let Γ =< i1, i2, i3 > be a complex hyperbolic triangle group of type
(n, n,∞; k). Let k ≥ [n/2] + 1. The following groups are non-discrete.

1) (5, 5,∞; 3).
2) (7, 7,∞; 4).
3) (9, 9,∞; 5).
4) (10, 10,∞; 9).
5) (11, 11,∞; 6), (11, 11,∞; 10), (11, 11,∞; 11).
6) (12, 12,∞; 7), and (12, 12,∞; k), where 11 ≤ k ≤ 16.
7) (13, 13,∞; 7), and (13, 13,∞; k), where 12 ≤ k ≤ 38.
8) (14, 14,∞; 8), and (14, 14,∞; k), where k ≥ 12.
9) (15, 15,∞; 8), and (15, 15,∞; k), where k ≥ 13.
10) (16, 16,∞; 9), and (16, 16,∞; k), where k ≥ 14.
11) (17, 17,∞; 9), and (17, 17,∞; k), where k ≥ 15.
12) (18, 18,∞; 10), and (18, 18,∞; k), where k ≥ 16.
13) (19, 19,∞; 10), (19, 19,∞; 11), and (19, 19,∞; k), where k ≥ 17.
14) (20, 20,∞; 11), (20, 20,∞; 12), and (20, 20,∞; k), where k ≥ 18.
15) (21, 21,∞; 11), (21, 21,∞; 12), (21, 21,∞; 13), and

(21, 21,∞; k) where k ≥ 19.
16) (22, 22,∞; 12), (22, 22,∞; 13), (22, 22,∞; 14), and

(22, 22,∞; k), where k ≥ 19.
17) (23, 23,∞; 12), (23, 23,∞; 13), (23, 23,∞; 14), (23, 23,∞; 15), and

(23, 23,∞; k), where k ≥ 20.
18) (24, 24.∞; 13), (24, 24,∞; 14), (24, 24,∞; 15), (24, 24,∞; 16), and

(24, 24,∞; k), where k ≥ 21.
19) (25, 25,∞; 13), ..., (25, 25,∞; 17), and (25, 25,∞; k), where k ≥ 22.
20) (26, 26,∞; 14), ..., (26, 26,∞; 19), and (26, 26,∞; k), where k ≥ 23.
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21) (27, 27,∞; 14), ..., (27, 27,∞; 21), and (27, 27,∞; k), where k ≥ 24.
22) (28, 28,∞; 15), ..., (28, 28,∞; 23), and (28, 28,∞; k), where k ≥ 25.
23) (29, 29,∞; k) for any k (≥ 15).
24) (n, n,∞; k) for any n (> 29) and k (≥ [n/2] + 1).

Remark 3. In our forthcoming paper we show that the following 10 groups are
discrete:

(3,3,∞; 4), (3, 3,∞; 6), (3, 3,∞;∞);
(4,4,∞; 3), (4, 4,∞; 4), (4, 4,∞; 6), (4, 4,∞;∞);
(6,6,∞; 4), (6, 6,∞; 6), (6, 6,∞;∞).
But we do not know if groups of type (n, n,∞; k) without reference are discrete.
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