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1 Noether’s theorem (revisited)

1.1 Overview: Why anomalies?

Although “anomalies” sounds like it might be a somewhat peripheral aspect of quantum
field theory, it turns out that their study is central to the proper understanding of symme-
tries and conservation laws in QFT. Anomalies also find uses in a huge variety of applica-

tions, for example;

e Checking model consistency by cancellation of gauge anomalies in e.g. the Standard

Model = charge quantization for example

e 't Hooft global anomaly matching: how to tell when one theory is a weakly coupled

effective description of a different strongly coupled theory
e PCAC and processes such as pion decay
e Instantons and the structure of the QCD vacuum
e The strong CP problem and the Peccei-Quinn mechanism
e B+L violation and baryogenesis
e Scaling anomalies = renormalization group flow
e Connected with this, the a-theorem and studying RG flow in strongly coupled theories

e Supersymmetry and metastability
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There are many other areas where their study has been crucial, for example anomaly
cancellation established Eg x Eg heterotic string theory as a viable and phenomenologically
interesting theory. Clearly in 8 lectures I will be able to cover only a subset of these uses.
However my emphasis will be on their importance in understanding gauge theory. At
certain points these notes will deviate into long ramblings about the precise meaning of
something or other; that is a sure sign that those points are more difficult to understand
(the ramblings indicating that I spent some time reconsidering those points myself in

writing these notes) and require some thought.

1.2 Symmetries and Noether’s theorem

First in this course I'd like to return to Noether’s theorem. Although you will have seen
this before, as the subject of anomalies is really to do with conservation laws, it is vital to

get this part of the story straight. In particular

e Symmetries = conservation laws

e Anomalies = breaking of symmetries by quantum effects which either gives real
physical effects in the case of global symmetries (such as pion decay) or consistency

conditions in the case of local gauge symmetries

Noether's Theorem: Any continuous global symmetry of S implies a conserved current
OuJH' =0

Note the word “global”. Actually Noether’s theorem says nothing about local symmetries.
Indeed local currents are often not even gauge invariant and therefore not observables.
Therefore a large part of the anomalies story involves understanding the difference between

local and global currents.

Corollary: The charge, Q = [ d3z.J°, is conserved.
Proof of Corollary: In a volume V', bounding surface S, we have % = Jy d*x0,J0 =

— [y #x0;J" = = [gdo.J O

The last step follows from the divergence theorem and tells us that the rate of change of

the total charge is equal to the total current flowing through S.
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Proof: Let S = [d*zL(p;,0,4p:), where ¢; stands for generic fields of arbitrary spin.

Consider the most general infinitessimal transformation possible under which

= (") = at 4 XHe

pi = () = P (1)
where €* is a set of infinitessimal parameters and ®,, X are functions of x. The

total variation in ¢ can be split into that due to the shift in x, and the internal

variation of the field itself dg¢:

gi(x") = @i(x") + dop(z)
= wi(x) + 02" Oupi + dopi
= ¢i(x) + " XL0upi + o (2)

Thus the transformation of the field itself can also be written as
50(,Oi = (‘Pg - Xéfau(pi) . (3)

The variation of the action contains contributions from both external changes (through

the measure) and internal changes:

68 = / S(d*z) L + / d*zsL. (4)

The change in the measure comes from the Jacobian

m
d*z’ = |det [gx—y} d*x

X

= |det [8% + 0, (XKe™)] | d*a
= |1+ 9u(Xhe)| d'e, (5)

using det exp A = exp TrA infinitessimally. Hence
5(dix) = 9,(Xte*)d . (6)

Using (4), the total change in the action is therefore separable into a piece corre-
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sponding to the equations of motion, and a surface term,

oL oL
= He 4 4 D~ 3
08 /(%(Xae VLd x + /d xé(]%@goi +8ﬂ(50gpl)a(ampi)
oL oL
= d*zd, (e JH —/d4x XHhe*)o E+/d4x5 i(——a 7>7
/ H( ) ( ) w 0¥ 8@0@- © (8;L80i) ( )

where we integrated by parts and where

oL

i

«

oL oL

a(@m-)) T ) ®)

= X} (5{,‘E — 0p;
Since by the divergence theorem the first piece of eq.(7) can be recast as a boundary
term, it depends only on the value of the fields at the boundary. In particular we are
free to set the variation €* to zero at the boundary (which may be at infinity). The
last two pieces must therefore vanish locally and imply the Euler-Lagrange equation,
and the absence of explicit dependence on z in the Lagrangian (in the case of external
symmetries). Invariance of S then requires that the first piece vanishes. We can

therefore conclude that

0y (€ J1) = B, K" (9)

where K* is some function of x that vanishes at the boundary. Therefore the com-
bination

JH =t — K* (10)
obeys 8Mj“ =0.0

Before we look at some explicit examples, note the presence of K*: even if we set it to
be zero classically it is generally unprotected from quantum corrections. (In practice it
would have to be constructed out of other fields in the theory such as gauge fields.) This
1s precisely the source of anomalies. Thus while one may write a theory that appears to
have currents J4 that are conserved (i.e. that obey OHJQL = 0 when one uses the classical

equations of motion) this is not necessarily the case at the quantum level.

Let me now help you avoid a couple of common annoyances. First note that even if
there is a global anomaly (i.e. a non-zero K*), Noether’s theorem is still satisfied (it

is a theorem after all). The theorem simply arises from dividing the equation §S = 0
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between local equations of motion and surface terms, so it is almost a triviality (in the
technical sense), so it would be hard to see how it could not be satisfied: anomalies do
not somehow “violate” Noether’s theorem or anything like that. Secondly, and even more
egregiously, one often comes across the statement that a symmetry is “classically obeyed”.
This statement is almost entirely meaningless — in a quantum world the symmetry is simply
never there. What people who use this phrase probably mean to say is that there is an
“accidental symmetry”: that is something that at the level of the Lagrangian appears to be
a symmetry but which is anomalous. This can often happen in for example string model
building because certain terms happen to be absent in the Lagrangian due to so-called
selection rules. The quantum violation of such symmetries is often loop suppressed when
the theory is weakly coupled so it is easy to convince oneself that the symmetry is “almost
there”. The mistake arises because superficially any quantum theory can be decomposed
into two elements: one is the Lagrangian and the other is the sum over histories. The
anomaly can be understood as the non-invariance of the measure in the sum over histories,
which doesn’t give two hoots about accidental symmetries of the Lagrangian. However
this non-invariance of the measure can usually be recast as an additional term in the
Lagrangian, so the separation into Lagrangian and measure is arbitrary, and there is no
sense in which the Lagrangian is somehow more fundmental than the sum over histories.
Since (as we shall see) the non-invariance of the measure is a function of gauge fields it
is probably most precise to say that anomalous symmetries are symmetries that can be

broken by non-trivial gauge field configurations.

Indeed anomalies can come to determine the physics of the entire system. One example we
shall discuss later is the violation of B+ L in the SM. This symmetry is anomalous. However
non-trivial K* involve configurations of electroweak gauge fields called sphalerons. As
electroweak symmetry is broken these lumps are immensely costly (in energy and entropy
terms) to produce and therefore in collider experiments there is no B + L violation. In
the early Universe however at temperature above the electroweak phase transition, one
expects rapid B + L violation to have taken place. Many ideas for baryogenesis (for
example leptogenesis) involve the transmission of baryon number through B + L violating

effects.
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1.3 Examples
Scalar field with U(1) symmetry

First some examples with no gauge fields in which (since there are no other field in the

theory) we can safely set K* = 0.

L =10¢* = V¢l (11)
L is invariant under
@ — €% = §p = iy infinitessimally. (12)
Hence using eq(8) we have
- oL
Jr = ia@m — iaw*m
= (p0"9" — ¢ 0"p). (13)

Hence JH =i (@0t ¢p* — p*OHp) is conserved. Note that we only see this when we use the

oA
dp*

proof of Noether’s theorem. i.e.

equations of motion (9%¢ = — = —V") as is obviously going to be the case from the

0.J i (ap@%ﬁ* - <p*82ap)

= —i(pd* V' = V') = 0. (14)

Fermion field v; with isospin symmetry

In this case we have two component 1; labelling proton and neutron say. Then
L = ity;y.0t;. (15)

Defining the global transformation U;; = e’ where 7 are the Pauli matrices, £ is invariant

under

v = Ul = 6y = —if%7p; (16)
v = YU = o = i@ai/_)jT]‘»Li infinitessimally. (17)
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Hence using eq(8) we have

oo iy 0L

‘ (a;ﬂ/’i)
= 0"YiyF T, (18)
Hence the three currents Jj' = TIEZ"}/MTZ%T,Z)]' are conserved. Again we need to use the equations

of motion (91 = 91 = 0) to see this.

Example with external symmetry

Consider the shift symmetry

= x¥ + . (19)

Thus in the master formula of eq(8) we have X” = a” simply and ®, = 0, and

oL
v oufsvp e
J a <5M£ ay%@(%gm))

— @'Y, (20)

where T}, is the energy momentum tensor. Note that the conserved charges here are Ty

and TZ-0 the energy momentum.

Axial symmetry

Consider a single fermion 1 with

L = itpy.0n. (21)

Defining the global transformation U = €‘®% | £ is invariant under

v = Uy = ) =iaysy (22)
v — YU = §); = iahys infinitessimally. (23)

This leaves the action invariant because [y*,v5]+ = 0 (I will use a notation where anti-

commutation is denoted [A, B]) so

L — L — apyys.0 — Py57.0(anp) = 0. (24)
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Hence using eq(8) we have

JI = iy (iaysy)
=~y (25)

(You may wonder, if £ is invariant by itself, why do we need to integrate by parts to get
the Noether current? The point is that both v and ¢ have equations of motion. The
Lagrangian in this form gives the ¢ equation of motion from which we can of course get
the 1) one by complex conjugation. Of course this should be consistent with the 1) equation
of motion when we integrate by parts.) Hence the axial current J£' = vyys51 is conserved,

which again we see using the equations of motion (9y = 9 = 0).

2 Charge and Current Algebras

It is important to realize that the charges are the generators of global symmetry transfor-

mations. That is

detpi = i€]Q, ;). (26)

One familiar example is time translation: in QM for any time dependent operators A(t)
we have
dA 0A

S —ilH A+ (27)

As we just saw, if the operators do not explicitly depend on time, then H = [ nggx is

the conserved charge corresponding to invariance of the action under 2 — 20 + §2°.

As such the charges generally have to satisfy the same algebras as the generators — in fact
it is only because of this that the symmetry has any useful physical meaning. In particular
it is the charges which are the physical observables that participate in interactions rather
than gauge fields for example. Indeed (as an aside) one can carry out the following exer-
cise. Suppose we decide to gauge the conserved U(1) symmetry above but without adding
dynamical gauge fields (i.e. no Yang-Mills term). Then we would still include a gauge
field inside a covariant derivative but this is understood as an auxilliary field. Since there
is no Y-M term and no derivatives for it we can simply eliminate the gauge field with its
equations of motion. If one does this one finds that the U(1) gauge field A* is identified

with the U(1) current which is of course just a composite of scalars. Quantization proceeds
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as usual, but when one comes to the BRST quantization conditions one finds that the cur-
rent develops a vector pole (when the U(1) symmetry is unbroken). This pole corresponds
precisely to the massless photon. In other words the photon is in this sense a composite
with no more or less physical meaning than the conserved current! Of course doing any
calculations in this highly non-linear environment would be insanely difficult, nevertheless
it illustrates the huge reduncancy of the gauge theory and the fact that the current is the
crucial physical observable. For more details of this story consult Kugo and Townsend’s

original paper on the C PN ~! model.

Let us first prove eq(26) for internal symmetries:

Proof that Q = d¢;: The charge corresponding to J# is

- - oL
t)= | &xJH = / d*x———"—6.;. 28
Q) / 0(Ooi) 4 (28)
The quantity or
(=) 9(0oi) (29)

is by definition the momentum conjugate to (;; that is in order to quantize such a

system of fields we begin by defining the equal time commutation relation

where again + means commutator or anticommutator. As a sanity check, for fermions

II; = —i1)yp (with a minus sign for anticommuting fermions) and we recover [w;r (t,y), ¥;(t,x)]4 =

6:;6%(y — x) as we should. Now form

Multiply both sides by Integrating both sides over y gives

[Q(t)7 Pj (tv X)]:l: = /dgy [Hi(t7 y)a Pj (tv X)] 564Pi(t7 Y) (31)

since [6;, ;] = 0 by assumption. Hence
[Q(t), 0 (t, )]+ = —idi; | d*yd>(y — x)dpi(t,y) = —idep;(t,%). (32)

The unit charge operator Q is then given by eQ = @ and the result follows.[]
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Now consider the charge algebra. As an example consider the isospin symmetry (or indeed
any non-Abelian global symmetry with generators denoted 7%). The generators obey a

symmetry given by
[To, Tp] = iCo T, (33)

where Cf, are the structure constants. The currents are given by
Ty =y Ty (34)
and hence
Q = [dxiT
= / dB3xYi Ty, (35)

The claim is that the @, satisfy the identical algebra to the T,. To show this we form the
commutator at equal time (so we will not repeat the ¢ explicitly) and then perform a fairly

tedious set of manipulations as follows:

Qa. Q)] = / Bx / Byt () Ta (), 7 ()T (y)]
- / x / A3y T Tyt (95 (0003 (V0L ()1 () — B ()01 ()] ()0 ()
=[x [ @yTaTn (5169 {51,0° =20 = w7060} vay) — ] 3] () )

=[x [ @y TaisTian (61095555 = x01(v) — w00 (O35 (00) — UL (3 )] () ()

[ @ [ @y TuisTous (9] 696055% (v = x01(3) = v 5) {808% (v = ) = 351 00} 560) = 9] )] (o) )

/dSX/ d3yTaij Ty (1#: ()81 0% (y — x)i(y) — ¥l (y)8:0% (v — )95 (X))

/d3x (wITaiijklékjwl — w};éilTaiijklw]’>

/d3x (wTTawa - wTTbTaw)

— ics, / dx (7 T
iCqpQe-

The algebra [Qq(t), Qs(t)] = C5,Q.(t) is called the charge algebra. An important aspect

of charge algebras is that they are satisfied even when the symmetry is explicitly broken.
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In that case one would expect the charges Q,(t) to be functions of time, but the algebra
to remain good. For example consider £L = Ly + £, where the second piece is a pure
interaction that contains no derivatives. Then the charges are not conserved because they
do not commute with the Hamiltonian, but they are built only from the Lg piece of the
lagrangian. Therefore none of the above manipulations changes and the charge algebra is

still preserved.

A good example of this phenomenon is the QCD system. Typically when discussing chiral
symmetry breaking one defines quarks in SU(3) flavour triplets

gi=|d |- (36)

Because the masses of the quarks are small (where by small we mean much smaller than

the scale Agcp ~ 1GeV of chiral symmetry breaking in the theory). The lagrangian is
L = Lo+ L1 with

Ly = iqy.0q
L1 = myuu~+ mgdd + mgss. (37)

In the absence of the second piece the global symmetry of the model is SU(3) 4 x SU(3)y
with the A and V meaning axial and vector respectively. The conserved currents for these
symmetries (you by now know enough to be able to guess the transformations) are

a a

Ay =" sgas Vi=al g

where A\ are the 3x3 Gell-Mann matrices. One finds the following algebra always holds
despite the term that violates the global symmetry:

[QaaQb] = Z‘fafb c
[Qa, Qsp] = ifapQsc
[Q5a, Q5] = ifgpQe- (38)
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Note that often one talks in terms of SU(3)r x SU(3), with

1
Qi = 5(Q" + QY. (39)

In this basis it is easy to check that the symmetry is diagonalized

Q% /5 QYR = 1£2°Q5 /s (40)

with [Q%, Q%] = 0.

3 Symmetry Breaking - summary

The previous discussion brings us briefly to the question of symmetry breaking. The QCD
example above is actually a nice example because it has a number of sources of breaking

of the global flavour symmetry.

e Spontaneous symmetry breaking: when the vacuum does not obey the same
symmetry as the Lagrangian. This includes but is not restricted to the Higgs mecha-
nism. In fact the axial part SU(3)4 of the global symmetry of QCD is spontaneously
broken by strong coupling effects. By the Goldstone theorem, the resultiing effective
theory exhibits 8 Goldstone modes that correspond to the 8 adjoints of SU(3)4. The
physics of these states (The pions and K-mesons) can be described by what is known

as a non-linear sigma model, a.k.a. the chiral lagrangian.

e Explicit breaking: the mass terms for QCD are an example of this. If they are
small then symmetry breaking effects will be expressed in terms of these. Indeed the
Goldstone modes (i.e. the mesons) are not quite massless precisely because of this
effect. However because the masses are much smaller than Agcp their masses are

correspondingly suppressed.

e Finally there is anomalous breaking: i.e. non-zero K*. In this case the charge

algebra is not preserved.
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4 Abelian anomalies

I am going to introduce the anomalies - i.e. the K* first, and then later show you how to
(in fact two ways how to) calculate them. The first kind of anomaly is abelian (usually
axial) anomalies. Consider a gauge theory with massless Dirac fermions 1 and a gauge

field Af; = AGTf;. T will normalize the fields such that the lagrangian is
L = ipy.(0 +iA)p. (41)
For future reference I’ll also collect the equations of motion,

7D +iA)p = 0
&y.(%—m) = 0. (42)

Also for future reference I will define the gauge field strength in the usual way; defining
ij = 0;;0" + A% we have

—i[Dy, D)) = Fy = 8,A, — 0, A, +i[A,, A).

From this definition we see that the antisymmetrized covariant derivative of the field

strength vanishes (aka the Bianchi identity)
D[MFPU} =0. (43)
As usual this lagrangian is invariant under local gauge transformations

v = U 'y
iA, — U '(iA, +0,)U (44)

where U = ¢i@"(@)Ta  Just to check,

L — WUr(Ud+oU Y+ U NA+U T (0U)U )y
= .0+ UU) + (OU)U +id)y
= Wy (0+0UUY) +idy =L (45)
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since U~1U = 1.

There is also the axial symmetry. Defining the global transformation Us = €®% | L is

invariant under

Y = Usp = oY =iy
Y — YUs = 6; = i)y infinitessimally. (46)

Note that the relation {vs,70} = 0 requires D to be even. As before J{' = yy51) seems

to be is conserved, and there seems to be an axial charge

Qs = /ngi/JT’Yfﬂb- (47)

Again we see this using the classical equations of motion

0.Js = (0U)yy5¢ + pyv509
= Wy Ay — Yys(—iv. Ay
= iy Aysy) — iy Ays = 0. (48)

where we used {75,7} = 0 to move the gamma matrices through each other.

However this equation is wrong!! In QFT Adler Bell and Jackiw showed in 1969 that the

derivative depends on background values of the field A*:

1
8.J5 = 16?805’75tr(Fa5F75) (49)
1 2
= mgaﬁ“ﬂsaa |:A53’YA5 + gAgA,yAg . (50)

Note that the variation in the action is
68 = / d*z0, [J — K] (51)

where
H 1 pBé 2
KH = 4—71_25 AgayAg + gAﬁAq/A(g . (52)

This is precisely the extra piece in the derivation of Noether’s theorem. It tells us that

in the presence of expectation values for the gauge fields, the axial current is no longer
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preserved. Recall also that the K* is a function that is required to vanish at the boundary.
On the other hand the non-conservation of current appears to be entirely determined by
the configuration of the expectation values of the A, fields as we approach the boundary of
the volume. Indeed in a static gauge configuration Q5 = — J do.(J5 —K) by the divergence
theorem. Thus the non-conservation of (5 can be computed by integrating K* over the
bounding surface: even though K* vanishes there, the integral over a bounding surface of
radius r goes as 2 which means that the sort of gauge fields VEVS that can give interesting
non-conservation effects must go as A* ~ 1/r (otherwise we would get zero or infinity upon
taking the r — oo limit). This smacks of topological properties such as winding number,

and indeed there is a close connection. Also note that more generally one would write

1 5
0.J5 = Wgaﬁv tr(gs FopFys), (53)

where g5 is the axial charge of the field. Thus if we add a second fermion there will be two
axial global symmetries g5 and g5. There will be a combined “axial” current J; = J5 — J§
that is anomaly free because the contributions to 0.Jf cancel, while J;r = J5 + J} remains

anomalous.

It is tempting to say that the “action is not invariant” because of the anomaly. I think
this is misleading. It is rather that, in the quantum theory, just requiring invariance of the
classical action is not enough to determine 0.J5. If one instead considers the full partion
function Z = [ DyDYDAe* invariance under chiral transformations (which is a trivially
true) requires Z = [ DyYDyYDAe™S = fDib’Di/_)’DAeiS, = [ DYDYPD A ST one finds
that as well as the current piece in S’, 45 contains an extra piece from transforming the
measure, and in total §S =€ [ d*z(0.J5 — 0.K). So we are still requiring 65 = 0, it is just
that part of S comes from the path integral measure. (Saying the “classical action is not

7

invariant” is just non-sensical).

5 Non-Abelian (gauge) anomalies

There are anomalies associated with the non-abelian symmetries as well. As the anomalous
breaking is due to the presence of gauge fields, it turns out that there is no anomaly
associated with global non-abelian groups such as isospin. The issue here is really to do

with the consistency of gauge non-Abelian groups. Therefore consider a gauge theory with
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left handed massless Weyl fermions 1) and gauge field A# = ALT?, with lagrangian
L =itpry.(0 +iA)r, (54)

where the L subscript means projection onto the left chirality, so that a Dirac fermion

would look like
Yr
P = 55
( ¢R) )

in the Weyl representation of 4’s. The covariant derivative for the adjoints is
DY, = 808, + fLAC. (56)

and the gauge transformation is

a a -mya b
A, — A, —iDja
v = ) — i T
v = Y+ ia,T%. (57)

The lagrangian is clearly invariant under this transformation since
0L = g Ty.Dipr, — Ty D(otr) + pry.(Dpoa T) iy . (58)
The current associated with this transformation is similar to the isospin case:
Th = Py Ty (59)

One has to be careful about the physical meaning of such a current though because it is
not gauge invariant, hence not directly observable. Although the situation looks similar to
the abelian case the physics is quite different. Nevertheless, we can ask how such a current
should behave in the classical theory. The easiest way to see this is from the equations of

motion of the field to which the current couples, namely A,:

g OL oL
oovAL ~  0AL

(D"E,)" = ¢y T%r, = g*Je. (60)
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This is the usual non-abelian form of (two of) Maxwell’s equations, and then
(D.J)*=0 (61)

follows simply by hitting both sides of the equation of motion with a D" and from the
(anti)-symmetry of the uv indices on the LHS.

Again this equation is wrong, as Bardeen (1969), and Gross and Jackiw (1972) showed.

The derivative depends on background values of the field A* as actually

D) = 0t | T 450, As + - 454, A

(-)—mﬁ o tr 575%—5575-
The situation here is much more critical than for global anomalies because there is some-
thing wrong with the equations of motion! There must be extra terms in the Lagrangian

generated when we do a gauge transformation which is a sure sign that the theory is

non-renormalizable.

Another sign that something is wrong can be found in the following way which is similar
in spirit to the Noether procedure for global currents. Although the gauge currents are in
principle not observable in the unbroken theory, there is nothing to prevent us probing the
theory by turning on an expectation value for A4, = A, + §A4,,. This is a supposed to be a
spontaneous breaking of the gauge symmetry, and as such the partition function should be

invariant under gauge transformations of the VEV. The partition function is of the form
Z[4] = / D ADYD e SA4:Y]

= / D5 AeTAliS0A], (62)

The factor eM'4 is derived from the path integrals of the fermions quantixed over that

background;
eiF[A} _ /prqzeifim.(mmﬂmw. (63)

Now consider changing the background by an infinitessimal gauge transformation, A —
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A’ = A —iDa. We find

ST _ il[A] / DD (¢ - O+ALIBAY _ i [ 1. (0+iA=iDaib A

= —/DMMZ {/ aa(D,J)a} ot [ iy (0+iA+isA)p

Thus if D.J # 0 we see that the partition function depends on the gauge that choose for
our VEV, which is another way of saying that the gauge symmetry is actually already
explicitly broken.

We can summarize the different meaning of the abelian versus non-abelian anomalies in

the following table:

Abelian | non-Abelian
currents singlet adjoint
Total divergence Y Y
Bad? N Y
: 12 11
Coefficients T2 3 517> 5

6 Computing the ABJ anomaly perturbatively

There are two ways to compute the ABJ anomaly - the original analysis was based on
the regularization ambiguties of the theory. For simplicity consider massive QED. Setting

g = 1 to reduce clutter, and defining ) = ~.(0 + iA), the lagrangian is
- 1
L=vyGD—m)p— 1w FHY (64)

The equations of motion are,

O F" = J. (65)
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The currents are

JE =yt

T = sy, (66)
but now classically we find

0.J = 0

0.Js = 2imP, (67)

where P = ¢y59).

Proof of second equation: 0.J5 = (9¢)yHy51h — hysy* () = (A + m)yse + ihys(A +
m)h = 2imyrysip.

6.1 Tree-level Ward Identities
In order to calculate the anomaly we will consider the amplitudes
(k1 ko) = / 10 3 (01T [, (1) ], (22) Ty (0)] [0)eithis +hara)
Ty (b1, k2, q) = /d4w1d4w2(0|T [ (1), (22) P(0)] [0) /11 Hhae2) (68)

where q¢ = k1 + ko.

These amplitudes should satisfy Ward identities based on the classical current conservation
equations (67). In order to derive them we need to take derivatives for which we need an

identitiy:

LT [J@)OW)] = 9% [1.00(w0 = yo) + OJui(yo — w0)

- T [(8;,3.J)(§] n [JO, o} 5(x0 — yo)- (69)

The last term is known as the Schwinger term. With this in mind, let us take the derivative
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of T},,» with respect to z1: we find

M Twa(ky, k2, q) = / d*ayd wakf (O[T [ (21)], (w2) J5x (0] [0) /1o heee)
- / d'ayd w0 T [, d, J5a] |0) (i el Frothara))
= /d4$1d41‘2 (Zagl <O‘T [JMJVJ5)\] ’0>) ei(k1x1+kgmg)

= / d*21d* @21 (0T [(Dy -J) JuJsx] + [Jo(w1), JuJsx] 6(af — a9)|0)e!Frorthym)

Because of the abelian current/charge algebra we can set the Schwinger term to zero. In

addtion 9.J = 0 and so the RHS vanishes:

kﬁlTuu)\(kjla k?a Q) = 0. (71)

Likewise
]C;TMV)\(k‘l,kig,q) = 0 (72)
These are the vector Ward identities.

In addition we have the axial-vector Ward identity from the x3 derivative. We can write

TH,,)\(kl, /{?2,(]) = /d4$1d41‘2d41‘35(1‘3)<0’T [Ju(xl)Jy(.%'z)Jg;)\(m'g)] ’0>ei(k1x1+k2x27qmg).
(73)
Then

T (k1 k2, q) = dixyd*zod 230 (23) g™ (0T [T, (1) J, (29) J52 (0)] |0)ei Frzathewz—aws)

= /d4$1d4$2d4$35($3)<0|T[JMJVJ5A] 10) (i0;, "1 tkaramara))
/ d*zyd* vadv36(xs) (—i0), (0T [, 0] |0)) k1o thara=ara)

— / v d wad w55 (23) (OT [Ty (Bas Ts)] + T [ [ Ts.0]] (23 — 22)
STy [ Tyl 508 — a0 s

B _i/ d*w1d*ws O[T [Ty (9.J5)] [0)e! P ber)

= 2 [ b 01T (1, P] o)+
= QmTw,(kl,kQ,q). (74)
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6.2 One loop contributions to the Ward identities

We are now ready to compute the anomaly. The one loop contribution to the anomaly is

through the diagram in the figure below, where there is a J5 current coming out of the

g-vertex:
VAV, k ] A ka H
P Al
VaV 2 nu jZ au

Wick contracting the fermions in the currents gives

o d4p . 7 7 ) k1 < ko
TMV}\_ /(271‘)4 {t <p_m7A75p_g_m7up_%l_m7u>+< PP )}

Meanwhile the same diagram with a P on the g—vertex gives

d* i i i k k
=~ | oy {tr<¢—m”"’¢—¢—m”¢—%l—m”">+< u:>} o

6.2.1 Corrections to the axial Ward identities

In order to get the axial ward identities we can use the identity
dvs =P — ¢ —m) + (P — m)ys + 2ms5. (77)
Thus

d*p

[ d 1 1 1
qATP(;/)/\ = 2mT{) + 2/ @) { tr <— [v5(p — ¢ — m) + (p — m)s) b= m%? - m’m)

p—m

k1 <k
JIR =7
- %m9+pg+pﬁ+pg+pﬁ
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where

We can collect the four terms as follows

A _ A D
AHV - D#V+D#V

-if <§lwl>) {“ <zﬂ—1mw”¢— 3 —m”“) o <:¢— > —m - gl —m”“) }80)

and

B _ C B
AB = DS +DE

: - 2/ (3;1)94 {tr (plm%%p%i m%) —tr (115%1 m%”‘p;m%) }81)

where we have used {vs5,v,} =0, ¢ = k1 + k2 and cyclicity of the traces.

A4B is the sum of two integrals that appear to

Now we note that each of these two terms
cancel because they represent merely a shift in integration variable. That is both A’s are

of the form

4
Al = i [ G Ul k) = fulp o)}
4
Afy = Z/ ((217]))4 {fV;,L(pa kZ) - fuu(p - klka)} (82)
where
fuw(p, k) = tr (p—lm’m“p — kl_ m%) : (83)

The crucial observation is that these terms do not vanish because we have to regulate the
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integrals. In general suppose we have an integral

4
AW = i [ S~ 1o
/ d'p ¢, jpw
| Gy [0y, f— K"K 0y, O, f + -] (84)

where the ellipsis indicates terms that are not divergent (since each k—derivative brings
down another power of p). By the divergence theorem this can be written as an integral

over the Euclidean surface S(|p|) at infinity,

S k
A== /s<|p|> (2W)4f’ (85)

where higher terms can be neglected since the integrand vanishes too quickly at infinity

(d3c ~ |p|® while 9%f ~ 1/|p|*). The surface element at constant radius |p| is given by
as" = |pl2dp
We may now throw away terms dependent on m and k in f so that

dSky (1 1
A, = —/ tr (—757 —%)
8 sioh) (2m)' T \p P — Ky

dp.ko (p7 — k7) p”
= - tr (V5 VYo ) + -
/s<p> @em)t PP (rn377)

dp Xy pPko
[ e 0
s(p) (2m)" P

where we used tr (7,757, 7Y07) = tr (VY Vo) = —4i€ppo, and €,,,,0p"p” = 0. Finally
using [ dp?p’ = %pQgPUVOI(Sg) = %2])29’)0, and permuting p, o, we obtain

E’kS
A .
A;w =1 8171'22 Euvpo- (87)

The term for Af is identical but with 4 — v and k; — ko hence

v

AB — A4 —ikfﬁe (88)
py TSy T ey SV

You might fondly imagine we are now done. Unfortunately not: this ambiguity due to
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regularization causes us to now suspect that we may also obtain terms from regularizing
the T}, integral. Indeed defining 7,,1(k) to be T ;(ul/))\ with the momentum p shifted to
p + k in the integrand, we can shift T}, as

T;u/)\ — T;u/)\ + A,uu)n (89)

where A, (k) = A (k) — 702 (0). We have

A N _/ d4p tI‘( 7 ) 7 >+ k‘l(—>k‘2
2N (271')4 p+%_mfy>\’y5p+k_q_mfyl/p+k_kl_m’YM pe v .
d*p ( i i i ) k1 <> ko
+ / o1 |t v + 90
<27T>4{ pom =g = m ) T ue .
Applying the previous discussion this becomes
A / z’dS.k{tr<1 1 1 >}+<k1<—>k2>
2 o — NV ——— Vo
' sy (2m)" L \p 2 p =g Tp =k o v

) idp.kp(p—q)°(p—k1)® ki1 < ko
= i / oy ( ’) ‘i ) {tr (VY5 Yo e Yau) } + < 91)
s(lpl) (2) p L v

In order to get something non-zero as |p| — oo we need a power of p* on the top, which

means we need retain only the leading term

) idp.k p’p? p* k1 < ko
A;w)\ = Z/ 1 4 {tr (7/)7)\757071/70/7;1)} +
s(ph (2m)" Pl s v

dp-k pp?p” ki > ko
= - / ——— o 1t (11570 (29va — Yoy )Vu)} +
s(pl) (2m)" [Pl ooy

(2m)*  Ipl* JIRE7

7 1 kil <> kﬁz
- _ﬂ/ dp ks epnup” +
™ Js@y 1Pl v

) k1 <k
= kP, + < LR ) . (92)

87T2 Iu<_>y

dp.k pPp°p® ki1 <> ko
= - /S - {tr (v 512900 Yo Y — Joa VoY)t +
p
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What should we take for k7 The only sensible possibility is to define it in terms of the

physical momenta, k1 and ko; let us call it k = aky + o’ks, so that

i

Ay = — 53 S [(akf + o'ky) — (akh + k7))
i
= _Wauup)\ [k{) - kg] ) (93)

where [ is some other undefined parameter (as I can’t calculate it I didn’t even need to

bother keeping track of factors of 7).

Together, eqgs.(93), (88) and (78) imply

1 Kk i
q/\T;EV)A - 2mT;511/) +e 4}22 EpvpX — @%um(k’f — k5 (kY + k3)
1) 4 4 kfké‘
= 2mT;SV + 1(1 - 5)H€uupk- (94)

6.2.2 Corrections to the vector Ward identities

Now we turn to the contributions to the vector ward identities. The simplest way to get

these is to write f; = p —m — (p — k1 —m). Going back to eq.(75) we find

i d4p 1 1 1 k‘l < k‘Q
perl) — k“/ t v :
T =10 (2m)4 ’ p—m’”%p—¢—mfyp—kl—mfm * L v

The first piece gives

d*p
k“Té, = Z/ — {tl‘ <’y)\’y5
15 pvA (2 )4 p
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For the second piece use f; = p — fy —m — (p — ¢ —m)

.
= i/%{_tr(p—lm%%p—gj—m’Y”er—lm%%p—%i—m%>}97)

Mercifully these expressions are similar to previous ones. Summing them (and noting that

two terms cancel) we can write
pp) _ [P B
kT, = 1 )t {faw k2) = fau(p — ki ko)t = Ay
= é¢MW%@+A—mﬁ (98)

Finally we need to add the same A shift to T}, so that

5 i i
kﬂT;Eu))\ = {7 Qeu)\pok kQ St 26pyo’)\k [k‘ k:2]
1 ’Lﬂ -
= . 2€VApakpk2 2 ey)\po'kfk2
i(1+5) -
= 87‘1’2 5u)\poki)k2- (99)

6.2.3 The end result ...

Our main results are eqs.(94) and (99). There are two Ward identities and only one free
parameter 5. If we wish to keep our original abelian gauge group preserved the only
consistent choice is to satisfy the vector Ward identify and take 8 = —1. This then leaves
us with an anomalous axial Ward identity

R kPkA
q7T, HvA — 2mT/J,l/ +i— 5 Spvp- (100)

Going back to the original derivation of the Ward identity we can see what this means
for the divergence of the axial current. Setting m = 0 we can check that the proposed

anomaly correctly reproduces the anomalous axial Ward identity:
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s = —i/d4$1d4$2(0|T[JﬂJy (8.J5)]|0)ikr1z1theez)

) 1 "V o i(ki1z x
= —2/d4m1d4m2(0]T [‘]M‘Ivmng/waﬂf‘l 8P A | |0)ei(kizithaze)

Zl‘_ggu/y/,w / dh a1 d 2 (0]7,0" A 0)(0].1,0° A7|0) el (Mo +R272) 4 perm
7
47/—26M’y’p0'/d4x1d4x2k¥lk§<0|‘]yﬁ’4yl|0> <0|JUAJ|O>6i(k1:B1+k2$2) + perm
7
— _é&uu;ﬂ'/d4x1d4m2k?lk§54(ﬂc1)54(362)€i(k1x1+k2x2) + perm
7I

7

ﬁewu’pk? k‘g, (101)

where we used that (0|J,A”|0) = (0]yp,1pA”|0) = 195254(35) is just the gauge vertex.

6.3 One loop exactness

The anomaly we have just derived receives no further corrections at any order in pertur-
bation theory and is finite. We can see this by simple power counting. Let us introduce
a loop counting parameter S — S/A. In the Feynman rules, the propagators will receive
a factor A while vertices receive a factor A\. A diagram has a total A’=Y where I is the
number of internal lines and V' the number of vertices. These are related to the number
of loops as I = L +V — 1. (An informal induction proof goes as follows: each internal
propagator either connects 2V’s or forms a loop, thus always adding 1 to the number of
loops L. On the other hand inserting a new vertex V' — V +1, increases I by 1 but leaves L
unchanged. Thus I = V + L+ const. The simplest diagram, the loop with [ = L =V =1,
yields I = L+ V —1). The one loop diagram has L = 1 and I = 3 so is finite.

Now the amplitude T},,» has scaling dimension 1, so the ward identity for qATMV)\ must
have scaling dimension 2. Furthermore the anomaly must be proportional to e (if it were
not we could have performed dimensional regularization on our integrals which would give
no momentum ambiguity). Because of the symmetry in kq, ko, the anomaly must be of
the form Akikse. Thus the anomaly coefficient A is dimensionless and therefore cannot
contain |p| — oo divergences. Because of the power counting argument above, a higher
than one-loop diagram has I > V', and the diagrams must have V' > 3 (since three vertices

are required for the currents to emerge). V' = 3 corresponds to the one-loop case so higher
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order diagrams yielding operators of the form kikoc would have to have V > 4 and hence
I > 5, or to be of the form ~ [ d'pkykae/|p|"=5.

7 Fujikawa's Method

The determination of the anomaly by perturbative methods looks a little obscure, since it

is bound up with ambiguities in infinities. The real source of the anomaly becomes much

1

clearer using a different method due to Fujikawa'. Consider electrodynamics again with

the axil symmetry

Y = Usp = oY =iaysy
v — YUs == 0); = iarpys infinitessimally. (102)

and the gauge symmetry

A, = A, —id\
b = P —iX
G = P+ iN, (103)

Thus the total (finite) transformation of the fermions under a chiral transformation is

b =g
= P =€, (104)
Consider the transformation of the partition function
Z = / DADY D 'S4V ]
- / DADY DY SAYYI+i [ diwads
= /DAD?/)D& det (exp 2iarys) eiSIAY Yl+i [ d*zad s

_ /DAszDT/} eTI'(Qia’%)eiS[A,w,lm-i-ifd4xoz8J5’ (105)

! You should always be wary when some-one explains something to you in two different ways: inevitably
it means that neither is really satisfactory.
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where the determinant is from the Jacobian of the measure, and the trace with a capital
T means over both Dirac and space-time indices. Our claim is that the anomaly derives

from precisely this term.

Our task is to evaluate

Tr(2iays).

In order to take the trace we need to represent the Hilbert space of fermionic wavefunctions
such that (bearing in mind that this is a gauge theory) it can be regulated in a gauge
invariant way. The most efficient way to do this is to decompose the fermions into an

orthonormal basis of eigenfunctions of the ) = @ + iA operator:

’le@n = )\nSDn,
> en@elly) = oz -yn (106)

where the identity in the completeness relation refers to spinor indices. (In Dirac notation

Sz, aln)(nly, B) = 6,36*(z — y)). Using this basis
Tr(2ians) =2 [ d's Y ) (0)rag(a), (107)

where we sum over spinor indices in order to get that trace. This expression is divergent
and needs to be regulated. We can do this in a gauge invariant way by introducing a

regulating function f(k?) with the properties that f(0) = 1, and
lim f(k?) = lim f'(k*) = lim f'(k*) =...=0. (108)
k—o00 k—o0 k—00

k

For example f(k?) = e~ * would do, but the choice is irrelevant. We can regulate the trace

using this function as

)\2
Te(2ions) = Jim [22' [ate Savionr (3) gon] | (109)

so that f cuts off the sum at some scale A. Note that the regularization is gauge indepen-
dent as required. In order to reduce clutter I will henceforth omit the lima_, o, and take it

as read.
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Using eq.(106) the trace becomes

2
Tr(2iays) = 21’/d4x Zoapi;yg,f <_Alz > ©On. (110)

Next we Fourier transform the basis;

4 4 1./
Tr(2iays) = /d4 /dk d’k Zae_””& T k:'%f(

We now use the identity

2

w)gbn(k)eim. (111)

2 v 1 v 1 v
»° = ~+"D,D, == [y, +"]1D,D, + 5{7’w } DD,

5 |
= %'y“fny“,, + D? (112)

and note that for any function g(z), we have D, [g(z)e™*] = e™** (ik, + D) g. Hence us-

ing completeness of the momentum eigenstates (derived from Fourier transforming eq.(106)

giving (3, @n(k)@h(K') = (2m)*8(k — K')1)) we have

. 'k d'k ke —iwe o [ 3 — (—ik+ D)*
Tr(2iay;) = /d4 / (27) 42040;2616 ek 75]0( 2 . A2 $n
— iyl F, — (—ik 4+ D)?
= /d4 / Ftra 5f< 2 . AQ( )
, d*k — iV E, — (—ik + D)?
= 2i /d4x/ @ )4tra75f< 2 a e . (113)

[In lectures there was a question about where the spinor indices are in this - writing the

spinor indices explicitly we just used >, (@L(/ﬂ’)) Oup (Pn(k))g = 2m)4 5 (k—k")Onpdsa =
(e}

(271)45(/<: — Kt Q.

Next we notice that the trace over fermion indices always contains a 75, and that tr(ys) =

tr(y57u7v) = 0. In fact the first non-zero contribution comes from the second term in the
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Taylor series of f. Thus we have

2
Tr(2iays) = 2i /d4 / g trany, 52 I <i—22> + O(1/A5)

k?2
= /d4 /A4 10 tr('mmwp%)F“”F””f” (E) + O(1/A5)

a [ d L, (R
— - [ dogsewa e [ f”( )+o<1/A6>

We may now take the A — oo limit whereupon the subleading terms vanish.

N %VMWVF;W
A2

Tr(2icvys) = — / d*z 1(?4EWPUF“”F”"A (114)

where

A _ /d4qf/l(q2)
~ /0 w2ydy " (). (115)

where ¢ = k/A is a dimensionless four vector and the factor i comes from the Wick rotation
to Euclidean space. Integrating by parts [~ ydy f” (y) = [yf W)y — [ dy f' (y
—[f' (y)]y = 1. Hence A = ir?, and

Tr(2icrys) = —i/d4 1528“””"F Ve, (116)

This is our main result: combining it with eq.(105) the total effective change in the action
can be written

i6S =i / d*za (8.5 = Tog2pe P FP) (117)

162

giving the anomaly!!

8 Anomaly coefficients and constructing anomaly free models

We now return to the issue of how to construct anomaly free models, taking the SM as our

example. First recall the general form of the gauge anomalies: a gauge theory with left



8 Anomaly coefficients and constructing anomaly free models 32

handed massless Weyl fermions 1) and gauge field A* = AST? has lagrangian
L =ithry.(0 +iA)r, (118)

where the L subscript means projection onto the left chirality, so that a Dirac fermion

would look like
YL
) = 119
( ¢R) 119

in the Weyl representation of «’s. The covariant derivative for the adjoints is
DY, = 888, + fLAC. (120)
and the gauge transformation is
a a -mya b
A, — A, —iDja
Y = —iag T

Y = Y tia,T. (121)

Using the Fujikawa technique, a gauge transformation results in the contribution to the

action of

1
a afyo a
/d4£6 Qg (D-JL/R) F 247‘1’26 B O tr |T ABOA/A(; + §ABA7A5 , (122)

where the + corresponds to left or right chiralities. Note that the trilinear term comes

from a box diagram.

8.1 The importance of 4%

Because the terms are always of the same form, in order to discuss the cancellation of

anomalies we can restrict our attention to just the first term:

P09, (T 430, As) = ety <T“TbTC> (9aAL)(D, AF)

_ ea§v5tr (747", 7)) (0. 4)(@, 45) (123)
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where we used the symmetries of the indices. (In terms of diagrams it is of this form because
the diagram with crossed-over legs effectively just swaps the indices on the generators).

This the anomalies will be zero if
e = tr (T“{Tb, TC}> (124)

1S zero.

Therefore, for simple groups, we can get a long way by noting the general properties of
dabc:

1. d®¢ is gauge invariant (in the sense that if we had gauge transformed the theory

we would have still found the same term, or equivalently under the transformation
T — g 'Tg).

2. For a representation R,
d"°(R) = tr (Tg,{Tg, T§}> . (125)

3. Define d(R) = A(R)d(0d) (where O means the fundamental). Then using the proper-
ties of the generators, we find a) A(R) = —A(R), b) A(R1 ® R2) = A(R1) + A(Ry),
C) A(Rl ® Rz) = A(Rl) dim(Rz) + dim(Rl)A(Rg)

4. From 3) it follows that chiral fermions in real or pseudoreal cannot contribute. Ex-
plicitly, a pseudo-real representation has ey* = v for some € € G. Trivially, ¢ —
Uy = * — U*y*, but also ¢* — ¢ U = e 'Uep* = U* = ¢ 'Ue. Then
since d is gauge invariant d(¢*) = d(v)) by 3a) but d(¢*) = A(¢*)d(y) = —d(v), by
1). Hence d(¢) = 0.

5. Clearly if there are no reprentations that contribute then there are no anomalies; the
following groups have only real or pseudo-real representations so are automatically

anomaly free;

SU(2), SO(2N + 1), SO(4N), Sp(2N), G, Fy, Er, Es.

6. SO(4N + 2) and Eg do have complex representations but they still have d = 0. e.g.

SO(10) and Eg have chiral representations but they are always anomaly free.
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7. SU(N > 3) do in general allow anomalies and we have to make sure they cancel.

8.2 The SM

For more general product groups the situation is much more complicated as we have to
ensure that not only the cubic anomalies cancel but also the mixed anomalies. As our
first example we shall show that the Standard Model is anomaly free. The gauge group is
SU(3)x SU(2)r xU(1)y so we will encounter of course the same cubic anomalies as above,
but also mixed anomalies when the three generators in the triangle come from different
factors. Before going to the precise particle content we can make some general comments.

In all of the below, we use tr as short for trye s — trrigne:

1. The theory is vector-like with respect to SU(3) (i.e. there are as many 3 as 3 quarks)

so that SU(3)? anomalies cancel.

2. The SU(2)3 anomalies cancel for the reason cited above. Indeed just to check, we
have d®¢ = tr(r%{r%,7¢}). But {r° 7¢} = 26*“1 and hence d®¢ = 2tr(7%6") = 0 as

advertised.

3. The SU(2)? x SU(3) and SU(2) x SU(3)? anomalies are zero because we are always
taking the trace over an SU(IN) generator.

4. Using for example trace Y to imply summing over the hypercharges of all particles
that can run in the anomaly loop, we see that SU(2) x Y2 and SU(3) x Y'? anomalies

are zero again because of the tracelessness of the generators.

5. Cancellation of SU(2)% x Y is equivalent to tr(Y {r%,7¢}) = 26°trr.;;Y. Hence we
require

trpepY = 0. (126)
6. Cancellation of SU(3)? x Y is equivalent to tr(Y{A\’, A°}) = 26°tr yuarksY . Hence

trL—quarksY - trR—quarksY =0. (127)

7. Noting that left and right chiralities contribute with opposite sign, cancellation of



8 Anomaly coefficients and constructing anomaly free models 35

Y3 anomalies requires

trY? = trrepY? — trpign Y™ = 0. (128)

Hence we are left with three highly non-trivial conditions on the particle content of the

SM. The content is

r
€R
qrL
(s

dr

(1,2,-1)

(1, 1,—2)
5

3,2
(773

(129)

One can check that there are as many 3 as 3’s as above. We now need to simply correctly

count the multiplicity of states when taking the trace. As generations simply repeat we

may as well consider only one generation, but we must ensure to sum over colours and

flavours. Thus (working down the list for each anomaly),

1 4 2
trr—quarkY — trR_quarkY = 3 X 3¢ X 2p — 3 X 3¢ + 3 X 3.=0
1
trreptY = —1X2f—{—§><3c><2f:0

3 3 5 (1\? 4\° 2
trY°? = (=1)" x2;—(-2)"+ 3 X 3¢ X 2f — 3 X 3. — ~3

2

64 8

= —2484-——+-=0.

The SM is indeed anomaly free.

9

9 9

Note how constraining these conditions are. Often it is said that the fact that the SM
can be fit into multiplets of SO(10) is a strong hint at Grand Unification. Actually it is

more that anomalies have to cancel for consistency, and the conditions are so constraining

that any consistent theory, even if it does not really unify, is likely to resemble one that

does since as we saw above large classes of simple gauge theories automatically have no

anomalies. Alas anomaly cancellation makes the case for unification weaker rather than

stronger.

3
) X 3¢

(130)
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8.3 SQCD

Another important example of anomalies is to be found in supersymmetric QCD (SQCD).
Consider an SU(N.) supersymmetric theory with Ny quark superfields, @@ and Ny an-
tiquark superfields, Q. The theory has a global SU(N #)r X SU(Ny¢)r symmetry under
which the quarks and antiquarks are rotated amongst themselves. There are also some
U (1)symmetries which I will tell you about in a moment, but let me first remark that such
symmetries are immensely important in for example 't Hooft anomaly matching. If any
global symmetries do not “see” the gauged SU(N,.) through anomalies (or indeed anything
else), we can be fairly sure that even if the theory becomes strongly coupled they will re-
main intact and can be used as a probe of the theory through the strong coupling regime.
[Think about flavour symmetries in the standard model when SU(3),. confines yielding the
chiral lagrangian description of the low energy theory.] Therefore we need to find which

global symmetries are anomaly free.

Regarding U(1)’s there is one obvious anomaly free one which is @ — €*Q and Q —
e~"(Q). This charge (call it B) is traceless and hence tr(U(1)%) = tr(U(1)5 x SU(N,)?) =
tr(U(1)4x SU(N.)) = 0. The orthogonal axial symmetry under which quark and antiquark
rotate the same way (call it U(1)4) is traceful and hence obviously anomalous. It also has
mixed tr(U(1)4 x SU(N,)?) anomalies and hence is likely to be affected by SU(N,).

There is one other symmetry known as R-symmetry that is peculiar to SUSY. Take the
Grassman variables 8 and allow then to rotate by a phase A, § — ¢**0. This means that
0 — e~@, and the fact that i d?06?% = 1 implies d?0 — e~ 2*d20. If we at the same time
rotate the chiral multiplets appearing in the superpotential by their own phases such that
the sum of the charges in any term in the superpotential is always 2, so that W — >/,
it follows that the interaction terms [ d’0W are invariant. Likewise the kinetic terms are
invariant (since K = KT and d?0d%0 — d?0d?@). Finally the Yang-Mills terms are if the
gauge field-strength superfield W has R—charge 1.

Note that we have to be careful with charge assignements because the R-symmetry does not
commute ith supersymmetry. In particular since ® ~ ¢ + /207 we see that if & — ¢™®
then the fermions transform as 1 — e!(""DXy): the R-charge of the fermions in a chiral
supermultiplet is one less than the R-charge of the multiplet itself. On the other hand the
field strength superfield is expanded as W ~ A* + ... and the R-charge of any gaugino is

always 1. (This also tells us that any gaugino Majorana mass term breaks all R-symmetries
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by the way).

After this short introduction to R-symmetry let us return to the issue of which one in
the SQCD system is anomaly free. We can write the quantum numbers of the quark and
antiquark multiplets under their [SU(N.); SU(N¢)r, SU(N¢)r,U(1)p,U(1)g] symmetries

as

- 1
= (N¢;Ng1,— R
Q ( C» f7 7Nc7 Q)

~ = 1
(&

The 1/N, is by convention since then a baryon Q"¢ has charge unity (actually the more

popular convention seems to be to take the charge of the quarks to to be 1 which I find

reprehensible) . Also note that we have chosen @ and Q to have the same R-charge Rgq: if

I had chosen different charges I would have simply been able to add a linear combination

of that R-symmetry and U(1)p to get this R-symmetry.

Now consider the mixed anomalies in order to determine Rg. The only relevant anomaly
is SU(N.)? x U(1)g. We need to know the Dynkin indices of both the fundamentals and
the adjoint (since the gauginos have non-zero R-charge as well. For future reference the
cubic A(R) and quadratic Dynkin indices T'(R) for SU(N) are given in the Table below

Irep | dim(R) T(R) AR) |
0 N 1 1
Adj N2 -1 2N 0
n ML N -2 N -4
m | MO N +2 N+4
[ M O=00=2) | (=93] | (V=3((v=5)
N((N+1)(N+2 N+3)((N+2 N+3)((N+4
T | MDD [ (VS | (VA

From this we see that the total SU(N,)? x U(1)r anomaly is proportional to

N,
2N (Rg—1)+2N. = Rgo=1- Ff (132)
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We conclude that the anomaly free (with respect to the mixed gaugexglobal) charges are

- 1 N,
= (Ng;Ngp1,—,1— =5
Q ( c;iNfy ,Nc’ Nf)
~ _ 1 N,
= (Ng;1,N;——,1—=5). 1
Q ( CH f7 Nc7 Nf) (33)

Note that the global symmetries themselves are not anomaly free which we shall see is an

important property.

9 Anomaly matching and Seiberg duality

One of the most interesting uses of anomalies is in 't Hooft anomaly matching. The general
idea is as follows. Suppose I have a theory like SQCD above and that it becomes strongly
coupled. In such a case we might want to propose a weakly coupled description of the
physics, for example involving mesons and hadrons. How can we tell if our proposal is the

right one?

't Hooft came up with the following idea. Suppose we wanted to gauge the large global
symmetry of the theory. Those symmetries will themselves have anomalies: for example
SQCD has a cubic SU(N¢)? anomaly of 2N.. If order to make the theory consistent one
would have to add a weakly coupled sector uncharged under the original SU(N,.) to cancel
these anomalies. I will call it a spectator sector. [Think of the leptons contributing to the
cancellation of SU(2)? —Y anomalies in the SM.] This sector would be unnaffected by the
fact that SU(N.) becomes strongly coupled. |[Continue to think of the leptons in the SM.]
If the proposed weakly coupled description of the strongly coupled theory is a good one,
the spectator sector should cancel the anomalies in that theory too. In other words both

descriptions have to have the same set of global anomalies.

In most cases the matching of global anomalies is relatively weak and one can find a
number of candidate descriptions. Occasionally they are very strong though. One example
is supersymmetric SU(N,;) QCD with Ny flavours, which you have (most likely) already
seen in your SUSY lectures. This theory has a magnetic dual description consisting of an
SU(Ny — N.) theory with Ny generations of fundamental and anti-fundamental, together
with Ny x Ny meson singlets which are bound states Q.Q of electric quarks. Here is another

example due to Kutasov which I will refer to as the KSS model...
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9.1 Anomaly matching in the KSS model

The model is based on an SU(N) gauge group with Ny flavours of quarks and anti-quarks,
and an adjoint field of the SU(N) denoted by X. There is a superpotential of the form

Wy = Xk (134)

where X is an adjoint field of the SU(NN) gauge group and k is an integer. (Note that
normally you would think that & = 2 would be a marginal operator and k > 2 operators
would be irrelevant — in both the technical and colloquial sense. However when the theory
is strongly coupled anomalous dimensions are large and the operator can come to dominate
the flow. How you can tell it is going to do this is a story in itself which I will not have

time to get to in due course.)

The symmetry content is
SU(Ny)r x SUNf)r x U(1)p x U(1)R . (135)

The matter content is then summarised by Table 1.

SU(N) | SUWVy)L | SUNp)r | UM | U)r
Q| O O 1 ~ |l
Q| O 1 O — |- aae
X | adj 1 1 0 Ea]

Tab. 1: The matter content of the electric theory in the KSS model.

The R-charges are determined precisely as for the SQCD model above and are completely
fixed by the requirement that X**! has R-charge 2. (As a check note that when k = 1 the
superpotential is a mass for the adjoint which can then be integrated out - the R—charges

of normal SQCD are recovered.)

The F-term equation for the adjoint can easily be solved;
W' =0=Xx* (136)

To get the corresponding magnetic theory we need to include set of elementary meson

fields associated with composite operators of the electric model. A crucial aspect of the
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superpotential is that it truncates the chiral ring; that is the equation of motion for X sets
X* = 0 along the F-flat directions. This means that when matching the moduli spaces,
one need only consider operators upto X*~!. Thus there are k types of meson operator

that we denote m;
m; =QX''Q, j=1...k (137)

The j = 1 object is the meson of usual Seiberg duality. (Again the & = 1 model is
just the original Seiberg SQCD model if one integrates out the adjoint field.) The field
content of the magnetic theory is ¢, ¢, m; and z, where x is an adjoint in the magnetic
gauge group, and where the elementary magnetic mesons are directly and unambiguously
identified with the composite operator m;. Baryon matching implies that the gauge group

of the full (unbroken) magnetic theory is
SU(n) = SU(kN; — N.) . (138)

The matter content of the magnetic theory is summarised in Table 2.

SU(n) | SU(Ny)L | SUNp)R | U(D)B U)r
1 2
¢ | O O 1 1 [
. - = T )
i| O 1 W —I 1= 5%
z | ad] 1 1 0 =a]
~ 4 N 2(7—1
mi] 1 - O 0 |2-ghae +

Tab. 2: The matter content of the magnetic theory in the KSS model; n = kNy — N,.

The superpotential in the magnetic theory is of the form
1 k
Winag = 2" + = > " m;gat g (139)
p 4
7=1

All that remains is to determine the U(1)p charges of the magnetic quarks. They can be

fixed by demanding that the U(1)p charges of the electric and magnetic baryons match
up:

N
By =—B;=—Bq, (140)

hence the charges 1/n for the magnetic quarks.
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We may now proceed to anomaly matching. The mixed anomalies are found to be

U(l)BXSU(Nf)% 1

U(l)p x SUNpF : -1
2N?
U(l)R X SU(Nf)% : —m
2N?
U(1)r x SU(Np)E TNER)
Ul)g xU1)% : 0
4
U(l)B . 0
2
U _%, (141)

in both theories. The last two correspond to mixed U(1)-gravity anomalies — there is a
contribution from the diagrams with gravitinos in the loop that is obviously universal and

has been omitted. The cubic anomalies also match

SU(Nf)R _Nc
Uy o0 (142)
16 N4 2 3
13, : N2-—2—-——¢°¢ 4 (N2-1)(——-1]) . 14
U ¢ N2 -2 s+ ) (1 ) (143

Clearly this is a very stringent test!! Moreover there are other tests that all confirm that
these two theories are dual to each other. One important test is that one can deform the

superpotential to break the original SU(N,) as
SU(N) — SU(r1) x SU(r) ... SU(r) x U(1)* L, (144)
The broken model in the magnetic theory becomes

SU(n) — SU(71) x SU(7) ... SU(7) x U(1)+1 (145)
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where
Ty =Fg —r;. (146)

Note that the matching of the sub-theories SU(r;) <> SU(7;) is the usual Seiberg duality:
the original theory is a GUT for a product of standard SQCD duals!!

10 Topology, instantons and the 6-vacuum

10.1 The SU(2) instanton

To this point we have been discussing anomalous violation of current conservation in a
gauge background, with the vague notion that there are some gauge configurations that
exist that can be responsible for, for example, changing the axial charge. We now study

these configurations and discuss their connection with topology.

Consider violation of axial current Js5 in a gauge background. Recall that the anomaly was

given by
0.J5 =0.K (147)
where
« 1 afyo 2
Ke = mz’:‘ tr AgayAg + gAﬁAgAq/ , (148)
and
OK = e F 5 F. 5. (149)

In the language of forms, we would write dK = tr FFAF and K = tr (AdA + %Ag). In order
to simplify notation I will often drop the wedge where there is no possibilty for confusion.

For definitiness and simplicity we will consider the SU(2) case.

Now when quantizing the theory, one expects that finite classical actions might give addi-
tional contributions to the partition function, whereas quantizing around infinite actions
would give zero. Therefore we seek finite action non-trivial classical solutions to the equa-
tions of motion that can change Js5. What configurations could give finite action? We need
fv F A F to be finite which means that F),, — 0 as r — oo or equivalently A —pure gauge:

lim A, =U'0,U. (150)

r—00
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Gauge transformations in SU(2) are represented by the 2x2 unitary matrices, U = /7" =

ug + iueT®. The unitarity condition UTU =1 = ug + ugug = 1 which also defines Ss:
hence SU(2) ~ S3. This makes SU(2) instantons especially simple to configure as working

in Euclidean space we can map the gauge transformaiton directly onto the sphere at infinity.

Let us therefore try A, = f(r)U~'9,U where lim, . f(r)=1 and U is a transformation
that is a function depending only on the coordinates in S3 (i.e. it is independent of r).

The nice thing about this ansatz is that the divergence theorem,

/VaK:/SSK [E/SSdSO‘Ka]

involves an integral over S3 of K, projected along the area element vector: in other words
we need only consider the component of K, along the radial direction K,: in particular
K, ~ ¢ and the indices o3y are orthogonal to the radial index. Therefore we can

use antisymmetry of indices and UTU = 1 as follows:

S [Ag0, 45 = [ |(UT9sU) 0, (UT0U )]
_ fzgrﬁvétr [(UTaﬁ > (a UT> UUT 35[])]
= e |(vlopu) (Ute,u) (Utou)| . s
Therefore
i’ K, = f2(§ f=1e?u | (Uto,u) (vta,u) (Utosu)|
N _%Erﬁvétr [(UT(%U) <Ujr0q/U) <UT85U>} ) (152)

Actually a simpler way to do this follows from the fact that F' = dA+ A? (wedges implied)
so that
2 2 1

Whichever way you skin it, we have

4r? K- —% / ass= | (Utop) (vto,u) (vias )] (153)
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The simplest non-trivial U to consider is the identity map

1
U == (2"1—iz""). (154)
r
Then U9, U = —7s —i%> where 0% = (i1,7%), and hence by the vanishing of 7% traces
and antisymmetry in indices
e [(<28 78 (L1 g70) (L G2)] oy [020)
r2 r r2 r r2 r r3
_ filgﬁ’yétr |:0-62Z€'Yéﬁl0-6,:|
2 r3

gpo
- —2tr[ igﬁ] = —12/r3155)

where on the RHS I took the 574 indices to be the basis of defining indices of S3 ~ SU(2).
Thus this solution has

1
K = 3
S3 127

Vol(S3)12 = 2. (156)

Topologically, transitions in Js can be arranged as taking the infinite R4 volume and
splitting it into 2 regions. By adding the point at infinity we can map it to Sy, with
the origin at the north pole and ¢ — oo at the south pole. We will consider a case
where A = 0 in the southern hemisphere Vs = {2 € Ry;|z| > L — ¢}, with the interesting
configuration being in the northern hemisphere, Vy = {x € Ry;|z| < L+¢e}. All the
interesting topological information is then contained in the transition function between
northern and southern hemisphere on the equator which is topologically equivalent to Ss.
The additional piece in the action is fd4:v(9K = fVN FAF = ng K = sz K. We would
then compute the Q5 change between the north and south poles as AQs = A [ d3zJ0 =
A [d*10yJ° = [ d*x0K = 2. In other words the single (anti) instanton configuration eats
(vomits) a single quark anti-quark pair. If there had been N fermions flavours we would

have found AQs = 2Ny.
These numbers are topological. In fact the Pontryagin number is defined as

1

V= 3272

/ d*ze" P FyFp. (157)

In this example ¥ = 1. (In the forms language v = # [ FAF). Tt is simple to find higher

instanton numbers by starting with U; in the northern hemisphere and U; in the southern.
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This configuration clearly has v = 2 but can be smoothly deformed so that the southern
hemisphere is empty and the northern one has Us = UyU;. General v configurations are
of the form

U, = riy (2°1 — izr)". (158)
The index labels the elements of the homotopy group m3(SU(2)) = Z: that is v labels
the homotopy classes of the mapping g : S3 — SU(2). (In other words how many times
SU(2) is wrapped over S3.) Clearly since m3(S7) is trivial, abelian groups cannot have such
configurations. But for other simple groups, G, there is a theorem due to Bott that says
a continuous mapping of S into G can be deformed into a mapping of S3 into an SU(2)
subgroup of G. Since m3(SU(N)) = Z we conclude that similar instanton configurations

exist for them as well.

It is interesting to find possible forms for the instanton — i.e. to find the solutions to the
equation of motion and in particular the precise form of f(r). (We will focus on the one
instanton solution.) An interesting class of solutions to study are the self-dual (or anti self-
dual) ones, satisfying F},, = *F},,. This is because the action is related to the Pontryagin

number as
S—l/F FW—l/F o v — (159)
T4 i 4 e 82’

In fact this saturates a bound (the BPS bound) similar to the Bogomolny bound since
1 2
1 (Fup —*Fu)" >0

and therefore expanding (and using *F' « F' = F'F') we find

v

S > —.
— 82

(160)

Hence the self-dual solutions are a local minimum of the action. The equation F),, = *F),,

is a little easier to solve because it is only first order. With our ansatz one finds

df
J_9f(1 -
r L =2f(1- )
which has solutions )
! . (161)

T2 2
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where the free parameter p is the size of the instanton. Substituting in one finds

4

e — 162
v 7“2//)2 T 1O-u1/a ( )

where 0, = %[au, o,]. Returning to our earlier discussion about the sorts of A* that can
contribute to Qs, we see that while F' ~ 1 /r% the crucial part of the solution is that the
gauge field tends to an A% ~ —io®/r pure gauge configuration. (If we’d been smart — or

pretentious — we could have guessed the action back then).

10.2 The theta vacuum

Finally we briefly discuss a crucial and puzzling feature of the standard model which is
the #-vacuum and theta parameter. From the fact that m3(SU(3)) = Z we conclude that
instantons can change the vacuum: in other words the classical empty vacuum on which

we were so confidently building our quantum theory is not even gauge invariant!

Indeed suppose we perform a large single instanton gauge transformation in the QCD gauge

fields. This then results in a shift of the effective Lagrangian as

L— L+

2530 * F. (163)
T

The extra piece ﬁtrF * F' is reinterpreted as a local term in the Lagrangian that was

generated by a large (i.e. topologically non-trivial) gauge transformation.

In order to build a gauge covariant vacuum for QCD we need to start with a fiducial
vacuum |0) and collect all the possible vacua related to it by large v instanton gauge

transformations |v). A gauge invariant (up to a phase) vacuum would then look like
)= e lv), (164)
1%

where 0 < 6 < 27 is an arbitrary parameter. A single instanton gauge transformation (call
it U;) now sends v — v + 1 but of course because we have an infinite sum the vacuum

transforms into itself modulo a phase

U110) = €%|6). (165)
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This phase can be written into the action as a local term in the Lagrangian

0
L= ‘Cclassical + 32?'51'51 * P (166)

To see this consider the partition function:
(0]¢S)9) = / DAl

The path integral over A contains contributions from each instanton sector (i.e. there is a
contribution from quantizing around each instanton background). We can split A into the
classical instanton background piece and the quantum fluctuations, and write the sum over
instanton sectors where now DA is over small fluctuations only, at the same time allowing

an arbitrary phase to appear proportional to the instanton number:

<0‘e—th‘9> _ Z<I/‘ei(y_yl)0€is[14”*”']‘I//>

vy’
~ ¥ / DA, ¢infeiSIAn]
n

This term is not constrained, is not CP invariant and is measurable in neutron electric
dipole moment experiments: it is found to be less than 1072 and is consistent with zero.
But no known principles (even anthropic ones) say that it should be small. Various ideas,

such as the Peccei-Quinn mechanism have been put forward to explain why it is zero.

Extra Questions

1. Prove
dpi = i[Q, il. (168)

for external symmetries.

2. Show that 05 = 0 and Noether’s theorem imply covariant current conservation of

the form
(D.J)*=0 (169)
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where

wa =0b0), + ff;cA;. (170)

3. The anomaly we derived in lectures for QED was

2
g v
5).J5 = WEMVPUFM Fre, (171)

Consider an abelian gauge theory in which only left-handed fermions couple to the
gauge fields £ = iy p@r+ithr, D11, — iFWF‘“’ . Derive the anomalous Ward identities
for this case. Use them to show that the anomaly of the left-handed current Jp =

Yy pr s ,

0.7y, = —ﬁewa“”F’”. (172)

[Hint: There is a Jr, current at each vertex so the symmetry factors are different.

Also you may use the diagrammatic results from lectures.|

4. Use the power counting argument and the fact that the chiral Ward identity has a
single JI' vertex and interchangeable J# vertices, to show that the chiral anomaly
in any (even) number of dimensions is finite and appears at one-loop. What is the

diagram in 6 dimensions?

5. The Lagrangian for quarks is of the form £ = Z'IE’)’“DMTZJ where D is the covariant
derivative for colour and v stands for the three flavours of Dirac fermions, u, d or s.
Construct the currents and conserved charges for the global flavour symmetry
SU(3)r, x SU(3)r. Show that the Noether charges are generators for this symmetry.
[Hint: you may use the equal time commutators {¢Z(X),¢;r (y)} =83 (x —y)di;/.

6. For some reason I wish to construct a consistent SU(N) theory where each
generation contains a some antifundamentals, plus a single symmetric and
antisymmetric. The contributions of fundamentals, symmetrics and antisymmetrics
to the cubic SU(N) — SU(N) — SU(N) anomaly are 1, N + 4, N — 4 respectively.
How many antifundamentals do I need? If I also allow antisymmetrics in the
conjugate representation, find a single combination of fields that will cancel

anomalies for any .

7. Homework question: Use the Ward identity to derive the non-Abelian



