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1 Noether’s theorem (revisited)

1.1 Overview: Why anomalies?

Although “anomalies” sounds like it might be a somewhat peripheral aspect of quantum

field theory, it turns out that their study is central to the proper understanding of symme-

tries and conservation laws in QFT. Anomalies also find uses in a huge variety of applica-

tions, for example;

• Checking model consistency by cancellation of gauge anomalies in e.g. the Standard

Model =⇒ charge quantization for example

• ’t Hooft global anomaly matching: how to tell when one theory is a weakly coupled

effective description of a different strongly coupled theory

• PCAC and processes such as pion decay

• Instantons and the structure of the QCD vacuum

• The strong CP problem and the Peccei-Quinn mechanism

• B+L violation and baryogenesis

• Scaling anomalies =⇒ renormalization group flow

• Connected with this, the a-theorem and studying RG flow in strongly coupled theories

• Supersymmetry and metastability
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There are many other areas where their study has been crucial, for example anomaly

cancellation established E8×E8 heterotic string theory as a viable and phenomenologically

interesting theory. Clearly in 8 lectures I will be able to cover only a subset of these uses.

However my emphasis will be on their importance in understanding gauge theory. At

certain points these notes will deviate into long ramblings about the precise meaning of

something or other; that is a sure sign that those points are more difficult to understand

(the ramblings indicating that I spent some time reconsidering those points myself in

writing these notes) and require some thought.

1.2 Symmetries and Noether’s theorem

First in this course I’d like to return to Noether’s theorem. Although you will have seen

this before, as the subject of anomalies is really to do with conservation laws, it is vital to

get this part of the story straight. In particular

• Symmetries =⇒ conservation laws

• Anomalies =⇒ breaking of symmetries by quantum effects which either gives real

physical effects in the case of global symmetries (such as pion decay) or consistency

conditions in the case of local gauge symmetries

Noether’s Theorem: Any continuous global symmetry of S implies a conserved current

∂µJ
µ = 0

Note the word “global”. Actually Noether’s theorem says nothing about local symmetries.

Indeed local currents are often not even gauge invariant and therefore not observables.

Therefore a large part of the anomalies story involves understanding the difference between

local and global currents.

Corollary: The charge, Q =
∫

d3xJ0, is conserved.

Proof of Corollary: In a volume V , bounding surface S, we have dQ
dt =

∫

V d
3x∂tJ

0 =

−
∫

V d
3x∂iJ

i = −
∫

S dσ.J �

The last step follows from the divergence theorem and tells us that the rate of change of

the total charge is equal to the total current flowing through S.
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Proof: Let S =
∫

d4xL(ϕi, ∂µϕi), where ϕi stands for generic fields of arbitrary spin.

Consider the most general infinitessimal transformation possible under which

xµ → (xµ)′ = xµ +Xµ
αǫ
α

ϕi → ϕ′
i(x

′) = ϕi +Φiαǫ
α (1)

where ǫα is a set of infinitessimal parameters and Φα,X
µ
α are functions of x. The

total variation in ϕ can be split into that due to the shift in x, and the internal

variation of the field itself δ0ϕ:

ϕ′
i(x

′) = ϕi(x
′) + δ0ϕ(x

′)

= ϕi(x) + δxµ∂µϕi + δ0ϕi

= ϕi(x) + ǫαXµ
α∂µϕi + δ0ϕi (2)

Thus the transformation of the field itself can also be written as

δ0ϕ
i = ǫα

(

Φiα −Xµ
α∂µϕi

)

. (3)

The variation of the action contains contributions from both external changes (through

the measure) and internal changes:

δS =

∫

δ(d4x)L+

∫

d4xδL. (4)

The change in the measure comes from the Jacobian

d4x′ =

∣

∣

∣

∣

det

[

∂x′µ

∂xν

]∣

∣

∣

∣

d4x

=
∣

∣det
[

δµµ + ∂ν(X
µ
αǫ
α)
]∣

∣ d4x

= |1 + ∂µ(X
µ
αǫ
α)| d4x, (5)

using det expA = expTrA infinitessimally. Hence

δ(d4x) = ∂µ(X
µ
αǫ
α)d4x. (6)

Using (4), the total change in the action is therefore separable into a piece corre-
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sponding to the equations of motion, and a surface term,

δS =

∫

∂µ(X
µ
αǫ
α)Ld4x+

∫

d4xδ0ϕi
∂L
∂ϕi

+ ∂µ(δ0ϕi)
∂L

∂(∂µϕi)

=

∫

d4x∂µ (ǫ
αJµα )−

∫

d4x(Xµ
αǫ
α)∂µL+

∫

d4xδ0ϕi

(

∂L
∂ϕi
− ∂µ

∂L
∂(∂µϕi)

)

(7)

where we integrated by parts and where

Jµα = Xµ
αL+

(

Φiα −Xν
α∂νϕi

) ∂L
∂(∂µϕi)

= Xν
α

(

δµνL − ∂νϕi
∂L

∂(∂µϕi)

)

+Φα
∂L

∂(∂µϕi)
. (8)

Since by the divergence theorem the first piece of eq.(7) can be recast as a boundary

term, it depends only on the value of the fields at the boundary. In particular we are

free to set the variation ǫα to zero at the boundary (which may be at infinity). The

last two pieces must therefore vanish locally and imply the Euler-Lagrange equation,

and the absence of explicit dependence on x in the Lagrangian (in the case of external

symmetries). Invariance of S then requires that the first piece vanishes. We can

therefore conclude that

∂µ (ǫ
αJµα ) = ∂µK

µ (9)

where Kµ is some function of x that vanishes at the boundary. Therefore the com-

bination

J̃µ = ǫαJµα −Kµ (10)

obeys ∂µJ̃
µ = 0. �

Before we look at some explicit examples, note the presence of Kµ: even if we set it to

be zero classically it is generally unprotected from quantum corrections. (In practice it

would have to be constructed out of other fields in the theory such as gauge fields.) This

is precisely the source of anomalies. Thus while one may write a theory that appears to

have currents Jµα that are conserved (i.e. that obey ∂µJ
µ
α = 0 when one uses the classical

equations of motion) this is not necessarily the case at the quantum level.

Let me now help you avoid a couple of common annoyances. First note that even if

there is a global anomaly (i.e. a non-zero Kµ), Noether’s theorem is still satisfied (it

is a theorem after all). The theorem simply arises from dividing the equation δS = 0
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between local equations of motion and surface terms, so it is almost a triviality (in the

technical sense), so it would be hard to see how it could not be satisfied: anomalies do

not somehow “violate” Noether’s theorem or anything like that. Secondly, and even more

egregiously, one often comes across the statement that a symmetry is “classically obeyed”.

This statement is almost entirely meaningless – in a quantum world the symmetry is simply

never there. What people who use this phrase probably mean to say is that there is an

“accidental symmetry”: that is something that at the level of the Lagrangian appears to be

a symmetry but which is anomalous. This can often happen in for example string model

building because certain terms happen to be absent in the Lagrangian due to so-called

selection rules. The quantum violation of such symmetries is often loop suppressed when

the theory is weakly coupled so it is easy to convince oneself that the symmetry is “almost

there”. The mistake arises because superficially any quantum theory can be decomposed

into two elements: one is the Lagrangian and the other is the sum over histories. The

anomaly can be understood as the non-invariance of the measure in the sum over histories,

which doesn’t give two hoots about accidental symmetries of the Lagrangian. However

this non-invariance of the measure can usually be recast as an additional term in the

Lagrangian, so the separation into Lagrangian and measure is arbitrary, and there is no

sense in which the Lagrangian is somehow more fundmental than the sum over histories.

Since (as we shall see) the non-invariance of the measure is a function of gauge fields it

is probably most precise to say that anomalous symmetries are symmetries that can be

broken by non-trivial gauge field configurations.

Indeed anomalies can come to determine the physics of the entire system. One example we

shall discuss later is the violation of B+L in the SM. This symmetry is anomalous. However

non-trivial Kµ involve configurations of electroweak gauge fields called sphalerons. As

electroweak symmetry is broken these lumps are immensely costly (in energy and entropy

terms) to produce and therefore in collider experiments there is no B + L violation. In

the early Universe however at temperature above the electroweak phase transition, one

expects rapid B + L violation to have taken place. Many ideas for baryogenesis (for

example leptogenesis) involve the transmission of baryon number through B +L violating

effects.
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1.3 Examples

Scalar field with U(1) symmetry

First some examples with no gauge fields in which (since there are no other field in the

theory) we can safely set Kµ = 0.

L = |∂ϕ|2 − V (|ϕ|2). (11)

L is invariant under

ϕ→ eiαϕ =⇒ δϕ = iαϕ infinitessimally. (12)

Hence using eq(8) we have

J̃µ = iαϕ
∂L

∂(∂µϕ)
− iαϕ∗ ∂L

∂(∂µϕ∗)

= (ϕ∂µφ∗ − ϕ∗∂µϕ) . (13)

Hence Jµ = i (ϕ∂µφ∗ − ϕ∗∂µϕ) is conserved. Note that we only see this when we use the

equations of motion (∂2ϕ = − ∂V
∂ϕ∗ = −ϕV ′) as is obviously going to be the case from the

proof of Noether’s theorem. i.e.

∂.J = i
(

ϕ∂2φ∗ − ϕ∗∂2ϕ
)

= −i
(

ϕφ∗V ′ − ϕ∗ϕV ′
)

= 0. (14)

Fermion field ψi with isospin symmetry

In this case we have two component ψi labelling proton and neutron say. Then

L = iψ̄iγ.∂ψi. (15)

Defining the global transformation Uij = eθ
aτa where τ are the Pauli matrices, L is invariant

under

ψ → U−1ψ =⇒ δψi = −iθaτaijψj (16)

ψ̄ → ψ̄U =⇒ δψ̄i = iθaψ̄jτ
a
ji infinitessimally. (17)
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Hence using eq(8) we have

J̃µ = −iθaτaijψj
∂L

∂(∂µψi)

= θaψ̄iγ
µτaijψj . (18)

Hence the three currents Jµa = ψ̄iγ
µτaijψj are conserved. Again we need to use the equations

of motion (∂ψ = ∂ψ̄ = 0) to see this.

Example with external symmetry

Consider the shift symmetry

xµ → xν + aµ. (19)

Thus in the master formula of eq(8) we have Xν = aν simply and Φα = 0, and

Jν = aµ
(

δνµL − ∂νϕi
∂L

∂(∂µϕi)

)

= aµT νµ , (20)

where Tµν is the energy momentum tensor. Note that the conserved charges here are T 0
0

and T 0
i the energy momentum.

Axial symmetry

Consider a single fermion ψ with

L = iψ̄γ.∂ψ. (21)

Defining the global transformation U = eiαγ5 , L is invariant under

ψ → Uψ =⇒ δψ = iαγ5ψ (22)

ψ̄ → ψ̄U =⇒ δψ̄i = iαψ̄γ5 infinitessimally. (23)

This leaves the action invariant because [γµ, γ5]+ = 0 (I will use a notation where anti-

commutation is denoted [A,B]+) so

L → L− αψ̄γγ5.∂ψ − ψ̄γ5γ.∂(αψ) = 0. (24)
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Hence using eq(8) we have

J̃µ = iψ̄γ(iαγ5ψ)

= −αψ̄γγ5ψ. (25)

(You may wonder, if L is invariant by itself, why do we need to integrate by parts to get

the Noether current? The point is that both ψ and ψ̄ have equations of motion. The

Lagrangian in this form gives the ψ equation of motion from which we can of course get

the ψ̄ one by complex conjugation. Of course this should be consistent with the ψ̄ equation

of motion when we integrate by parts.) Hence the axial current Jµ5 = ψ̄γγ5ψ is conserved,

which again we see using the equations of motion (∂ψ = ∂ψ̄ = 0).

2 Charge and Current Algebras

It is important to realize that the charges are the generators of global symmetry transfor-

mations. That is

δǫϕi = iǫ[Q,ϕi]. (26)

One familiar example is time translation: in QM for any time dependent operators A(t)

we have
dA

dt
= i[H,A] +

∂A

∂t
. (27)

As we just saw, if the operators do not explicitly depend on time, then H =
∫

T 0
0 d

3x is

the conserved charge corresponding to invariance of the action under x0 → x0 + δx0.

As such the charges generally have to satisfy the same algebras as the generators – in fact

it is only because of this that the symmetry has any useful physical meaning. In particular

it is the charges which are the physical observables that participate in interactions rather

than gauge fields for example. Indeed (as an aside) one can carry out the following exer-

cise. Suppose we decide to gauge the conserved U(1) symmetry above but without adding

dynamical gauge fields (i.e. no Yang-Mills term). Then we would still include a gauge

field inside a covariant derivative but this is understood as an auxilliary field. Since there

is no Y-M term and no derivatives for it we can simply eliminate the gauge field with its

equations of motion. If one does this one finds that the U(1) gauge field Aµ is identified

with the U(1) current which is of course just a composite of scalars. Quantization proceeds
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as usual, but when one comes to the BRST quantization conditions one finds that the cur-

rent develops a vector pole (when the U(1) symmetry is unbroken). This pole corresponds

precisely to the massless photon. In other words the photon is in this sense a composite

with no more or less physical meaning than the conserved current! Of course doing any

calculations in this highly non-linear environment would be insanely difficult, nevertheless

it illustrates the huge reduncancy of the gauge theory and the fact that the current is the

crucial physical observable. For more details of this story consult Kugo and Townsend’s

original paper on the CPN−1 model.

Let us first prove eq(26) for internal symmetries:

Proof that Q =⇒ δϕi: The charge corresponding to J̃µ is

Q̃(t) =

∫

d3xJ̃µ =

∫

d3x
∂L

∂(∂0ϕi)
δǫϕi. (28)

The quantity

Πi(x) =
∂L

∂(∂0ϕi)
(29)

is by definition the momentum conjugate to ϕi; that is in order to quantize such a

system of fields we begin by defining the equal time commutation relation

[Πi(t,y), ϕj(t,x)]± = −iδijδ3(y − x), (30)

where again ±means commutator or anticommutator. As a sanity check, for fermions

Πi = −iψ̄γ0 (with a minus sign for anticommuting fermions) and we recover [ψ†
i (t,y), ψj(t,x)]+ =

δijδ
3(y − x) as we should. Now form

Multiply both sides by Integrating both sides over y gives

[Q̃(t), ϕj(t,x)]± =

∫

d3y [Πi(t,y), ϕj(t,x)] δǫϕi(t,y) (31)

since [δϕi, ϕj ]± = 0 by assumption. Hence

[Q̃(t), ϕj(t,x)]± = −iδij
∫

d3yδ3(y − x)δϕi(t,y) = −iδǫϕj(t,x). (32)

The unit charge operator Q is then given by ǫQ = Q̃ and the result follows.�
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Now consider the charge algebra. As an example consider the isospin symmetry (or indeed

any non-Abelian global symmetry with generators denoted τa). The generators obey a

symmetry given by

[Ta, Tb] = iCcabTc (33)

where Ccab are the structure constants. The currents are given by

Jµa = ψ̄γµTaψ (34)

and hence

Qa =

∫

d3xψ̄γ0Taψ

=

∫

d3xψ†Taψ. (35)

The claim is that the Qa satisfy the identical algebra to the Ta. To show this we form the

commutator at equal time (so we will not repeat the t explicitly) and then perform a fairly

tedious set of manipulations as follows:

[Qa, Qb] =

∫

d3x

∫

d3y[ψ†(x)Taψ(x), ψ
†(y)Tbψ(y)]

=

∫

d3x

∫

d3yTaijTbkl(ψ
†
i (x)ψj (x)ψ

†
k
(y)ψl(y) − ψ†

k
(y)ψl(y)ψ

†
i (x)ψj(x))

=

∫

d3x

∫

d3yTaijTbkl

(

ψ†
i (x)

{

δkjδ
3(y − x)− ψ†

k
(y)ψj (x)

}

ψl(y) − ψ†
k
(y)ψl(y)ψ

†
i (x)ψj (x)

)

=

∫

d3x

∫

d3yTaijTbkl

(

ψ†
i (x)δkjδ

3(y − x)ψl(y) − ψ†
k
(y)ψ†

i (x)ψl(y)ψj(x) − ψ†
k
(y)ψl(y)ψ

†
i (x)ψj (x)

)

=

∫

d3x

∫

d3yTaijTbkl

(

ψ†
i (x)δkjδ

3(y − x)ψl(y) − ψ†
k
(y)

{

δilδ
3(y − x)− ψl(y)ψ

†
i (x)

}

ψj(x) − ψ†
k
(y)ψl(y)ψ

†
i (x)ψj(x)

)

=

∫

d3x

∫

d3yTaijTbkl

(

ψ†
i (x)δkjδ

3(y − x)ψl(y) − ψ†
k
(y)δilδ

3(y − x)ψj(x)
)

=

∫

d3x
(

ψ†
i TaijTbklδkjψl − ψ†

k
δilTaijTbklψj

)

=

∫

d3x
(

ψ†TaTbψ − ψ†TbTaψ
)

= iCc
ab

∫

d3x
(

ψ†Tcψ
)

= iCc
abQc.

The algebra [Qa(t), Qb(t)] = CcabQc(t) is called the charge algebra. An important aspect

of charge algebras is that they are satisfied even when the symmetry is explicitly broken.
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In that case one would expect the charges Qa(t) to be functions of time, but the algebra

to remain good. For example consider L = L0 + L1 where the second piece is a pure

interaction that contains no derivatives. Then the charges are not conserved because they

do not commute with the Hamiltonian, but they are built only from the L0 piece of the

lagrangian. Therefore none of the above manipulations changes and the charge algebra is

still preserved.

A good example of this phenomenon is the QCD system. Typically when discussing chiral

symmetry breaking one defines quarks in SU(3) flavour triplets

qi =









u

d

s









. (36)

Because the masses of the quarks are small (where by small we mean much smaller than

the scale ΛQCD ∼ 1GeV of chiral symmetry breaking in the theory). The lagrangian is

L = L0 + L1 with

L0 = iq̄γ.∂q

L1 = muūu+mdd̄d+mss̄s. (37)

In the absence of the second piece the global symmetry of the model is SU(3)A × SU(3)V

with the A and V meaning axial and vector respectively. The conserved currents for these

symmetries (you by now know enough to be able to guess the transformations) are

Aaµ = q̄γµγ5
λa

2
q ; V a

µ = q̄γµ
λa

2
q,

where λa are the 3x3 Gell-Mann matrices. One finds the following algebra always holds

despite the term that violates the global symmetry:

[Qa, Qb] = if cabQc

[Qa, Q5b] = if cabQ5c

[Q5a, Q5b] = if cabQc. (38)
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Note that often one talks in terms of SU(3)R × SU(3)L with

QaL/R =
1

2
(Qa ±Qa5). (39)

In this basis it is easy to check that the symmetry is diagonalized

[QaL/R, Q
b
L/R] = ifabc Q

c
L/R, (40)

with [QaL, Q
b
R] = 0.

3 Symmetry Breaking - summary

The previous discussion brings us briefly to the question of symmetry breaking. The QCD

example above is actually a nice example because it has a number of sources of breaking

of the global flavour symmetry.

• Spontaneous symmetry breaking: when the vacuum does not obey the same

symmetry as the Lagrangian. This includes but is not restricted to the Higgs mecha-

nism. In fact the axial part SU(3)A of the global symmetry of QCD is spontaneously

broken by strong coupling effects. By the Goldstone theorem, the resultiing effective

theory exhibits 8 Goldstone modes that correspond to the 8 adjoints of SU(3)A. The

physics of these states (The pions and K-mesons) can be described by what is known

as a non-linear sigma model, a.k.a. the chiral lagrangian.

• Explicit breaking: the mass terms for QCD are an example of this. If they are

small then symmetry breaking effects will be expressed in terms of these. Indeed the

Goldstone modes (i.e. the mesons) are not quite massless precisely because of this

effect. However because the masses are much smaller than ΛQCD their masses are

correspondingly suppressed.

• Finally there is anomalous breaking: i.e. non-zero Kµ. In this case the charge

algebra is not preserved.
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4 Abelian anomalies

I am going to introduce the anomalies - i.e. the Kµ first, and then later show you how to

(in fact two ways how to) calculate them. The first kind of anomaly is abelian (usually

axial) anomalies. Consider a gauge theory with massless Dirac fermions ψ and a gauge

field Aµij = AµaT aij . I will normalize the fields such that the lagrangian is

L = iψ̄γ.(∂ + iA)ψ. (41)

For future reference I’ll also collect the equations of motion,

γ.(∂ + iA)ψ = 0

ψ̄γ.(
←−
∂ − iA) = 0. (42)

Also for future reference I will define the gauge field strength in the usual way; defining

Dµ
ij = δij∂

µ +Aµij we have

−i[Dµ,Dν ] = Fµν = ∂µAν − ∂µAν + i[Aµ, Aν ].

From this definition we see that the antisymmetrized covariant derivative of the field

strength vanishes (aka the Bianchi identity)

D[µFρσ] = 0. (43)

As usual this lagrangian is invariant under local gauge transformations

ψ → U−1ψ

iAµ → U−1(iAµ + ∂µ)U (44)

where U = eiα
a(x)Ta . Just to check,

L → iψ̄Uγ.(U−1∂ + ∂(U−1) + U−1iA+ U−1(∂U)U−1)ψ

= iψ̄γ.(∂ + U∂(U−1) + (∂U)U−1 + iA)ψ

= iψ̄γ.(∂ + ∂(UU−1) + iA)ψ = L (45)
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since U−1U = 1.

There is also the axial symmetry. Defining the global transformation U5 = eiαγ5 , L is

invariant under

ψ → U5ψ =⇒ δψ = iαγ5ψ

ψ̄ → ψ̄U5 =⇒ δψ̄i = iαψ̄γ5 infinitessimally. (46)

Note that the relation {γ5, γ0} = 0 requires D to be even. As before Jµ5 = ψ̄γγ5ψ seems

to be is conserved, and there seems to be an axial charge

Q5 =

∫

d3xψ†γ5ψ. (47)

Again we see this using the classical equations of motion

∂.J5 = (∂ψ̄)γγ5ψ + ψ̄γγ5∂ψ

= iψ̄γ.Aγ5ψ − ψ̄γ5(−iγ.A)ψ

= iψ̄γ.Aγ5ψ − iψ̄γ.Aγ5ψ = 0. (48)

where we used {γ5, γ0} = 0 to move the gamma matrices through each other.

However this equation is wrong!! In QFT Adler Bell and Jackiw showed in 1969 that the

derivative depends on background values of the field Aµ:

∂.J5 =
1

16π2
εαβγδtr(FαβFγδ) (49)

=
1

4π2
εαβγδ∂α

[

Aβ∂γAδ +
2

3
AβAγAδ

]

. (50)

Note that the variation in the action is

δS =

∫

d4x∂µ [J
µ
5 −Kµ] (51)

where

Kµ =
1

4π2
εµβγδ

[

Aβ∂γAδ +
2

3
AβAγAδ

]

. (52)

This is precisely the extra piece in the derivation of Noether’s theorem. It tells us that

in the presence of expectation values for the gauge fields, the axial current is no longer
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preserved. Recall also that the Kµ is a function that is required to vanish at the boundary.

On the other hand the non-conservation of current appears to be entirely determined by

the configuration of the expectation values of the Aµ fields as we approach the boundary of

the volume. Indeed in a static gauge configuration Q̇5 = −
∫

dσ.(J5−K) by the divergence

theorem. Thus the non-conservation of Q5 can be computed by integrating Kµ over the

bounding surface: even though Kµ vanishes there, the integral over a bounding surface of

radius r goes as r2 which means that the sort of gauge fields VEVS that can give interesting

non-conservation effects must go as Aµ ∼ 1/r (otherwise we would get zero or infinity upon

taking the r → ∞ limit). This smacks of topological properties such as winding number,

and indeed there is a close connection. Also note that more generally one would write

∂.J5 =
1

16π2
εαβγδtr(q5FαβFγδ), (53)

where q5 is the axial charge of the field. Thus if we add a second fermion there will be two

axial global symmetries q5 and q′5. There will be a combined “axial” current J−
5 = J5 − J ′

5

that is anomaly free because the contributions to ∂.J ′
5 cancel, while J+

5 = J5 + J ′
5 remains

anomalous.

It is tempting to say that the “action is not invariant” because of the anomaly. I think

this is misleading. It is rather that, in the quantum theory, just requiring invariance of the

classical action is not enough to determine ∂.J5. If one instead considers the full partion

function Z =
∫

DψDψ̄DAeiS invariance under chiral transformations (which is a trivially

true) requires Z =
∫

DψDψ̄DAeiS =
∫

Dψ′Dψ̄′DAeiS′
=
∫

DψDψ̄DAei(S+δS); one finds

that as well as the current piece in S′, δS contains an extra piece from transforming the

measure, and in total δS = ǫ
∫

d4x(∂.J5 − ∂.K). So we are still requiring δS = 0, it is just

that part of δS comes from the path integral measure. (Saying the “classical action is not

invariant” is just non-sensical).

5 Non-Abelian (gauge) anomalies

There are anomalies associated with the non-abelian symmetries as well. As the anomalous

breaking is due to the presence of gauge fields, it turns out that there is no anomaly

associated with global non-abelian groups such as isospin. The issue here is really to do

with the consistency of gauge non-Abelian groups. Therefore consider a gauge theory with



5 Non-Abelian (gauge) anomalies 16

left handed massless Weyl fermions ψ and gauge field Aµ = AµaT a, with lagrangian

L = iψ̄Lγ.(∂ + iA)ψL, (54)

where the L subscript means projection onto the left chirality, so that a Dirac fermion

would look like

ψ =

(

ψL

ψR

)

(55)

in the Weyl representation of γ’s. The covariant derivative for the adjoints is

Db
µa = δba∂µ + f bacA

c
µ. (56)

and the gauge transformation is

Aaµ → Aaµ − iDa
µbα

b

ψ̄ → ψ̄ − iαaψ̄T a.

ψ → ψ + iαaT
aψ. (57)

The lagrangian is clearly invariant under this transformation since

δL = αaψ̄LT
aγ.DψL − ψ̄LT aγ.D(αaψL) + ψ̄Lγ.(DµαaT

a)ψL. (58)

The current associated with this transformation is similar to the isospin case:

Jµa = ψ̄γµTaψ. (59)

One has to be careful about the physical meaning of such a current though because it is

not gauge invariant, hence not directly observable. Although the situation looks similar to

the abelian case the physics is quite different. Nevertheless, we can ask how such a current

should behave in the classical theory. The easiest way to see this is from the equations of

motion of the field to which the current couples, namely Aµ:

∂ν
∂L

∂∂νAµa
=

∂L
∂Aµa

=⇒

(DµFµν)
a = g2ψ̄Lγ

µT aψL = g2Jaν . (60)
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This is the usual non-abelian form of (two of) Maxwell’s equations, and then

(D.J)a = 0 (61)

follows simply by hitting both sides of the equation of motion with a Dν and from the

(anti)-symmetry of the µν indices on the LHS.

Again this equation is wrong, as Bardeen (1969), and Gross and Jackiw (1972) showed.

The derivative depends on background values of the field Aµ as actually

(D.J)a =
1

24π2
εαβγδ∂αtr

[

T aAβ∂γAδ +
1

2
AβAγAδ

]

.

The situation here is much more critical than for global anomalies because there is some-

thing wrong with the equations of motion! There must be extra terms in the Lagrangian

generated when we do a gauge transformation which is a sure sign that the theory is

non-renormalizable.

Another sign that something is wrong can be found in the following way which is similar

in spirit to the Noether procedure for global currents. Although the gauge currents are in

principle not observable in the unbroken theory, there is nothing to prevent us probing the

theory by turning on an expectation value for Aµ = Āµ + δAµ. This is a supposed to be a

spontaneous breaking of the gauge symmetry, and as such the partition function should be

invariant under gauge transformations of the VEV. The partition function is of the form

Z[Ā] =

∫

DADψDψ̄eiS[A,ψ,ψ̄]

=

∫

DδAeiΓ[Ā]eiS[δA,]. (62)

The factor eiΓ[Ā] is derived from the path integrals of the fermions quantixed over that

background;

eiΓ[Ā] =

∫

DψDψ̄ei
∫

iψ̄γ.(∂+iĀ+iδA)ψ. (63)

Now consider changing the background by an infinitessimal gauge transformation, Ā →
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Ā′ = Ā− iDα. We find

eiΓ[Ā
′] − eiΓ[Ā] =

∫

DψDψ̄
(

ei
∫

iψ̄γ.(∂+iĀ+iδA)ψ − ei
∫

iψ̄γ.(∂+iĀ−iDα+iδA)ψ
)

=

∫

DψDψ̄
(

ei
∫

iψ̄γ.(∂+iĀ+iδA)ψ − ei
∫

iψ̄γ.(∂+iĀ−iDα+iδA)ψ
)

=

∫

DψDψ̄
[
∫

ψ̄γ.(Dα)ψ

]

ei
∫

iψ̄γ.(∂+iĀ+iδA)ψ

= −
∫

DψDψ̄
[
∫

αa(D.J)
a

]

ei
∫

iψ̄γ.(∂+iĀ+iδA)ψ .

Thus if D.J 6= 0 we see that the partition function depends on the gauge that choose for

our VEV, which is another way of saying that the gauge symmetry is actually already

explicitly broken.

We can summarize the different meaning of the abelian versus non-abelian anomalies in

the following table:

Abelian non-Abelian

currents singlet adjoint

Total divergence Y Y

Bad? N Y

Coefficients 1
4π2 , 2

3
1

24π2 , 1
2

6 Computing the ABJ anomaly perturbatively

There are two ways to compute the ABJ anomaly - the original analysis was based on

the regularization ambiguties of the theory. For simplicity consider massive QED. Setting

g = 1 to reduce clutter, and defining /D = γ.(∂ + iA), the lagrangian is

L = ψ̄(i /D −m)ψ − 1

4
FµνF

µν . (64)

The equations of motion are,

i /Dψ = mψ

∂µF
µν = Jν . (65)
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The currents are

Jµ = ψ̄γµψ

Jµ5 = ψ̄γµγ5ψ, (66)

but now classically we find

∂.J = 0

∂.J5 = 2imP, (67)

where P = ψ̄γ5ψ.

Proof of second equation: ∂.J5 = (∂ψ̄)γµγ5ψ − ψ̄γ5γµ(∂ψ) = iψ̄( /A + m)γ5ψ + iψ̄γ5( /A +

m)ψ = 2imψ̄γ5ψ.

6.1 Tree-level Ward Identities

In order to calculate the anomaly we will consider the amplitudes

Tµνλ(k1, k2, q) =

∫

d4x1d
4x2〈0|T [Jµ(x1)Jν(x2)J5λ(0)] |0〉ei(k1x1+k2x2)

Tµν(k1, k2, q) =

∫

d4x1d
4x2〈0|T [Jµ(x1)Jν(x2)P (0)] |0〉ei(k1x1+k2x2) (68)

where q = k1 + k2.

These amplitudes should satisfy Ward identities based on the classical current conservation

equations (67). In order to derive them we need to take derivatives for which we need an

identitiy:

∂µxT
[

Jµ(x)Ô(y)
]

= ∂µx

[

JµÔϑ(x0 − y0) + ÔJµϑ(y0 − x0)
]

= T
[

(∂x.J)Ô
]

+
[

J0, Ô
]

δ(x0 − y0). (69)

The last term is known as the Schwinger term. With this in mind, let us take the derivative
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of Tµνλ with respect to x1: we find

kµ1Tµνλ(k1, k2, q) =

∫

d4x1d
4x2k

µ
1 〈0|T [Jµ(x1)Jν(x2)J5λ(0)] |0〉ei(k1x1+k2x2)

=

∫

d4x1d
4x2〈0|T [JµJνJ5λ] |0〉(−i∂µx1e

i(k1x1+k2x2))

=

∫

d4x1d
4x2

(

i∂µx1〈0|T [JµJνJ5λ] |0〉
)

ei(k1x1+k2x2)

=

∫

d4x1d
4x2i〈0|T [(∂x1 .J) JνJ5λ] + [J0(x1), JνJ5λ] δ(x

0
1 − x02)|0〉ei(k1x1+k2x2).(70)

Because of the abelian current/charge algebra we can set the Schwinger term to zero. In

addtion ∂.J = 0 and so the RHS vanishes:

kµ1Tµνλ(k1, k2, q) = 0. (71)

Likewise

kν2Tµνλ(k1, k2, q) = 0. (72)

These are the vector Ward identities.

In addition we have the axial-vector Ward identity from the x3 derivative. We can write

Tµνλ(k1, k2, q) =

∫

d4x1d
4x2d

4x3δ(x3)〈0|T [Jµ(x1)Jν(x2)J5λ(x3)] |0〉ei(k1x1+k2x2−qx3).
(73)

Then

qλTµνλ(k1, k2, q) =

∫

d4x1d
4x2d

4x3δ(x3)q
λ〈0|T [Jµ(x1)Jν(x2)J5λ(0)] |0〉ei(k1x1+k2x2−qx3)

=

∫

d4x1d
4x2d

4x3δ(x3)〈0|T [JµJνJ5λ] |0〉(i∂λx3
ei(k1x1+k2x2−qx3))

=

∫

d4x1d
4x2d

4x3δ(x3)
(

−i∂λx3
〈0|T [JµJνJ5λ] |0〉

)

ei(k1x1+k2x2−qx3)

= −i
∫

d4x1d
4x2d

4x3δ(x3)〈0|T [JµJν (∂x3
.J5)] +T [Jµ [Jν , J5,0]] δ(x

0
2 − x03)

+T [Jν [Jµ, J5,0]] δ(x
0
1 − x03)|0〉ei(k1x1+k2x2−qx3)

= −i
∫

d4x1d
4x2〈0|T [JµJν (∂.J5)] |0〉ei(k1x1+k2x2)

= 2m

∫

d4x1d
4x2〈0|T [JµJνP ] |0〉ei(k1x1+k2x2)

= 2mTµν(k1, k2, q). (74)
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6.2 One loop contributions to the Ward identities

We are now ready to compute the anomaly. The one loop contribution to the anomaly is

through the diagram in the figure below, where there is a J5 current coming out of the

q-vertex:

Wick contracting the fermions in the currents gives

T
(1)
µνλ = −

∫

d4p

(2π)4

{

tr

(

i

/p−m
γλγ5

i

/p− /q −m
γν

i

/p− /k1 −m
γµ

)

+

(

k1 ↔ k2

µ↔ ν

)}

.

(75)

Meanwhile the same diagram with a P on the q−vertex gives

T (1)
µν = −

∫

d4p

(2π)4

{

tr

(

i

/p−m
γ5

i

/p− /q −m
γν

i

/p− /k1 −m
γµ

)

+

(

k1 ↔ k2

µ↔ ν

)}

. (76)

6.2.1 Corrections to the axial Ward identities

In order to get the axial ward identities we can use the identity

/qγ5 = γ5(/p− /q −m) + (/p−m)γ5 + 2mγ5. (77)

Thus

qλT
(1)
µνλ = 2mT (1)

µν + i

∫

d4p

(2π)4

{

tr

(

1

/p−m
[

γ5(/p− /q −m) + (/p−m)γ5
] 1

/p− /q −m
γν

1

/p− /k1 −m
γµ

)

+

(

k1 ↔ k2

µ↔ ν

)}

= 2mT (1)
µν +DA

µν +DB
µν +DC

µν +DD
µν , (78)
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where

DA
µν = i

∫

d4p

(2π)4

{

tr

(

1

/p−m
γ5γν

1

/p− /k1 −m
γµ

)}

DB
µν = i

∫

d4p

(2π)4

{

tr

(

1

/p− /q −m
γν

1

/p− /k1 −m
γµγ5

)}

DC
µν = i

∫

d4p

(2π)4

{

tr

(

1

/p−m
γ5γµ

1

/p− /k2 −m
γν

)}

DD
µν = i

∫

d4p

(2π)4

{

tr

(

1

/p− /q −m
γµ

1

/p− /k2 −m
γνγ5

)}

. (79)

We can collect the four terms as follows

∆A
µν = DA

µν +DD
µν

= i

∫

d4p

(2π)4

{

tr

(

1

/p−m
γ5γν

1

/p− /k1 −m
γµ

)

− tr

(

1

/p− /k2 −m
γ5γν

1

/p− /q −m
γµ

)}

(80)

and

∆B
µν = DC

µν +DB
µν

= i

∫

d4p

(2π)4

{

tr

(

1

/p−m
γ5γµ

1

/p− /k2 −m
γν

)

− tr

(

1

/p− /k1 −m
γ5γµ

1

/p− /q −m
γν

)}

(81)

where we have used {γ5, γµ} = 0, q = k1 + k2 and cyclicity of the traces.

Now we note that each of these two terms ∆A,B is the sum of two integrals that appear to

cancel because they represent merely a shift in integration variable. That is both ∆′s are

of the form

∆A
µν = i

∫

d4p

(2π)4
{fµν(p, k1)− fµν(p− k2, k1)}

∆B
µν = i

∫

d4p

(2π)4
{fνµ(p, k2)− fνµ(p− k1, k2)} (82)

where

fµν(p, k) = tr

(

1

/p−m
γ5γµ

1

/p− /k −m
γν

)

. (83)

The crucial observation is that these terms do not vanish because we have to regulate the
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integrals. In general suppose we have an integral

∆(k) = i

∫

d4p

(2π)4
f(p)− f(p− k)

= i

∫

d4p

(2π)4
[

kµ∂pµf − kµkν∂pµ∂pνf + . . .
]

(84)

where the ellipsis indicates terms that are not divergent (since each k−derivative brings

down another power of p). By the divergence theorem this can be written as an integral

over the Euclidean surface S(|p|) at infinity,

∆(k) = −
∫

S(|p|)

dS.k

(2π)4
f, (85)

where higher terms can be neglected since the integrand vanishes too quickly at infinity

(d3σ ∼ |p|3 while ∂2f ∼ 1/|p|4). The surface element at constant radius |p| is given by

dSµ = |p|2dpµ.

We may now throw away terms dependent on m and k in f so that

∆A
µν = −

∫

S(|p|)

dS.k2

(2π)4
tr

(

1

/p
γ5γµ

1

/p− /k1
γν

)

= −
∫

S(|p|)

dp.k2

(2π)4
(pσ − kσ1 ) pρ

p2
tr (γργ5γµγσγν) + . . .

= −4i
∫

S(|p|)

dp.k2

(2π)4
pρkσ1
p2

εµνρσ + . . . (86)

where we used tr (γργ5γµγσγν) = tr (γ5γµγνγργσ) = −4iεµνρσ , and εµνρσp
ρpσ = 0. Finally

using
∫

dpσpρ = 1
4p

2gρσVol(S3) =
π2

2 p
2gρσ , and permuting ρ, σ, we obtain

∆A
µν = i

kρ1k
σ
2

8π2
εµνρσ . (87)

The term for ∆B
µν is identical but with µ→ ν and k1 → k2 hence

∆B
µν = ∆A

µν = i
kρ1k

σ
2

8π2
εµνρσ . (88)

You might fondly imagine we are now done. Unfortunately not: this ambiguity due to
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regularization causes us to now suspect that we may also obtain terms from regularizing

the Tµνλ integral. Indeed defining τµνλ(k) to be T
(1)
µνλ with the momentum p shifted to

p+ k in the integrand, we can shift Tµνλ as

Tµνλ → Tµνλ +∆µνλ, (89)

where ∆µνλ(k) = τµνλ(k)− τµνλ(0). We have

∆µνλ = −
∫

d4p

(2π)4

{

tr

(

i

/p+ /k −mγλγ5
i

/p+ /k − /q −m
γν

i

/p+ /k − /k1 −m
γµ

)

+

(

k1 ↔ k2

µ↔ ν

)}

.

+

∫

d4p

(2π)4

{

tr

(

i

/p−m
γλγ5

i

/p− /q −m
γν

i

/p− /k1 −m
γµ

)

+

(

k1 ↔ k2

µ↔ ν

)}

(90)

Applying the previous discussion this becomes

∆µνλ = i

∫

S(|p|)

idS.k

(2π)4

{

tr

(

1

/p
γλγ5

1

/p− /q
γν

1

/p− /k1
γµ

)}

+

(

k1 ↔ k2

µ↔ ν

)

= i

∫

S(|p|)

idp.k

(2π)4
pρ(p− q)σ(p − k1)α

|p|4 {tr (γργλγ5γσγνγαγµ)}+
(

k1 ↔ k2

µ↔ ν

)

.(91)

In order to get something non-zero as |p| → ∞ we need a power of p4 on the top, which

means we need retain only the leading term

∆µνλ = i

∫

S(|p|)

idp.k

(2π)4
pρpσpα

|p|4 {tr (γργλγ5γσγνγαγµ)}+
(

k1 ↔ k2

µ↔ ν

)

= −
∫

S(|p|)

dp.k

(2π)4
pρpσpα

|p|4 {tr (γργλγ5γσ(2gνα − γαγν)γµ)}+
(

k1 ↔ k2

µ↔ ν

)

= −
∫

S(|p|)

dp.k

(2π)4
pρpσpα

|p|4 {tr (γργλγ5[2gναγσγµ − gσαγνγµ))}+
(

k1 ↔ k2

µ↔ ν

)

= − i

4π4

∫

S(|p|)
dp.k

1

|p|2 ερλνµp
ρ +

(

k1 ↔ k2

µ↔ ν

)

= − i

8π2
kρεµνλρ +

(

k1 ↔ k2

µ↔ ν

)

. (92)
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What should we take for k? The only sensible possibility is to define it in terms of the

physical momenta, k1 and k2; let us call it k = αk1 + α′k2, so that

∆µνλ = − i

8π2
εµνρλ

[

(αkρ1 + α′kρ2)− (αkρ2 + α′kρ1)
]

= − iβ

8π2
εµνρλ [k

ρ
1 − k

ρ
2 ] , (93)

where β is some other undefined parameter (as I can’t calculate it I didn’t even need to

bother keeping track of factors of π).

Together, eqs.(93), (88) and (78) imply

qλT
(1)
µνλ = 2mT (1)

µν + i
kρ1k

λ
2

4π2
εµνρλ −

iβ

8π2
εµνρλ(k

ρ
1 − k

ρ
2)(k

λ
1 + kλ2 )

= 2mT (1)
µν + i(1 − β)k

ρ
1k

λ
2

4π2
εµνρλ. (94)

6.2.2 Corrections to the vector Ward identities

Now we turn to the contributions to the vector ward identities. The simplest way to get

these is to write /k1 = /p−m− (/p − /k1 −m). Going back to eq.(75) we find

kµ1T
(1)
µνλ = ikµ1

∫

d4p

(2π)4

{

tr

(

1

/p−m
γλγ5

1

/p− /q −m
γν

1

/p− /k1 −m
γµ

)

+

(

k1 ↔ k2

µ↔ ν

)}

.

(95)

The first piece gives

kµ1T
A
µνλ = i

∫

d4p

(2π)4

{

tr

(

γλγ5
1

/p− /q −m
γν

1

/p− /k1 −m
− 1

/p−m
γλγ5

1

/p− /q −m
γν

)}

= i

∫

d4p

(2π)4

{

tr

(

γλγ5
1

/p− /q −m
γν

1

/p− /k1 −m
− γλγ5

1

/p− /q −m
γν

1

/p−m

)}

= i

∫

d4p

(2π)4

{

−tr
(

1

/p− /k1 −m
γ5γλ

1

/p− /q −m
γν +

1

/p−m
γ5γλ

1

/p− /q −m
γν

)}

(96)
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For the second piece use /k1 = /p− /k2 −m− (/p− /q −m)

kµ1T
B
µνλ = i

∫

d4p

(2π)4

{

tr

(

1

/p−m
γλγ5

1

/p− /q −m
/k2

1

/p− /k2 −m
γν

)}

= i

∫

d4p

(2π)4

{

−tr
(

1

/p−m
γ5γλ

1

/p− /q −m
γν +

1

/p−m
γ5γλ

1

/p− /k2 −m
γν

)}

.(97)

Mercifully these expressions are similar to previous ones. Summing them (and noting that

two terms cancel) we can write

kµ1T
(1)
µνλ = i

∫

d4p

(2π)4
{fλν(p, k2)− fλν(p− k1, k2)} = ∆B

νλ

=
i

8π2
ενλρσk

ρ
1k

σ
2 +∆− shift (98)

Finally we need to add the same ∆ shift to Tµνλ so that

kµ1T
(1)
µνλ =

i

8π2
ενλρσk

ρ
1k

σ
2 +

iβ

8π2
ερνσλk

ρ
1 [k

σ
1 − kσ2 ]

=
i

8π2
ενλρσk

ρ
1k

σ
2 +

iβ

8π2
ενλρσk

ρ
1k

σ
2

=
i(1 + β)

8π2
ενλρσk

ρ
1k

σ
2 . (99)

6.2.3 The end result ...

Our main results are eqs.(94) and (99). There are two Ward identities and only one free

parameter β. If we wish to keep our original abelian gauge group preserved the only

consistent choice is to satisfy the vector Ward identify and take β = −1. This then leaves

us with an anomalous axial Ward identity

qλTµνλ = 2mTµν + i
kρ1k

λ
2

2π2
εµνρλ. (100)

Going back to the original derivation of the Ward identity we can see what this means

for the divergence of the axial current. Setting m = 0 we can check that the proposed

anomaly correctly reproduces the anomalous axial Ward identity:
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qλTµνλ = −i
∫

d4x1d
4x2〈0|T [JµJν (∂.J5)] |0〉ei(k1x1+k2x2)

= −i
∫

d4x1d
4x2〈0|T

[

JµJν
1

4π2
εµ′ν′ρσ∂

µ′Aν
′

∂ρAσ
]

|0〉ei(k1x1+k2x2)

=
−i
4π2

εµ′ν′ρσ

∫

d4x1d
4x2〈0|Jµ∂µ

′

Aν
′ |0〉〈0|Jν∂ρAσ|0〉ei(k1x1+k2x2) + perm

=
i

4π2
εµ′ν′ρσ

∫

d4x1d
4x2k

µ′

1 k
ρ
2〈0|JµAν

′ |0〉〈0|JνAσ|0〉ei(k1x1+k2x2) + perm

= − i

4π2
εµ′µρν

∫

d4x1d
4x2k

µ′

1 k
ρ
2δ

4(x1)δ
4(x2)e

i(k1x1+k2x2) + perm

=
i

2π2
εµνµ′ρk

µ′

1 k
σ
2 , (101)

where we used that 〈0|JµAν |0〉 = 〈0|ψ̄γµψAν |0〉 = igδνµδ
4(x) is just the gauge vertex.

6.3 One loop exactness

The anomaly we have just derived receives no further corrections at any order in pertur-

bation theory and is finite. We can see this by simple power counting. Let us introduce

a loop counting parameter S → S/λ. In the Feynman rules, the propagators will receive

a factor λ while vertices receive a factor λ. A diagram has a total λI−V where I is the

number of internal lines and V the number of vertices. These are related to the number

of loops as I = L + V − 1. (An informal induction proof goes as follows: each internal

propagator either connects 2V ’s or forms a loop, thus always adding 1 to the number of

loops L. On the other hand inserting a new vertex V → V +1, increases I by 1 but leaves L

unchanged. Thus I = V +L+ const. The simplest diagram, the loop with I = L = V = 1,

yields I = L+ V − 1). The one loop diagram has L = 1 and I = 3 so is finite.

Now the amplitude Tµνλ has scaling dimension 1, so the ward identity for qλTµνλ must

have scaling dimension 2. Furthermore the anomaly must be proportional to ε (if it were

not we could have performed dimensional regularization on our integrals which would give

no momentum ambiguity). Because of the symmetry in k1, k2, the anomaly must be of

the form Ak1k2ε. Thus the anomaly coefficient A is dimensionless and therefore cannot

contain |p| → ∞ divergences. Because of the power counting argument above, a higher

than one-loop diagram has I > V , and the diagrams must have V ≥ 3 (since three vertices

are required for the currents to emerge). V = 3 corresponds to the one-loop case so higher
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order diagrams yielding operators of the form k1k2ε would have to have V ≥ 4 and hence

I ≥ 5, or to be of the form ∼
∫

d4pk1k2ε/|p|n≥5.

7 Fujikawa’s Method

The determination of the anomaly by perturbative methods looks a little obscure, since it

is bound up with ambiguities in infinities. The real source of the anomaly becomes much

clearer using a different method due to Fujikawa1. Consider electrodynamics again with

the axil symmetry

ψ → U5ψ =⇒ δψ = iαγ5ψ

ψ̄ → ψ̄U5 =⇒ δψ̄i = iαψ̄γ5 infinitessimally. (102)

and the gauge symmetry

Aµ → Aµ − i∂µλ

ψ̄ → ψ̄ − iλψ̄

ψ → ψ + iλψ. (103)

Thus the total (finite) transformation of the fermions under a chiral transformation is

ψ̄ → ψ̄′ = eiαγ5 ψ̄

ψ → ψ′ = eiαγ5ψ. (104)

Consider the transformation of the partition function

Z =

∫

DADψ′Dψ̄′eiS[A,ψ
′,ψ̄′]

=

∫

DADψ′Dψ̄′eiS[A,ψ,ψ̄]+i
∫

d4xα∂J5

=

∫

DADψDψ̄ det (exp 2iαγ5) e
iS[A,ψ,ψ̄]+i

∫

d4xα∂J5

=

∫

DADψDψ̄ eTr(2iαγ5)eiS[A,ψ,ψ̄]+i
∫

d4xα∂J5 , (105)

1 You should always be wary when some-one explains something to you in two different ways: inevitably

it means that neither is really satisfactory.
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where the determinant is from the Jacobian of the measure, and the trace with a capital

T means over both Dirac and space-time indices. Our claim is that the anomaly derives

from precisely this term.

Our task is to evaluate

Tr(2iαγ5).

In order to take the trace we need to represent the Hilbert space of fermionic wavefunctions

such that (bearing in mind that this is a gauge theory) it can be regulated in a gauge

invariant way. The most efficient way to do this is to decompose the fermions into an

orthonormal basis of eigenfunctions of the /D = /∂ + i /A operator:

i /Dϕn = λnϕn,
∑

n

ϕn(x)ϕ
†
n(y) = δ4(x− y)1 (106)

where the identity in the completeness relation refers to spinor indices. (In Dirac notation
∑

n〈x, α|n〉〈n|y, β〉 = δαβδ
4(x− y)). Using this basis

Tr(2iαγ5) = 2i

∫

d4x
∑

n

αϕ†
n(x)γ5ϕn(x), (107)

where we sum over spinor indices in order to get that trace. This expression is divergent

and needs to be regulated. We can do this in a gauge invariant way by introducing a

regulating function f(k2) with the properties that f(0) = 1, and

lim
k→∞

f(k2) = lim
k→∞

f ′(k2) = lim
k→∞

f ′(k2) = . . . = 0. (108)

For example f(k2) = e−k
2

would do, but the choice is irrelevant. We can regulate the trace

using this function as

Tr(2iαγ5) = lim
Λ→∞

[

2i

∫

d4x
∑

n

αϕ†
nγ5f

(

λ2n
Λ2

)

ϕn

]

, (109)

so that f cuts off the sum at some scale Λ. Note that the regularization is gauge indepen-

dent as required. In order to reduce clutter I will henceforth omit the limΛ→∞ and take it

as read.
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Using eq.(106) the trace becomes

Tr(2iαγ5) = 2i

∫

d4x
∑

n

αϕ†
nγ5f

(

− /D2

Λ2

)

ϕn. (110)

Next we Fourier transform the basis;

Tr(2iαγ5) = 2i

∫

d4x

∫

d4k

(2π)4
d4k′

(2π)4

∑

n

αe−ik
′xϕ̃†

n(k
′)γ5f

(

− /D2

Λ2

)

ϕ̃n(k)e
ikx. (111)

We now use the identity

/D
2

= γµγνDµDν =
1

2
[γµ, γν ]DµDν +

1

2
{γµ, γν}DµDν

=
i

2
γµγνFµν +D2 (112)

and note that for any function g(x), we have Dµ

[

g(x)eikx
]

= eikx (ikµ +Dµ) g. Hence us-

ing completeness of the momentum eigenstates (derived from Fourier transforming eq.(106)

giving (
∑

n ϕ̃n(k)ϕ̃
†
n(k′) = (2π)4δ(k − k′)1)) we have

Tr(2iαγ5) = 2i

∫

d4x

∫

d4k

(2π)4
d4k′

(2π)4

∑

n

αϕ̃†
ne
ikxe−ik

′xγ5f

(

− i
2γ

µγνFµν − (−ik +D)2

Λ2

)

ϕ̃n

= 2i

∫

d4x

∫

d4k

(2π)4
trαγ5f

(

− i
2γ

µγνFµν − (−ik +D)2

Λ2

)

= 2i

∫

d4x

∫

d4k

(2π)4
trαγ5f

(

− i
2γ

µγνFµν − (−ik +D)2

Λ2

)

. (113)

[In lectures there was a question about where the spinor indices are in this - writing the

spinor indices explicitly we just used
∑

n

(

ϕ̃†
n(k′)

)

α
Ôαβ (ϕ̃n(k))β = (2π)4δ(k−k′)Ôαβδβα =

(2π)4δ(k − k′)trÔ].

Next we notice that the trace over fermion indices always contains a γ5, and that tr(γ5) =

tr(γ5γµγν) = 0. In fact the first non-zero contribution comes from the second term in the
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Taylor series of f . Thus we have

Tr(2iαγ5) = 2i

∫

d4x

∫

d4k

(2π)4
trαγ5

1

2

[

− i
2γ

µγνFµν

Λ2

]2

f ′′
(

k2

Λ2

)

+O(1/Λ6)

= −i
∫

d4x

∫

d4k

Λ4(2π)4
α
1

4
tr(γ5γµγνγργσ)F

µνF ρσf ′′
(

k2

Λ2

)

+O(1/Λ6)

= −
∫

d4x
α

16π4
εµνρσF

µνF ρσ
∫

d4k

Λ4
f ′′
(

k2

Λ2

)

+O(1/Λ6)

We may now take the Λ→∞ limit whereupon the subleading terms vanish.

Tr(2iαγ5) = −
∫

d4x
α

16π4
εµνρσF

µνF ρσA, (114)

where

A =

∫

d4q f ′′
(

q2
)

= i

∫ ∞

0
π2ydy f ′′ (y) . (115)

where q = k/Λ is a dimensionless four vector and the factor i comes from the Wick rotation

to Euclidean space. Integrating by parts
∫∞
0 ydy f ′′ (y) = [yf ′ (y)]∞0 −

∫∞
0 dy f ′ (y) =

− [f ′ (y)]∞0 = 1. Hence A = iπ2, and

Tr(2iαγ5) = −i
∫

d4x
α

16π2
εµνρσF

µνF ρσ. (116)

This is our main result: combining it with eq.(105) the total effective change in the action

can be written

iδS = i

∫

d4xα
(

∂.J5 −
α

16π2
εµνρσF

µνF ρσ
)

, (117)

giving the anomaly!!

8 Anomaly coefficients and constructing anomaly free models

We now return to the issue of how to construct anomaly free models, taking the SM as our

example. First recall the general form of the gauge anomalies: a gauge theory with left
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handed massless Weyl fermions ψ and gauge field Aµ = AµaT a has lagrangian

L = iψ̄Lγ.(∂ + iA)ψL, (118)

where the L subscript means projection onto the left chirality, so that a Dirac fermion

would look like

ψ =

(

ψL

ψR

)

(119)

in the Weyl representation of γ’s. The covariant derivative for the adjoints is

Db
µa = δba∂µ + f bacA

c
µ. (120)

and the gauge transformation is

Aaµ → Aaµ − iDa
µbα

b

ψ̄ → ψ̄ − iαaψ̄T a.

ψ → ψ + iαaT
aψ. (121)

Using the Fujikawa technique, a gauge transformation results in the contribution to the

action of

∫

d4x αa
(

D.JL/R
)a ∓ 1

24π2
εαβγδ∂αtr

[

T aAβ∂γAδ +
1

2
AβAγAδ

]

, (122)

where the ± corresponds to left or right chiralities. Note that the trilinear term comes

from a box diagram.

8.1 The importance of d
abc

Because the terms are always of the same form, in order to discuss the cancellation of

anomalies we can restrict our attention to just the first term:

εαβγδ∂α(T
aAβ∂γAδ) = εαβγδtr

(

T aT bT c
)

(∂αA
b
β)(∂γA

c
δ)

=
εαβγδ

2
tr
(

T a{T b, T c}
)

(∂αA
b
β)(∂γA

c
δ) (123)
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where we used the symmetries of the indices. (In terms of diagrams it is of this form because

the diagram with crossed-over legs effectively just swaps the indices on the generators).

This the anomalies will be zero if

dabc = tr
(

T a{T b, T c}
)

(124)

is zero.

Therefore, for simple groups, we can get a long way by noting the general properties of

dabc:

1. dabc is gauge invariant (in the sense that if we had gauge transformed the theory

we would have still found the same term, or equivalently under the transformation

T → g−1Tg).

2. For a representation R,

dabc(R) = tr
(

T aR{T bR, T cR}
)

. (125)

3. Define d(R) = A(R)d(�) (where � means the fundamental). Then using the proper-

ties of the generators, we find a) A(R̄) = −A(R), b) A(R1 ⊕R2) = A(R1) +A(R2),

c) A(R1 ⊗R2) = A(R1) dim(R2) + dim(R1)A(R2)

4. From 3) it follows that chiral fermions in real or pseudoreal cannot contribute. Ex-

plicitly, a pseudo-real representation has ǫψ∗ = ψ for some ǫ ∈ G. Trivially, ψ →
Uψ =⇒ ψ∗ → U∗ψ∗, but also ψ∗ → ǫ−1Uψ = ǫ−1Uǫψ∗ =⇒ U∗ = ǫ−1Uǫ. Then

since d is gauge invariant d(ψ∗) = d(ψ) by 3a) but d(ψ∗) = A(ψ∗)d(ψ) = −d(ψ), by

1). Hence d(ψ) = 0.

5. Clearly if there are no reprentations that contribute then there are no anomalies; the

following groups have only real or pseudo-real representations so are automatically

anomaly free;

SU(2), SO(2N + 1), SO(4N), Sp(2N), G2, F4, E7, E8.

6. SO(4N + 2) and E6 do have complex representations but they still have d = 0. e.g.

SO(10) and E6 have chiral representations but they are always anomaly free.
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7. SU(N ≥ 3) do in general allow anomalies and we have to make sure they cancel.

8.2 The SM

For more general product groups the situation is much more complicated as we have to

ensure that not only the cubic anomalies cancel but also the mixed anomalies. As our

first example we shall show that the Standard Model is anomaly free. The gauge group is

SU(3)×SU(2)L×U(1)Y so we will encounter of course the same cubic anomalies as above,

but also mixed anomalies when the three generators in the triangle come from different

factors. Before going to the precise particle content we can make some general comments.

In all of the below, we use tr as short for trLeft − trRight:

1. The theory is vector-like with respect to SU(3) (i.e. there are as many 3 as 3̄ quarks)

so that SU(3)3 anomalies cancel.

2. The SU(2)3 anomalies cancel for the reason cited above. Indeed just to check, we

have dabc = tr(τa{τ b, τ c}). But {τ b, τ c} = 2δbc1 and hence dabc = 2tr(τaδbc) = 0 as

advertised.

3. The SU(2)2×SU(3) and SU(2)×SU(3)2 anomalies are zero because we are always

taking the trace over an SU(N) generator.

4. Using for example trace Y to imply summing over the hypercharges of all particles

that can run in the anomaly loop, we see that SU(2)×Y 2 and SU(3)×Y 2 anomalies

are zero again because of the tracelessness of the generators.

5. Cancellation of SU(2)2 × Y is equivalent to tr(Y {τ b, τ c}) = 2δbctrLeftY . Hence we

require

trLeftY = 0. (126)

6. Cancellation of SU(3)2 × Y is equivalent to tr(Y {λb, λc}) = 2δbctrquarksY . Hence

trL−quarksY − trR−quarksY = 0. (127)

7. Noting that left and right chiralities contribute with opposite sign, cancellation of
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Y 3 anomalies requires

trY 3 ≡ trLeftY
3 − trRightY

3 = 0. (128)

Hence we are left with three highly non-trivial conditions on the particle content of the

SM. The content is

ℓL = (1,2,−1)

eR = (1,1,−2)

qL = (3,2,
1

3
)

uR = (3̄,1,
4

3
)

dR = (3̄,1,−2

3
). (129)

One can check that there are as many 3 as 3̄’s as above. We now need to simply correctly

count the multiplicity of states when taking the trace. As generations simply repeat we

may as well consider only one generation, but we must ensure to sum over colours and

flavours. Thus (working down the list for each anomaly),

trL−quarkY − trR−quarkY =
1

3
× 3c × 2f −

4

3
× 3c +

2

3
× 3c = 0

trLeftY = −1× 2f +
1

3
× 3c × 2f = 0

trY 3 = (−1)3 × 2f − (−2)3 +
(

1

3

)3

× 3c × 2f −
(

4

3

)3

× 3c −
(

−2

3

)3

× 3c

= −2 + 8 +
2

9
− 64

9
+

8

9
= 0. (130)

The SM is indeed anomaly free.

Note how constraining these conditions are. Often it is said that the fact that the SM

can be fit into multiplets of SO(10) is a strong hint at Grand Unification. Actually it is

more that anomalies have to cancel for consistency, and the conditions are so constraining

that any consistent theory, even if it does not really unify, is likely to resemble one that

does since as we saw above large classes of simple gauge theories automatically have no

anomalies. Alas anomaly cancellation makes the case for unification weaker rather than

stronger.
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8.3 SQCD

Another important example of anomalies is to be found in supersymmetric QCD (SQCD).

Consider an SU(Nc) supersymmetric theory with Nf quark superfields, Q and Nf an-

tiquark superfields, Q̃. The theory has a global SU(Nf )L × SU(Nf )R symmetry under

which the quarks and antiquarks are rotated amongst themselves. There are also some

U(1)symmetries which I will tell you about in a moment, but let me first remark that such

symmetries are immensely important in for example ’t Hooft anomaly matching. If any

global symmetries do not “see” the gauged SU(Nc) through anomalies (or indeed anything

else), we can be fairly sure that even if the theory becomes strongly coupled they will re-

main intact and can be used as a probe of the theory through the strong coupling regime.

[Think about flavour symmetries in the standard model when SU(3)c confines yielding the

chiral lagrangian description of the low energy theory.] Therefore we need to find which

global symmetries are anomaly free.

Regarding U(1)′s there is one obvious anomaly free one which is Q → eiαQ and Q̃ →
e−iαQ̃. This charge (call it B) is traceless and hence tr(U(1)3B) = tr(U(1)B ×SU(Nc)

2) =

tr(U(1)2B×SU(Nc)) = 0. The orthogonal axial symmetry under which quark and antiquark

rotate the same way (call it U(1)A) is traceful and hence obviously anomalous. It also has

mixed tr(U(1)A × SU(Nc)
2) anomalies and hence is likely to be affected by SU(Nc).

There is one other symmetry known as R-symmetry that is peculiar to SUSY. Take the

Grassman variables θα and allow then to rotate by a phase λ, θ → eiλθ. This means that

θ̄ → e−iλθ̄, and the fact that
∫

d2θθ2 = 1 implies d2θ → e−2iλd2θ. If we at the same time

rotate the chiral multiplets appearing in the superpotential by their own phases such that

the sum of the charges in any term in the superpotential is always 2, so that W → e2iλW ,

it follows that the interaction terms
∫

d2θW are invariant. Likewise the kinetic terms are

invariant (since K = K† and d2θd2θ̄ → d2θd2θ̄). Finally the Yang-Mills terms are if the

gauge field-strength superfield Wα has R−charge 1.

Note that we have to be careful with charge assignements because the R-symmetry does not

commute ith supersymmetry. In particular since Φ ∼ φ+
√
2θψ we see that if Φ→ eirλΦ

then the fermions transform as ψ → ei(r−1)λψ: the R-charge of the fermions in a chiral

supermultiplet is one less than the R-charge of the multiplet itself. On the other hand the

field strength superfield is expanded as Wα ∼ λα+ . . . and the R-charge of any gaugino is

always 1. (This also tells us that any gaugino Majorana mass term breaks all R-symmetries



8 Anomaly coefficients and constructing anomaly free models 37

by the way).

After this short introduction to R-symmetry let us return to the issue of which one in

the SQCD system is anomaly free. We can write the quantum numbers of the quark and

antiquark multiplets under their [SU(Nc);SU(Nf )L, SU(Nf )R, U(1)B , U(1)R] symmetries

as

Q = (Nc; N̄f ,1,
1

Nc
, RQ)

Q̃ = (N̄c;1,Nf ,−
1

Nc
, RQ). (131)

The 1/Nc is by convention since then a baryon QNc has charge unity (actually the more

popular convention seems to be to take the charge of the quarks to to be 1 which I find

reprehensible) . Also note that we have chosen Q and Q̃ to have the same R-charge RQ: if

I had chosen different charges I would have simply been able to add a linear combination

of that R-symmetry and U(1)B to get this R-symmetry.

Now consider the mixed anomalies in order to determine RQ. The only relevant anomaly

is SU(Nc)
2 × U(1)R. We need to know the Dynkin indices of both the fundamentals and

the adjoint (since the gauginos have non-zero R-charge as well. For future reference the

cubic A(R) and quadratic Dynkin indices T (R) for SU(N) are given in the Table below

Irrep dim(R) T (R) A(R)

N 1 1

Adj N2 − 1 2N 0
N((N−1)

2 N − 2 N − 4
N((N+1)

2 N + 2 N + 4
N((N−1)(N−2)

6
(N−3)((N−2)

2
(N−3)((N−6)

2

N((N+1)(N+2)
6

(N+3)((N+2)
2

(N+3)((N+4)
2

From this we see that the total SU(Nc)
2 × U(1)R anomaly is proportional to

2Nf (RQ − 1) + 2Nc =⇒ RQ = 1− Nc

Nf
. (132)
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We conclude that the anomaly free (with respect to the mixed gauge×global) charges are

Q = (Nc; N̄f ,1,
1

Nc
, 1− Nc

Nf
)

Q̃ = (N̄c;1,Nf ,−
1

Nc
, 1− Nc

Nf
). (133)

Note that the global symmetries themselves are not anomaly free which we shall see is an

important property.

9 Anomaly matching and Seiberg duality

One of the most interesting uses of anomalies is in ’t Hooft anomaly matching. The general

idea is as follows. Suppose I have a theory like SQCD above and that it becomes strongly

coupled. In such a case we might want to propose a weakly coupled description of the

physics, for example involving mesons and hadrons. How can we tell if our proposal is the

right one?

’t Hooft came up with the following idea. Suppose we wanted to gauge the large global

symmetry of the theory. Those symmetries will themselves have anomalies: for example

SQCD has a cubic SU(Nf )
3 anomaly of 2Nc. If order to make the theory consistent one

would have to add a weakly coupled sector uncharged under the original SU(Nc) to cancel

these anomalies. I will call it a spectator sector. [Think of the leptons contributing to the

cancellation of SU(2)2−Y anomalies in the SM.] This sector would be unnaffected by the

fact that SU(Nc) becomes strongly coupled. [Continue to think of the leptons in the SM.]

If the proposed weakly coupled description of the strongly coupled theory is a good one,

the spectator sector should cancel the anomalies in that theory too. In other words both

descriptions have to have the same set of global anomalies.

In most cases the matching of global anomalies is relatively weak and one can find a

number of candidate descriptions. Occasionally they are very strong though. One example

is supersymmetric SU(Nc) QCD with Nf flavours, which you have (most likely) already

seen in your SUSY lectures. This theory has a magnetic dual description consisting of an

SU(Nf −Nc) theory with Nf generations of fundamental and anti-fundamental, together

with Nf×Nf meson singlets which are bound states Q̃.Q of electric quarks. Here is another

example due to Kutasov which I will refer to as the KSS model...
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9.1 Anomaly matching in the KSS model

The model is based on an SU(N) gauge group with Nf flavours of quarks and anti-quarks,

and an adjoint field of the SU(N) denoted by X. There is a superpotential of the form

Wel = Xk+1 (134)

where X is an adjoint field of the SU(N) gauge group and k is an integer. (Note that

normally you would think that k = 2 would be a marginal operator and k > 2 operators

would be irrelevant – in both the technical and colloquial sense. However when the theory

is strongly coupled anomalous dimensions are large and the operator can come to dominate

the flow. How you can tell it is going to do this is a story in itself which I will not have

time to get to in due course.)

The symmetry content is

SU(Nf )L × SU(Nf )R ×U(1)B ×U(1)R . (135)

The matter content is then summarised by Table 1.

SU(N) SU(Nf )L SU(Nf )R U(1)B U(1)R
Q ˜ 1 1

Nc
1− 2

k+1
Nc

Nf

Q̃ ˜ 1 − 1
Nc

1− 2
k+1

Nc

Nf

X adj 1 1 0 2
k+1

Tab. 1: The matter content of the electric theory in the KSS model.

The R-charges are determined precisely as for the SQCD model above and are completely

fixed by the requirement that Xk+1 has R-charge 2. (As a check note that when k = 1 the

superpotential is a mass for the adjoint which can then be integrated out - the R−charges

of normal SQCD are recovered.)

The F -term equation for the adjoint can easily be solved;

W ′ = 0 ≡ Xk. (136)

To get the corresponding magnetic theory we need to include set of elementary meson

fields associated with composite operators of the electric model. A crucial aspect of the
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superpotential is that it truncates the chiral ring; that is the equation of motion for X sets

Xk = 0 along the F -flat directions. This means that when matching the moduli spaces,

one need only consider operators upto Xk−1. Thus there are k types of meson operator

that we denote mj;

mj = Q̃Xj−1Q, j = 1 . . . k. (137)

The j = 1 object is the meson of usual Seiberg duality. (Again the k = 1 model is

just the original Seiberg SQCD model if one integrates out the adjoint field.) The field

content of the magnetic theory is q, q̃, mj and x, where x is an adjoint in the magnetic

gauge group, and where the elementary magnetic mesons are directly and unambiguously

identified with the composite operator mj. Baryon matching implies that the gauge group

of the full (unbroken) magnetic theory is

SU(n) = SU(kNf −Nc) . (138)

The matter content of the magnetic theory is summarised in Table 2.

SU(n) SU(Nf )L SU(Nf )R U(1)B U(1)R
q 1 1

n 1− 2
k+1

n
Nf

q̃ ˜ 1 ˜ − 1
n 1− 2

k+1
n
Nf

x adj 1 1 0 2
k+1

mj 1 ˜ 0 2− 4
k+1

Nc

Nf
+ 2(j−1)

k+1

Tab. 2: The matter content of the magnetic theory in the KSS model; n = kNf −Nc.

The superpotential in the magnetic theory is of the form

Wmag = xk+1 +
1

µ2

k
∑

j=1

mj q̃x
k−jq (139)

All that remains is to determine the U(1)B charges of the magnetic quarks. They can be

fixed by demanding that the U(1)B charges of the electric and magnetic baryons match

up:

Bq = −Bq̃ =
N

n
BQ, (140)

hence the charges 1/n for the magnetic quarks.
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We may now proceed to anomaly matching. The mixed anomalies are found to be

U(1)B × SU(Nf )
2
L : 1

U(1)B × SU(Nf )
2
R : −1

U(1)R × SU(Nf )
2
L : − 2N2

c

Nf (1 + k)

U(1)R × SU(Nf )
2
R : − 2N2

c

Nf (1 + k)

U(1)B ×U(1)2R : 0

U(1)R ×U(1)2B : − 4

(1 + k)

U(1)B : 0

U(1)R : −(2N2
c + k + 3)

(1 + k)
, (141)

in both theories. The last two correspond to mixed U(1)-gravity anomalies – there is a

contribution from the diagrams with gravitinos in the loop that is obviously universal and

has been omitted. The cubic anomalies also match

SU(Nf )
3
L : Nc

SU(Nf )
3
R : −Nc

U(1)3B : 0 (142)

U(1)3R : N2
c − 2− 16N4

c

N2
f (1 + k)3

+ (N2
c − 1)

(

2

1 + k
− 1

)3

. (143)

Clearly this is a very stringent test!! Moreover there are other tests that all confirm that

these two theories are dual to each other. One important test is that one can deform the

superpotential to break the original SU(Nc) as

SU(N)→ SU(r1)× SU(r2) . . . SU(rk)×U(1)k−1. (144)

The broken model in the magnetic theory becomes

SU(n)→ SU(r̄1)× SU(r̄2) . . . SU(r̄k)×U(1)k−1 (145)
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where

r̄i = FQ − ri. (146)

Note that the matching of the sub-theories SU(ri) ↔ SU(r̄i) is the usual Seiberg duality:

the original theory is a GUT for a product of standard SQCD duals!!

10 Topology, instantons and the θ-vacuum

10.1 The SU(2) instanton

To this point we have been discussing anomalous violation of current conservation in a

gauge background, with the vague notion that there are some gauge configurations that

exist that can be responsible for, for example, changing the axial charge. We now study

these configurations and discuss their connection with topology.

Consider violation of axial current J5 in a gauge background. Recall that the anomaly was

given by

∂.J5 = ∂.K (147)

where

Kα =
1

4π2
εαβγδtr

[

Aβ∂γAδ +
2

3
AβAδAγ

]

, (148)

and

∂K = εαβγδFαβFγδ . (149)

In the language of forms, we would write dK = trF ∧F and K = tr
(

AdA+ 2
3A

3
)

. In order

to simplify notation I will often drop the wedge where there is no possibilty for confusion.

For definitiness and simplicity we will consider the SU(2) case.

Now when quantizing the theory, one expects that finite classical actions might give addi-

tional contributions to the partition function, whereas quantizing around infinite actions

would give zero. Therefore we seek finite action non-trivial classical solutions to the equa-

tions of motion that can change J5. What configurations could give finite action? We need
∫

V F ∧F to be finite which means that Fµν → 0 as r →∞ or equivalently A→pure gauge:

lim
r→∞

Aµ = U−1∂µU. (150)
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Gauge transformations in SU(2) are represented by the 2x2 unitary matrices, U = eiαaτa ≡
u0 + iuaτ

a. The unitarity condition U †U = 1 =⇒ u20 + uaua = 1 which also defines S3:

hence SU(2) ≃ S3. This makes SU(2) instantons especially simple to configure as working

in Euclidean space we can map the gauge transformaiton directly onto the sphere at infinity.

Let us therefore try Aµ = f(r)U−1∂µU where limr→∞ f(r)=1 and U is a transformation

that is a function depending only on the coordinates in S3 (i.e. it is independent of r).

The nice thing about this ansatz is that the divergence theorem,

∫

V
∂K =

∫

S3

K

[

≡
∫

S3

dSαKα

]

involves an integral over S3 of Kα projected along the area element vector: in other words

we need only consider the component of Kα along the radial direction Kr: in particular

Kr ∼ εrβγδ... and the indices αβγ are orthogonal to the radial index. Therefore we can

use antisymmetry of indices and U †U = 1 as follows:

εrβγδtr [Aβ∂γAδ] = f2εrβγδtr
[(

U †∂βU
)

∂γ

(

U †∂δU
)]

= f2εrβγδtr
[(

U †∂βU
)(

∂γU
†
)

UU † (∂δU)
]

= −f2εrβγδtr
[(

U †∂βU
)(

U †∂γU
)(

U †∂δU
)]

. (151)

Therefore

4π2Kr = f2(
2

3
f − 1)εrβγδtr

[(

U †∂βU
)(

U †∂γU
)(

U †∂δU
)]

→ −1

3
εrβγδtr

[(

U †∂βU
)(

U †∂γU
)(

U †∂δU
)]

. (152)

Actually a simpler way to do this follows from the fact that F = dA+A2 (wedges implied)

so that

K = tr

(

AdA+
2

3
A3

)

= tr

(

A(F −A2) +
2

3
A3

)

= −1

3
tr
(

A3
)

.

Whichever way you skin it, we have

4π2
∫

S3

K = −1

3

∫

dS3ε
rβγδtr

[(

U †∂βU
)(

U †∂γU
)(

U †∂δU
)]

. (153)
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The simplest non-trivial U to consider is the identity map

U =
1

r

(

x01− ixaτa
)

. (154)

Then U †∂αU = −xα
r2
− iσαr where σα = (i1, τa), and hence by the vanishing of τa traces

and antisymmetry in indices

εrβγδtr
[(

−xβ
r2
− iσβ

r

)(

−xγ
r2
− iσγ

r

)(

−xδ
r2
− iσδ

r

)]

≡ iεβγδtr
[σβσγσδ

r3

]

= i
1

2
εβγδtr

[

σβ2iεγδβ′σβ′

r3

]

= −2tr
[σβσβ
r3

]

= −12/r3,(155)

where on the RHS I took the βγδ indices to be the basis of defining indices of S3 ≃ SU(2).

Thus this solution has
∫

S3

K =
1

12π2
Vol(S3)12 = 2. (156)

Topologically, transitions in J5 can be arranged as taking the infinite R4 volume and

splitting it into 2 regions. By adding the point at infinity we can map it to S4, with

the origin at the north pole and t → ∞ at the south pole. We will consider a case

where A = 0 in the southern hemisphere VS = {x ∈ R4; |x| ≥ L− ε}, with the interesting

configuration being in the northern hemisphere, VN = {x ∈ R4; |x| ≤ L+ ε}. All the

interesting topological information is then contained in the transition function between

northern and southern hemisphere on the equator which is topologically equivalent to S3.

The additional piece in the action is
∫

d4x∂K =
∫

VN
F ∧ F =

∫

S3
K =

∫

S3
K. We would

then compute the Q5 change between the north and south poles as ∆Q5 = ∆
∫

d3xJ0 =

∆
∫

d4x∂0J
0 ≡

∫

d4x∂K = 2. In other words the single (anti) instanton configuration eats

(vomits) a single quark anti-quark pair. If there had been Nf fermions flavours we would

have found ∆Q5 = 2Nf .

These numbers are topological. In fact the Pontryagin number is defined as

ν =
1

32π2

∫

d4xεµνρσFµνFρσ. (157)

In this example ν = 1. (In the forms language ν = 1
8π2

∫

F ∧F ). It is simple to find higher

instanton numbers by starting with U1 in the northern hemisphere and U1 in the southern.
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This configuration clearly has ν = 2 but can be smoothly deformed so that the southern

hemisphere is empty and the northern one has U2 = U1U1. General ν configurations are

of the form

Uν =
1

rν
(

x01− ixaτa
)ν
. (158)

The index labels the elements of the homotopy group π3(SU(2)) = Z: that is ν labels

the homotopy classes of the mapping g : S3 → SU(2). (In other words how many times

SU(2) is wrapped over S3.) Clearly since π3(S1) is trivial, abelian groups cannot have such

configurations. But for other simple groups, G, there is a theorem due to Bott that says

a continuous mapping of S3 into G can be deformed into a mapping of S3 into an SU(2)

subgroup of G. Since π3(SU(N)) = Z we conclude that similar instanton configurations

exist for them as well.

It is interesting to find possible forms for the instanton – i.e. to find the solutions to the

equation of motion and in particular the precise form of f(r). (We will focus on the one

instanton solution.) An interesting class of solutions to study are the self-dual (or anti self-

dual) ones, satisfying Fµν = ∗Fµν . This is because the action is related to the Pontryagin

number as

S =
1

4

∫

FµνF
µν =

1

4

∫

Fµν ∗ Fµν =
ν

8π2
. (159)

In fact this saturates a bound (the BPS bound) similar to the Bogomolny bound since

1

4

∫

(Fµν − ∗Fµν)2 ≥ 0

and therefore expanding (and using ∗F ∗ F = FF ) we find

S ≥ ν

8π2
. (160)

Hence the self-dual solutions are a local minimum of the action. The equation Fµν = ∗Fµν
is a little easier to solve because it is only first order. With our ansatz one finds

r
df

dr
= 2f(1− f)

which has solutions

f =
r2

r2 + ρ2
, (161)
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where the free parameter ρ is the size of the instanton. Substituting in one finds

Fµν =
4

r2/ρ2 + 1
σµν , (162)

where σµν = 1
4 [σµ, σν ]. Returning to our earlier discussion about the sorts of Aµ that can

contribute to Q̇5, we see that while F ∼ 1/r2 the crucial part of the solution is that the

gauge field tends to an Aα ∼ −iσα/r pure gauge configuration. (If we’d been smart – or

pretentious – we could have guessed the action back then).

10.2 The theta vacuum

Finally we briefly discuss a crucial and puzzling feature of the standard model which is

the θ-vacuum and theta parameter. From the fact that π3(SU(3)) = Z we conclude that

instantons can change the vacuum: in other words the classical empty vacuum on which

we were so confidently building our quantum theory is not even gauge invariant!

Indeed suppose we perform a large single instanton gauge transformation in the QCD gauge

fields. This then results in a shift of the effective Lagrangian as

L → L+
1

32π2
trF ∗ F. (163)

The extra piece 1
32π2 trF ∗ F is reinterpreted as a local term in the Lagrangian that was

generated by a large (i.e. topologically non-trivial) gauge transformation.

In order to build a gauge covariant vacuum for QCD we need to start with a fiducial

vacuum |0〉 and collect all the possible vacua related to it by large ν instanton gauge

transformations |ν〉. A gauge invariant (up to a phase) vacuum would then look like

|θ〉 =
∑

ν

e−iνθ|ν〉, (164)

where 0 < θ < 2π is an arbitrary parameter. A single instanton gauge transformation (call

it U1) now sends ν → ν + 1 but of course because we have an infinite sum the vacuum

transforms into itself modulo a phase

U1|θ〉 = eiθ|θ〉. (165)
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This phase can be written into the action as a local term in the Lagrangian

L = Lclassical +
θ

32π2
trF ∗ F. (166)

To see this consider the partition function:

〈θ|eiS |θ〉 =
∫

DAeiS[A]

The path integral over A contains contributions from each instanton sector (i.e. there is a

contribution from quantizing around each instanton background). We can split A into the

classical instanton background piece and the quantum fluctuations, and write the sum over

instanton sectors where now DA is over small fluctuations only, at the same time allowing

an arbitrary phase to appear proportional to the instanton number:

〈θ|e−iHt|θ〉 =
∑

νν′

〈ν|ei(ν−ν′)θeiS[Aν−ν′ ]|ν ′〉

∝
∑

n

∫

DAneinθeiS[An]

=
∑

n

∫

DAeiS[A]+
iθ

32π2

∫

trF∗F . (167)

This term is not constrained, is not CP invariant and is measurable in neutron electric

dipole moment experiments: it is found to be less than 10−9 and is consistent with zero.

But no known principles (even anthropic ones) say that it should be small. Various ideas,

such as the Peccei-Quinn mechanism have been put forward to explain why it is zero.

Extra Questions

1. Prove

δϕi = i[Q,ϕi]. (168)

for external symmetries.

2. Show that δS = 0 and Noether’s theorem imply covariant current conservation of

the form

(D.J)a = 0 (169)
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where

Db
µa = δba∂µ + f bacA

c
µ. (170)

3. The anomaly we derived in lectures for QED was

∂.J5 =
g2

16π2
εµνρσF

µνF ρσ. (171)

Consider an abelian gauge theory in which only left-handed fermions couple to the

gauge fields L = iψ̄R /∂ψR+iψ̄L /DψL− 1
4FµνF

µν . Derive the anomalous Ward identities

for this case. Use them to show that the anomaly of the left-handed current JL =

ψ̄Lγ
µψL is

∂.JL = − g2

96π2
εµνρσF

µνF ρσ. (172)

[Hint: There is a JL current at each vertex so the symmetry factors are different.

Also you may use the diagrammatic results from lectures.]

4. Use the power counting argument and the fact that the chiral Ward identity has a

single Jµ5 vertex and interchangeable Jµ vertices, to show that the chiral anomaly

in any (even) number of dimensions is finite and appears at one-loop. What is the

diagram in 6 dimensions?

5. The Lagrangian for quarks is of the form L = iψ̄γµDµψ where D is the covariant

derivative for colour and ψ stands for the three flavours of Dirac fermions, u, d or s.

Construct the currents and conserved charges for the global flavour symmetry

SU(3)L×SU(3)R. Show that the Noether charges are generators for this symmetry.

[Hint: you may use the equal time commutators {ψi(x), ψ†
j (y)} = δ3(x− y)δij ].

6. For some reason I wish to construct a consistent SU(N) theory where each

generation contains a some antifundamentals, plus a single symmetric and

antisymmetric. The contributions of fundamentals, symmetrics and antisymmetrics

to the cubic SU(N)− SU(N)− SU(N) anomaly are 1, N + 4, N − 4 respectively.

How many antifundamentals do I need? If I also allow antisymmetrics in the

conjugate representation, find a single combination of fields that will cancel

anomalies for any N .

7. Homework question: Use the Ward identity to derive the non-Abelian


