
Spherical CR Geometry and Dehn Surgery,

Richard Evan Schwartz,

Annals of Mathematics Studies 165, 2007

John R. Parker
Department of Mathematical Sciences,
Durham University, Durham, England

j.r.parker@durham.ac.uk

April 18, 2008

1 Complex hyperbolic space

There are several ways to generalise the hyperbolic plane and its isometry group to objects in higher
dimensions. Perhaps the most familiar is (real) hyperbolic three space, popularised by the work
of Thurston [14]. The Poincaré disc and half plane models of the hyperbolic plane naturally come
with a complex structure and it is natural to generalise them to complex hyperbolic space in higher
complex dimensions; see [4] or [8] for further details. A useful model for complex hyperbolic space is
the unit ball in Cn equipped with the Bergman metric. When n = 1 this is just the Poincaré metric
on the unit disc in C. When n ≥ 2 complex hyperbolic space does not have constant curvature,
but has pinched negative curvature, which we normalise to lie between −1 and −1/4.

From now on we concentrate on the case n = 2. The hyperbolic plane is isometrically embedded
into complex hyperbolic two-space H2

C in two geometrically distinct ways. First, the intersection
of the unit ball in C2 with a complex line (for example one of the complex coordinate axes) is a
totally geodesic disc. The restriction of the Bergman metric to this disc is the Poincaré metric with
constant curvature −1. On the other hand, the intersection of H2

C with a Lagrangian plane (for
example the collection of points with real coordinates) is also a totally geodesic disc. In this case,
the restriction of the Bergman metric is the Klein metric on the hyperbolic plane with constant
curvature −1/4.

The group of holomorphic isometries of H2
C is the projective unitary group PU(2, 1). It s often

useful to lift to the matrix group SU(2, 1), which is a threefold cover of PU(2, 1). Non-trivial
elements of PU(2, 1) fall into the three classes familiar from real hyperbolic geometry. Namely,
A ∈ PU(2, 1) is loxodromic if it fixes exactly two points of ∂H2

C, one of which is attractive and the
other repulsive; A is parabolic if it fixes exactly one point of ∂H2

C and is elliptic if it fixes at least
one point of H2

C. Elliptic isometries are either a complex reflection fixing a point or a complex line,
or else are called regular. Complex reflections correspond to matrices in SU(2, 1) with a repeated
eigenvalue and regular elliptic maps correspond to matrices with distinct eigenvalues. The full
group of complex hyperbolic isometries P̂U(2, 1) is generated by PU(2, 1) and an antiholomorphic
reflection fixing a Lagrangian plane. An example of such an involution is complex conjugation
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of both coordinates, which fixes the Lagrangian plane with real coordinates. Furthermore, any
element of PU(2, 1) may be written as the product of two reflections in Lagrangian planes [3].

The natural geometry associated to the boundary of real hyperbolic space is conformal geom-
etry. Thus the boundary of a hyperbolic three-manifold or orbifold naturally carries a conformal
structure. In just the same way, the natural geometry associated to ∂H2

C is spherical CR geom-
etry and the boundary of a complex hyperbolic two-manifold or orbifold carries a spherical CR
structure. For example, Schwartz has constructed a complex hyperbolic orbifold whose boundary
is the Whitehead link complement, which therefore carries a spherical CR structure; see Theorem
3.3 below

Three points of ∂H2
C are completely determined up to PU(2, 1) equivalence by Cartan’s angular

invariant A = A(z1, z2, z3) ∈ [−π/2, π/2]. This invariant measures how the triple z1, z2, z3 is
aligned relative to the complex structure in the following sense. Denote the complex line spanned
by z1 and z2 by L12. Let Π12 be orthogonal projection onto L12. Consider the triangle in L12

with vertices z1, z2, Π12(z3). The angular invariant A = A(z1, z2, z3) is half the signed area of this
triangle with respect to the natural Poincaré metric on L12. Hence if z3 ∈ L12 this triangle is ideal
and has area ±π, the sign depending on whether moving around the boundary from z1 we meet
the vertices in the order z1, z2, z3 or in the order z1, z3, z2. Thus, in this case the angular invariant
is A = ±π/2. On the other hand, if z1, z2, z3 lie in a Lagrangian plane then Π12(z3) lies on the
geodesic with endpoints z1 and z2. In this case the triangle is degenerate and has area 0. Thus the
angular invariant is also A = 0.

2 Triangle groups

A triangle group ∆ is the group generated by reflections in the side of a triangle. If the internal
angles of the triangle are π/p, π/q, π/r then ∆ = ∆(p, q, r) has the presentation

∆ =
〈
ι1, ι2, ι3, : ι21 = ι22 = ι23 = (ι1ι2)p = (ι2ι3)q = (ι3ι1)r = 1

〉
.

It is often useful to speak of the index two subgroup of ∆ comprising products of even numbers of
reflections, which we denote by ∆+. Writing ι1ι2 = α and ι2ι3 = β, the group ∆+ = ∆+(p, q, r)
has presentation

∆+ =
〈
α, β : αp = βq = (αβ)r = 1

〉
.

The groups ∆ and ∆+ have faithful representations to the isometry group of the sphere, the
Euclidean plane or the hyperbolic plane depending on whether 1/p + 1/q + 1/r− 1 is positive, zero
or negative respectively. In the hyperbolic case the internal angles of the triangle may be zero. In
which case we allow p, q or r to be infinity and we remove the corresponding relation from each of
the above presentations. In particular, ∆(∞,∞,∞) is the free product of three groups of order 2
and ∆+(∞,∞,∞) is a free group on two generators.

In what follows we restrict our attention to the hyperbolic case, that is we suppose 1/p+1/q+1/r < 1.
For such p, q, r there is a triangle in the hyperbolic plane with internal angles π/p, π/q, π/r.
Moreover, up to applying hyperbolic isometries, this triangle is unique. The group generated by
reflections in the sides of this triangle is a faithful representation of ∆(p, q, r). This representation
ρ is unique up to conjugacy. In higher dimensional (real) hyperbolic spaces, since there is a totally
geodesic copy of the hyperbolic plane containing the three vertices of the triangle, the representa-
tion ρ is again unique up to conjugation. In contrast, this is not true for in complex hyperbolic
space.
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Consider three complex lines L1, L2 and L3 in H2
C for which the complex angle between L1 and

L2 is π/p, the complex angle between L2 and L3 is π/q and the complex angle between L3 and L1

is π/r. If Ij for j = 1, 2, 3 denotes the complex reflection of order 2 fixing Lj then 〈I1, I2, I3〉 is
a representation of ∆(p, q, r). In contrast to the real hyperbolic case, the lines L1, L2, L3 are not
specified up to conjugation by the three angles π/p, π/q, π/r. In fact there is one more degree of
freedom. This means that there is a one parameter family of representations of ∆(p, q, r).

In the special case when p = q = r we can define an automorphism of ∆(p, p, p) that cyclically
permutes ι1, ι2 and ι3. A representation ρ : ∆(p, p, p) −→ PU(2, 1) is called symmetric if this
automorphism is represented by an isometry J . Such a J ∈ PU(2, 1) must have order 3 and,
satisfies L2 = J(L1) and L3 = J−1(L1). This means that I2 = JI1J

−1 and I3 = J−1I1J and so
〈I1, I2, I3〉 is an index 3 normal subgroup of 〈I1, J〉.

3 Ideal triangle groups

An ideal triangle is one where all the interior angles are 0. The corresponding group is ∆(∞,∞,∞).
In this case a representation of to PU(2, 1) is generated by reflections of order 2 fixing complex
lines L1, L2, L3 which are pairwise asymptotic. Let zj = ∂Lj−1 ∩ ∂Lj+1 ∈ ∂H2

C with indices taken
mod 3. The triple z1, z2, z3 is determined up to PU(2, 1) equivalence by the angular invariant
A = A(z1, z2, z3). Furthermore, we claim that ρ : ∆(∞,∞,∞) −→ PU(2, 1) is determined up to
conjugation by A. In order to see this, choose three points z1, z2 and z3 in ∂H2

C with angular
invariant A. Each pair of these points lie on a unique complex line, and so the z1, z2, z3 completely
determines three complex lines L1, L2 and L3, and also determines the group 〈I1, I2, I2〉 generated
by order two complex reflections fixing these complex lines. Moreover, for any triple of points z1, z2,
z3 in ∂H2

C there exists J in PU(2, 1) of order 3 satisfying z2 = J(z1) and z3 = J−1(z1). Therefore
the representation ρ is automatically symmetric.

We may then ask for which values of A the representation ρ is discrete and faithful. For example,
when A = 0 all three points lie on a Lagrangian plane. The intersection of L1, L2 and L3 with this
plane are geodesics and ρ is a Fuchsian representation preserving this Lagrangian plane. Hence ρ is
discrete and faithful. On the other hand, when A = ±π/2 all three points lie on the same complex
line and so I1 = I2 = I3 and the image of ρ is a group of order 2. This is certainly not faithful!

This question was investigated by Goldman and Parker [5] who proved the following theorem.

Theorem 3.1 (Goldman and Parker [5]) Let ρ : ∆(∞,∞,∞) −→ PU(2, 1) be a representation
of an deal triangle group. Suppose the three vertices have angular invariant A.

(i) If tan2(A) ≤ 35 then ρA is discrete and faithful.

(ii) If tan2(A) > 125/3 then ρA is either not discrete or not faithful. In particular, if tan2(A) = ∞
then ρA is not faithful.

Furthermore, Goldman and Parker conjectured that the condition in Theorem 3.1 (ii) is nec-
essary and sufficient. In [9] Schwartz gave a proof of this conjecture that depended on numerical
analysis. Later, he gave a more conceptual proof in [12]. The main result of these papers may be
summarised by:

Theorem 3.2 (Schwartz [9], [12]) Let ρ : ∆(∞,∞,∞) −→ PU(2, 1) be a representation for
which all three generators are represented by complex involutions fixing complex lines. Then ρ is
discrete and faithful if and only if ρ(ι1ι2ι3) is loxodromic or parabolic. In particular, suppose that
the three vertices have angular invariant A.
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(i) If tan2(A) ≤ 125/3 then ρ is discrete and faithful.

(ii) If 125/3 < tan2(A) < ∞ then ρ is not discrete.

(iii) If tan2(A) = ∞ then ρ is not faithful.

Schwartz went on to investigate the geometry of the representation with tan2(A) = 125/3,
the last representation that is discrete and faithful. This group is sometimes called the last ideal
triangle group or the golden triangle group. The geometry of this group is discussed in [10] and in
Chapters 20 and 21 of the book under review.

Theorem 3.3 (Schwartz [10]) Let ρ : ∆(∞,∞,∞) −→ PU(2, 1) be a representation of an deal
triangle group for which ρ(ι1ι2ι3) is parabolic (that is the three vertices have angular invariant A
where tan2(A) = 125/3). Let J ∈ PU(2, 1) be the order three symmetry cyclically permuting the
vertices. Then ρ(∆) is discrete and faithful; the parabolic elements of ρ(∆) are conjugate to powers
of IjIj+1 or I1I2I3 and every other non-trivial element of ρ(∆) is loxodromic.

Moreover, if Ω is the domain of discontinuity of ρ(∆) then Ω/〈J, I1JI1〉 is the complement of
the Whitehead link, the two components of the link corresponding to the parabolic conjugacy classes
(I1JI1)J−1 and (I1JI1)J (that is to I1I2 and I1I2I3 = (I1J)3 respectively).

This construction is the first example of a spherical CR structure being put onto a hyperbolic
3-manifold. It provides a bridge between complex hyperbolic Kleinian groups and the classical
theory in hyperbolic 3-space. This bridge is the main philosophical starting point for the book
under review. The hyperbolic Dehn surgery theorem of Thurston [14] is the main inspiration behind
this book. The starting point of the hyperbolic Dehn surgery theorem is a cusped hyperbolic 3-
manifold, such as a knot or link complement. A Dehn surgery is a recipe for capping off one of the
cusps by gluing in a solid torus. Of course there are many ways to do this. The hyperbolic Dehn
surgery theorem says that for all but finitely many Dehn surgeries, the resulting manifold is still
hyperbolic.

Schwartz’s goal is to take a cusped hyperbolic 3-manifold with a spherical CR structure and
to then perform a Dehn surgery on one or more cusps to obtain new hyperbolic 3-manifolds with
spherical CR structures. Before we discuss this result, we give a connection to other types of
triangle groups.

4 Lagrangian triangle groups

In addition to the complex triangle groups discussed in the previous section, there is another type of
representation of ∆(p, q, r) to the isometry group of complex hyperbolic space. Namely, we suppose

that ρ(∆) ∈ P̂U(2, 1) and each of the generators is represented by an anti-holomorphic involution
fixing a Lagrangian plane. In this case the product of two of the generators is represented by
an elliptic or parabolic element of PU(2, 1). Since any element of PU(2, 1) can be written as the
product of reflections in a pair of Lagrangian planes that intersect in H2

C (see [3]), there are no
restrictions on the type of elliptic or parabolic map that can occur in such a representation. This
leads to more possible types of representation.

The only triangle group for which the Lagrangian representation space has been completely
described is ∆(2, 3,∞), the reflection subgroup of the classical modular group. This was done
by Falbel and Parker in [2] and uses earlier work of Gusevskii and Parker [6] and Falbel and
Koseleff [1]. There are different components of this representation space depending on whether
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the order 2 and order 3 generators of ∆+(2, 3,∞) are represented by complex reflections in points
or lines or by regular elliptic maps. In particular, for the order 2 generator α = ι1ι2 we see that
A = ρ(α) ∈ PU(2, 1) satisfies A2 = I. The only possibilities are that A is a complex reflection
fixing a point or a complex line. On the other hand, the order three generator β = ι2ι3 may be
represented by a complex reflection in a point, a complex reflection in a line or a regular elliptic
map.

There is a copy of ∆(∞,∞,∞) lying in ∆(2, 3,∞) as an index 6 subgroup. Once again we let
A denote the angular invariant of the three parabolic fixed points of these generators. The main
may be summarised as:

Theorem 4.1 (Falbel and Parker [2]) Let ρ : ∆(2, 3,∞) −→ P̂U(2, 1) be a representation for
which all three generators are represented by antiholomorphic involutions fixing Lagrangian planes.
Then ρ is discrete and faithful if and only if ρ((ι1ι2ι3)2) is loxodromic or parabolic. In particular,
suppose that A = ρ(α) = ρ(ι1ι2) and B = ρ(β) = ρ(ι2ι3) are the holomorphic elliptic maps of
orders 2 and 3 respectively. Then

(i) If B is a complex reflection then ρ is unique up to conjugacy and preserves a complex line.
There are four such representations depending on whether A and B fix a point or a complex
line.

(ii) If A fixes a point and B is regular elliptic then the representation is parametrised up to
conjugacy by the angular invariant A of the three parabolic fixed points corresponding to AB,
BA and B−1AB−1. The representation is discrete and faithful for all A ∈ [−π/2, π/2].

(iii) If A fixes a complex line and B is regular elliptic then the representation is parametrised up to
conjugacy by the angular invariant A of the three parabolic fixed points corresponding to AB,
BA and B−1AB−1. The representation is discrete and faithful if and only if tan2(A) ≥ 15.

In the group from Theorem 4.1 (iii) with tan2(A) = 15 the element ρ((ι1ι2ι3)2) is parabolic.
We can write this in terms of A and B as follows:

ρ((ι1ι2ι3)2) = ρ(ι1ι2)ρ(ι3ι2)ρ(ι2ι1)ρ(ι2ι3) = AB−1AB = [A,B−1] = (AB)−1[A,B](AB).

A most remarkable fact is that the group from Theorem 4.1 (iii) with tan2(A) = 15 is commen-
surable with the golden triangle group, that is the group from Theorem 3.2 with tan2(A) = 125/3.
We now explain this. Let G0 = 〈I1, J〉 be the index 3 normal extension of the golden triangle
group. Hence, I1 has order 2 and fixes a complex line and J has order 3. Then I2 = JI1J

−1 and
I3 = J−1I1J . The parabolic elements of G0 are conjugate to powers of I1I2 = [I1, J ] and powers of
I1J (observe that I1I2I3 = (I1J)3). Let G1 = 〈A,B〉 be the group of words of even length in the
group from Theorem 4.1 (iii) with tan2(A) = 15. Then A has order 2 and fixes a complex line and
B has order 3. The parabolic elements of G1 are conjugate to powers of AB and powers of [A,B].
Thus we identify them by the map φ : G0 −→ G1 by φ(I1) = A and φ(J) = B.

We may extend this identification to the other groups in Theorem 4.1 (iii). For such groups
AB = φ−1(I1J) is parabolic for all A but [A,B] = φ−1(I1I2) may be elliptic, parabolic or loxo-
dromic. The representation is discrete and faithful when [A,B] is parabolic or loxodromic. Passing
to the index 3 subgroup, this is the same as saying I1I2I3 = (I1J)3 is parabolic and I1I2, I2I3 and
I3I1 are all parabolic or loxodromic. The statement is:
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Theorem 4.2 (Falbel and Parker [2]) Suppose that ρ : ∆(∞,∞,∞) −→ PU(2, 1) is a repre-
sentation so that Ij = ρ(ιj) fixes a complex line and I1I2I3 = ρ(ι1ι2ι3) is parabolic. Suppose that
there exists a symmetry map J of order 3 so that I2 = JI1J

−1 and I3 = J−1I1J . Then ρ is discrete
and faithful if and only if I1I2 = ρ(ι1ι2) (and so also I2I3 and I3I1) is loxodromic or parabolic.

5 The horotube surgery theorem

I will now describe the main result of Schwartz’s book, the horotube surgery theorem. We give a
precise statement in Theorem 5.1 below. Roughly speaking, the idea behind this theorem is that
one begins with a cusped three-manifold or orbifold with a spherical CR structure and then by
performing certain Dehn surgeries, one constructs new manifolds or orbifolds which have spherical
CR structures.

To be more precise, the class of groups to which the horotube surgery theorem applies are
what Schwartz calls horotube representations of an abstract group Γ. We will now discuss the
properties of a horotube representation. Consider a representation ρ0 : Γ −→ PU(2, 1). Suppose
that P ∈ ρ0(Γ) is a parabolic map with fixed point p ∈ ∂H2

C. A horotube is a P -invariant open set
T of ∂H2

C −{p} so that T/〈P 〉 has a compact complement in (∂H2
C −{p})/〈P 〉. Schwartz calls the

quotient T/〈P 〉 a horocusp. Suppose that ρ0(Γ) is discrete and write Λ for its limit set and Ω for
its domain of discontinuity in ∂H2

C. Then Ω is porous if there exists ε0 > 0 so that A(Ω) contains
a ball of spherical diameter ε0 for all A ∈ PU(2, 1). This condition should be equivalent to Γ being
geometrically finite with no maximal rank cusps (see page 28 of [13]). A discrete representation
ρ0 : Γ −→ PU(2, 1) is a horotube representation if: every elliptic element of ρ0(Γ) has a unique
fixed point in H2

C, the domain of discontinuity Ω is porous and its quotient Ω/ρ0(Γ) is the union
of a compact set together with a finite collection of disjoint horocusps. In particular, if ρ0 is a
horotube representation then every parabolic subgroup of ρ0(Γ) is cyclic.

The horotube surgery theorem concerns families of representations of Γ that converge to ρ0.
Suppose that ρ0 is a horotube representation of Γ. An infinite cyclic subgroup Υ of Γ is peripheral
if ρ0(Υ) is a parabolic subgroup. Such groups are in one to one correspondence with the horocusps.
Schwartz says that a sequence of representations ρn : Γ −→ PU(2, 1) for n ∈ N converge nicely to
ρ0 if for all γ ∈ Γ and all peripheral subgroups Υ < Γ

• ρn(γ) −→ ρ0(γ) geometrically for each γ ∈ Γ;

• ρn(Υ) −→ ρ0(Υ) setwise with respect to the Hausdorff topology;

• if ρn(Υ) is finite then each of its elements has a unique fixed point in H2
C.

Theorem 5.1 (Horotube surgery, Theorem 1.2 of [13]) Suppose that ρ0 : Γ −→ G0 < PU(2, 1)
is a horotube representation. Let ρn : Γ −→ Gn < PU(2, 1) be a sequence of representations that
converge nicely to ρ0. Then there exists N so that if n ≥ N the group Gn = ρn(Γ) is discrete
and Ωn/Gn is obtained from Ω0/G0 by performing a Dehn filling on each horocusp of Ω0/G0 cor-
responding to a peripheral subgroup Υ for which Hn = ρn(Υ) is not parabolic. If at least one cusp
is not filled then ρn is a horotube representation of Γ/ ker(ρn).

Furthermore Schwartz gives precise details about which Dehn surgeries arise in terms of ρ0(Υ)
and ρn(Υ).
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6 Application of the HST to triangle groups

We now discuss how the horotube surgery theorem may be applied to triangle groups. The starting
point is the golden triangle group. Schwartz proves that this is a horotube representation with
four (conjugacy classes of) peripheral subgroups, namely Υ12 = 〈ι1ι2〉, Υ23 = 〈ι2ι3〉, Υ31 = 〈ι3ι1〉
and Υ123 = 〈ι1ι2ι3〉. Suppose that ρn(∆) is a sequence of representations of ∆ = ∆(∞,∞,∞)
converging nicely to the golden triangle group. Then there are several possible scenarios depending
on whether the generator of each of these subgroups is loxodromic, elliptic or parabolic.

For example, suppose that the three peripheral subgroups Υjk are all parabolic and Υ123 is
loxodromic. Such representations are covered by Theorem 3.2, which indicates that they are all
horotube representations. Likewise, suppose that Υjk are all loxodromic and Υ123 is parabolic.
If, in addition, there is a symmetry map J that cyclically conjugates ρ(Υ12), ρ(Υ23), and ρ(Υ31)
then such representations are covered by Theorem 4.2, which indicates that they are all horotube
representations.

The more interesting case arises when at least one of the peripheral subgroups is elliptic. In
the symmetric case, there are only finitely many discrete representations where all the peripheral
subgroups are elliptic and so we cannot use the horotube surgery theorem in this case.

Theorem 6.1 (Parker [7]) There are only finitely many conjugacy classes of symmetric, discrete
representations ρ : ∆(p, p, p) −→ PU(2, 1) for which ρ(ιj) = Ij fixes a complex line and for which
I1I2 = ρ(ι1ι2) and I1I2I3 = ρ(ι1ι2ι3) are both elliptic.

Of course, we could ask about asymmetric groups where all the peripheral subgroups of the
golden triangle group are elliptic.

Therefore, it is natural to ask about groups for which one family of peripheral triangle groups is
elliptic and the other loxodromic. This is one of the applications of the horotube surgery theorem
given by Schwartz. Consider one of the groups from Theorem 3.2 for which I1I2I3 = ρ(ι1ι2ι3) is
loxodromic and IjIk = ρ(ιjιk) is parabolic for each pair j 6= k in {1, 2, 3}. This group is the limit
of a sequence of representations with I1I2I3 loxodromic and at least one of the IjIk elliptic, the
orders tending to infinity. Now suppose that ρ is sufficiently far along this sequence. By applying
the horotube surgery theorem, Schwartz is able to prove the following result.

Theorem 6.2 (Theorem 1.10 of [13]) Suppose that ρ : ∆(p, q, r) −→ PU(2, 1) be a representa-
tion of so that Ij = ρ(ιj) fixes a complex line and IjIk = ρ(ιjιk) has the same order as ιjιk (p, q
and r may also be ∞). Suppose also that I1I2I3 = ρ(ι1ι2ι3) is loxodromic. Then for min{p, q, r}
sufficiently large, ρ is a horotube representation and hence is discrete.

We can give a further application of the horotube surgery theorem by swapping the roles of
IjIk and I1I2I3 in the previous theorem. Namely, consider one of the symmetric representations in
Theorem 4.2 where I1I2, I2I3 and I3I1 are each loxodromic and I1I2I3 is parabolic. This group is
the limit of a sequence of groups for which I1I2, I2I3 and I3I1 are loxodromic and I1I2I3 is regular
elliptic. Since our original group is a horotube representation, by taking ρ sufficiently far along this
sequence we can apply the horotube surgery theorem. This leads to the following result:

Theorem 6.3 Suppose that ρ : ∆(∞,∞,∞) −→ PU(2, 1) is a symmetric representation for which
Ij = ρ(ιj) fixes a complex line and IjIk = ρ(ιjιk) is loxodromic. If ρ(I1I2I3) is regular elliptic of
sufficiently high order then ρ is a horotube representation and hence is discrete.
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